Applied Differential Geometry and Harmonic Analysis in Deep Learning Regularization

Wei Zhu

Department of Mathematics
Duke University

Special Colloquium
Department of Mathematics
UC Santa Barbara
January 6, 2019

Numerous Success Stories in Deep Learning

Deep Neural Networks (DNNs) are extremely effective at learning from massive training data.

DNN Models

$f_{\theta}: \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}^{d_{\xi}}$, and θ is the collection of all trainable parameters.

DNN Models

$f_{\theta}: \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}^{d_{\xi}}$, and θ is the collection of all trainable parameters.

DNN Models

$f_{\theta}: \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}^{d_{\xi}}$, and θ is the collection of all trainable parameters.

Fully-connected

$\boldsymbol{\xi}=f_{\boldsymbol{\theta}}(\boldsymbol{x})=\mathbf{W}^{(L)} \sigma\left(\cdots \sigma\left(\mathbf{W}^{(2)} \sigma\left(\mathbf{W}^{(1)} \boldsymbol{x}+\mathbf{b}^{(1)}\right)+\mathbf{b}^{(2)}\right) \cdots\right)+\mathbf{b}^{(L)}$

DNN Models

$f_{\theta}: \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}^{d_{\xi}}$, and θ is the collection of all trainable parameters.

Convolutional Neural Network (CNN)

$$
\boldsymbol{\xi}=f_{\boldsymbol{\theta}}(\boldsymbol{x})=\mathbf{W}^{(L)} * \sigma\left(\cdots \sigma\left(\mathbf{W}^{(2)} * \sigma\left(\mathbf{W}^{(1)} * \boldsymbol{x}\right)\right) \cdots\right)
$$

DNN Models

Label
 Input

DNN Models

Training a DNN on the given labeled data $\left\{\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$:

$$
\boldsymbol{\theta}^{*}=\arg \min _{\theta} L(\boldsymbol{\theta}):=\frac{1}{N} \sum_{i=1}^{N} l\left(f_{\theta}\left(\boldsymbol{x}_{i}\right), y_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} l\left(\boldsymbol{\xi}_{i}, y_{i}\right)
$$

From Model-Based to Data-Driven

Traditional hand-crafted model-based methods are outperformed in many applications by data-driven end-to-end trained DNNs.

From Model-Based to Data-Driven

Traditional hand-crafted model-based methods are outperformed in many applications by data-driven end-to-end trained DNNs.

From Model-Based to Data-Driven

Traditional hand-crafted model-based methods are outperformed in many applications by data-driven end-to-end trained DNNs.

Nevertheless, model-based algorithms also have their own advantages:

- Do not require a huge number of training data.
- More interpretable.
- More theoretical results.

Challenging Problems in Deep Learning

Overfitting

Challenging Problems in Deep Learning

Overfitting

Interpretability

Challenging Problems in Deep Learning

Overfitting

Interpretability

Challenging Problems in Deep Learning

Overfitting

Interpretability

x

Symmetry destroyed

x

Research Objectives

Overfitting

Interpretability

Symmetry destroyed

Research Objectives

Improved generalization

Interpretability

Symmetry
destroyed

Research Objectives

Improved generalization

Interpretability

Research Objectives

Improved generalization

Interpretability

v

Symmetry preserved

Contents

(1) Applied differential geometry

- Low-Dimensional-Manifold-regularized neural Network (LDMNet)
[Z., Qiu, Huang, Calderbank, Sapiro, Daubechies 2018]
(2) Applied harmonic analysis
- Scale-equivariant CNN with decomposed convolutional filters (ScDCFNet)
[Z., Qiu, Calderbank, Sapiro, Cheng 2019]

Low Dimensional Manifold Regularization

Low Dimensional Manifold Regularization

- $\mathcal{P}_{\boldsymbol{x}}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d_{x}}$: data point cloud.
- $\left\{\boldsymbol{\xi}_{i}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right\}_{i=1}^{N} \subset \mathbb{R}^{d_{\xi}}$: output features.

