next up previous
Next: About this document

Math 621 Homework Assignment 1 Spring 2000

Due: Thursday, February 10

  1. Lang, Ch. 1 Section 2 page 11: 7, 10, 11, 12, 13
  2. Lang, Ch. 1 Section 3 page 17 problem 4: Let tex2html_wrap_inline146 . Describe the image under f of the following sets:
    1. tex2html_wrap_inline150 .
    2. tex2html_wrap_inline152 .
  3. Lang, Ch. 1 Section 4 page 26 problem 3: Show that for any complex number tex2html_wrap_inline154 , we have

    displaymath130

    If tex2html_wrap_inline156 , show that

    displaymath131

  4. Let u, v be real valued functions defined on an open set U in tex2html_wrap_inline164 . Prove that if u and v have continuous partial derivatives, then the function

    eqnarray31

    is differentiable throughout U in the sense that

    displaymath132

    Hint: Bound the quotient by a sum of two terms each depending only on u or v, define tex2html_wrap_inline176 and tex2html_wrap_inline178 , tex2html_wrap_inline180 , and use the Mean Value Theorem for a(t) and b(t).

  5. Ahlfors, Ch. 1 Section 2.1 page 15 problem 2: Prove that the points tex2html_wrap_inline186 , tex2html_wrap_inline188 , tex2html_wrap_inline190 are vertices of an equilateral triangle if and only if

    displaymath133

    1. Show that if tex2html_wrap_inline192 , the set of points

      displaymath134

      is either empty or a circle. Determine the center and the radius. What happens when A=0?

    2. Show that the set of points

      displaymath135

      is a circle. Determine the center and the Radius. What happens when K=1?

  6. Let tex2html_wrap_inline198 , tex2html_wrap_inline200 , be a polynomial of degree d. Show that there exist positive constants k, K, and R such that

    displaymath136

  7. Let tex2html_wrap_inline210 with tex2html_wrap_inline212 . Show that the roots of P(z)=0 satisfy tex2html_wrap_inline216 . (Hint: Obtain a lower bound for tex2html_wrap_inline218 for tex2html_wrap_inline220 ).
  8. Given a complex valued function f of one complex variable z, define

    displaymath137

    Assume f is holomorphic.

    1.   Show that tex2html_wrap_inline228 , tex2html_wrap_inline230 , tex2html_wrap_inline232 , and tex2html_wrap_inline234 .
    2.   Show that tex2html_wrap_inline236 .
    3. Use parts 9a and 9b to show that tex2html_wrap_inline238 is HARMONIC provided tex2html_wrap_inline240 .



next up previous
Next: About this document

Eyal Markman
Fri Feb 11 09:40:43 EST 2000