Low Dimensional Manifold Regularization

- $\mathcal{P}_{\boldsymbol{x}}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d_{x}}$: data point cloud.
- $\left\{\boldsymbol{\xi}_{i}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right\}_{i=1}^{N} \subset \mathbb{R}^{d_{\xi}}$: output features.

Geometric insight:

- $\mathcal{P}_{\boldsymbol{x}} \subset \mathcal{N}=\cup_{l=1}^{L} \mathcal{N}_{l} \subset \mathbb{R}^{d_{x}}$, and $\operatorname{dim}\left(\mathcal{N}_{l}\right) \ll d_{x}$.
- $\left.f_{\boldsymbol{\theta}}\right|_{\mathcal{N}}: \mathcal{N} \rightarrow \mathbb{R}^{d_{\xi}}$ should be a smooth function over \mathcal{N}.

Low Dimensional Manifold Regularization

- $\mathcal{P}_{\boldsymbol{x}} \subset \mathcal{N}=\cup_{l=1}^{L} \mathcal{N}_{l} \subset \mathbb{R}^{d_{x}}$.
- $\operatorname{dim}\left(\mathcal{N}_{l}\right) \ll d_{x}$.

Low Dimensional Manifold Regularization

$$
\mathcal{P}_{\boldsymbol{x}}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d_{x}}
$$

- $\mathcal{P}_{\boldsymbol{x}} \subset \mathcal{N}=\cup_{l=1}^{L} \mathcal{N}_{l} \subset \mathbb{R}^{d_{x}}$.
- $\operatorname{dim}\left(\mathcal{N}_{l}\right) \ll d_{x}$.
- $f_{\theta}: \mathcal{N} \rightarrow \mathbb{R}^{d_{\xi}}$ is smooth.

Low Dimensional Manifold Regularization

- $\mathcal{P}_{\boldsymbol{x}} \subset \mathcal{N}=\cup_{l=1}^{L} \mathcal{N}_{l} \subset \mathbb{R}^{d_{x}}$.
- $\operatorname{dim}\left(\mathcal{N}_{l}\right) \ll d_{x}$.
- $f_{\theta}: \mathcal{N} \rightarrow \mathbb{R}^{d_{\xi}}$ is smooth.

Thus

- $\mathcal{M}_{l}=\left\{\left(\boldsymbol{x}, f_{\boldsymbol{\theta}}(\boldsymbol{x})\right)\right\}_{x \in \mathcal{N}_{l}} \subset \mathbb{R}^{d}$ is the graph of $f_{\boldsymbol{\theta}}$ over \mathcal{N}_{l}.
- $d=d_{x}+d_{\xi}$.
- $\operatorname{dim}\left(\mathcal{M}_{l}\right) \ll d$.

Low Dimensional Manifold Regularization

- $\mathcal{P}_{\boldsymbol{x}} \subset \mathcal{N}=\cup_{l=1}^{L} \mathcal{N}_{l} \subset \mathbb{R}^{d_{x}}$.
- $\operatorname{dim}\left(\mathcal{N}_{l}\right) \ll d_{x}$.
- $f_{\theta}: \mathcal{N} \rightarrow \mathbb{R}^{d_{\xi}}$ is smooth.

Thus

- $\mathcal{M}_{l}=\left\{\left(\boldsymbol{x}, f_{\boldsymbol{\theta}}(\boldsymbol{x})\right)\right\}_{x \in \mathcal{N}_{l}} \subset \mathbb{R}^{d}$ is the graph of $f_{\boldsymbol{\theta}}$ over \mathcal{N}_{l}.
- $d=d_{x}+d_{\xi}$.
- $\operatorname{dim}\left(\mathcal{M}_{l}\right) \ll d$.
$\mathcal{P}=\left\{\left(\boldsymbol{x}_{i}, f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right)\right\}_{i=1}^{N}$ produced by a good feature extractor f_{θ} should sample a collection of low dimensional manifolds $\mathcal{M}=\cup_{l=1}^{L} \mathcal{M}_{l}$.

Low Dimensional Manifold Regularized Neural Networks

- Overfitting occurs when $\operatorname{dim}\left(\mathcal{M}_{l}\right)$ is too large after training.
- Use $\operatorname{dim}\left(\mathcal{M}_{l}\right)$ as a regularizer:

$$
\begin{aligned}
& \min _{\theta, \mathcal{M}=\cup_{l=1}^{L} \mathcal{M}_{l}} L(\boldsymbol{\theta})+\lambda \sum_{l=1}^{L}\left|\mathcal{M}_{l}\right| \operatorname{dim}\left(\mathcal{M}_{l}\right) \\
& \text { s.t. } \mathcal{P}=\left\{\left(\boldsymbol{x}_{i}, f_{\theta}\left(\boldsymbol{x}_{i}\right)\right)\right\}_{i=1}^{N} \subset \mathcal{M} .
\end{aligned}
$$

Low Dimensional Manifold Regularized Neural Networks

- Overfitting occurs when $\operatorname{dim}\left(\mathcal{M}_{l}\right)$ is too large after training.
- Use $\operatorname{dim}\left(\mathcal{M}_{l}\right)$ as a regularizer:

$$
\begin{aligned}
& \min _{\theta, \mathcal{M}=\cup_{l=1}^{L} \mathcal{M}_{l}} L(\boldsymbol{\theta})+\lambda \sum_{l=1}^{L}\left|\mathcal{M}_{l}\right| \operatorname{dim}\left(\mathcal{M}_{l}\right) \\
& \text { s.t. } \mathcal{P}=\left\{\left(\boldsymbol{x}_{i}, f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right)\right\}_{i=1}^{N} \subset \mathcal{M} .
\end{aligned}
$$

- Question: How to calculate $\operatorname{dim}\left(\mathcal{M}_{l}\right)$ in a tractable way?

Dimension of a Manifold

Proposition

Let \mathcal{M} be a smooth submanifold isometrically embedded in \mathbb{R}^{d}. For any $\boldsymbol{p}=\left(p_{j}\right)_{j=1}^{d} \in \mathcal{M}$,

$$
\operatorname{dim}(\mathcal{M})=\sum_{j=1}^{d}\left|\nabla_{\mathcal{M}} \alpha_{j}(\boldsymbol{p})\right|^{2}
$$

where $\alpha_{j}(\boldsymbol{p})=p_{j}$ is the (ambient space) coordinate function, and $\nabla_{\mathcal{M}}$ is the gradient operator on \mathcal{M} (with the induced metric.)

Remark

$\boldsymbol{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{d}\right): \mathcal{M} \hookrightarrow \mathbb{R}^{d}$ is the embedding of \mathcal{M} in \mathbb{R}^{d}, i.e.,

$$
\boldsymbol{\alpha}(\boldsymbol{p})=\left(\alpha_{1}(\boldsymbol{p}), \cdots, \alpha_{d}(\boldsymbol{p})\right)=\left(\boldsymbol{p}_{1}, \cdots, \boldsymbol{p}_{d}\right)=\boldsymbol{p}
$$

Dimension of a Manifold

Sanity check: $\mathcal{M}=\left\{\boldsymbol{p}=\left(p_{1}, 1\right)\right\} \subset \mathbb{R}^{2}, \operatorname{dim}(\mathcal{M})=1, d=\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.

$$
1=\operatorname{dim}(\mathcal{M}) \stackrel{?}{=} \sum_{j=1}^{d}\left|\nabla_{\mathcal{M}} \alpha_{j}(\boldsymbol{p})\right|^{2}, \quad \forall \boldsymbol{p} \in \mathcal{M} .
$$

Dimension of a Manifold

Sanity check: $\mathcal{M}=\left\{\boldsymbol{p}=\left(p_{1}, 1\right)\right\} \subset \mathbb{R}^{2}, \operatorname{dim}(\mathcal{M})=1, d=\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.

$$
1=\operatorname{dim}(\mathcal{M}) \stackrel{?}{=} \sum_{j=1}^{d}\left|\nabla_{\mathcal{M}} \alpha_{j}(\boldsymbol{p})\right|^{2}, \quad \forall \boldsymbol{p} \in \mathcal{M}
$$

For any $\boldsymbol{p}=\left(p_{1}, 1\right) \in \mathcal{M}$:

- $\alpha_{1}(\boldsymbol{p})=p_{1} \Longrightarrow \nabla_{\mathcal{M}} \alpha_{1}(\boldsymbol{p})=(1,0)$.
- $\alpha_{2}(\boldsymbol{p}) \equiv 1 \Longrightarrow \nabla_{\mathcal{M}} \alpha_{2}(\boldsymbol{p})=(0,0)$.
- Thus, for any $\boldsymbol{p} \in \mathcal{M}$,

$$
\begin{aligned}
\sum_{j=1}^{2}\left|\nabla_{\mathcal{M}} \alpha_{j}(\boldsymbol{p})\right|^{2} & =|(1,0)|^{2}+|(0,0)|^{2} \\
& =1
\end{aligned}
$$

Dimension of a Manifold

Sanity check: $\mathcal{M}=\{(t \cos \theta, t \sin \theta), t \in \mathbb{R}\} \subset \mathbb{R}^{2}, \operatorname{dim}(\mathcal{M})=1$.

$$
1=\operatorname{dim}(\mathcal{M}) \stackrel{?}{=} \sum_{j=1}^{d}\left|\nabla_{\mathcal{M}} \alpha_{j}(\boldsymbol{p})\right|^{2}, \quad \forall \boldsymbol{p} \in \mathcal{M}
$$

For any $\boldsymbol{p}=(t \cos \theta, t \sin \theta) \in \mathcal{M}$:

- $\nabla_{\mathcal{M}} \alpha_{1}(\boldsymbol{p})=\left(\cos ^{2} \theta, \cos \theta \sin \theta\right)$.
- $\nabla_{\mathcal{M}} \alpha_{2}(\boldsymbol{p})=\left(\cos \theta \sin \theta, \sin ^{2} \theta\right)$.
- Thus, for any $\boldsymbol{p} \in \mathcal{M}$,

$$
\begin{aligned}
\sum_{j=1}^{2}\left|\nabla_{\mathcal{M}} \alpha_{j}(\boldsymbol{p})\right|^{2} & =\cos ^{2} \theta+\sin ^{2} \theta \\
& =1
\end{aligned}
$$

Low Dimensional Manifold Regularized Neural Networks

$$
\min _{\theta, \mathcal{M}} L(\boldsymbol{\theta})+\lambda \sum_{l=1}^{L}\left|\mathcal{M}_{l}\right| \operatorname{dim}\left(\mathcal{M}_{l}\right) \quad \text { s.t. } \mathcal{P}=\left\{\left(\boldsymbol{x}_{i}, f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right)\right\}_{i=1}^{N} \subset \mathcal{M}
$$

- Using the proposition, we have

$$
\begin{aligned}
\sum_{l=1}^{L}\left|\mathcal{M}_{l}\right| \operatorname{dim}\left(\mathcal{M}_{l}\right) & =\sum_{l=1}^{L} \int_{\mathcal{M}_{l}} \operatorname{dim}\left(\mathcal{M}_{l}\right) d \mu(\boldsymbol{p})=\sum_{l=1}^{L} \int_{\mathcal{M}_{l}} \sum_{j=1}^{d}\left|\nabla_{\mathcal{M}_{l}} \alpha_{j}(\boldsymbol{p})\right|^{2} d \mu(\boldsymbol{p}) \\
& =\sum_{j=1}^{d} \sum_{l=1}^{L}\left\|\nabla_{\mathcal{M}_{l}} \alpha_{j}\right\|_{L^{2}\left(\mathcal{M}_{l}\right)}^{2}=: \sum_{j=1}^{d}\left\|\nabla_{\mathcal{M}} \alpha_{j}\right\|_{L^{2}(\mathcal{M})}^{2}
\end{aligned}
$$

Low Dimensional Manifold Regularized Neural Networks

$$
\min _{\theta, \mathcal{M}} L(\boldsymbol{\theta})+\lambda \sum_{l=1}^{L}\left|\mathcal{M}_{l}\right| \operatorname{dim}\left(\mathcal{M}_{l}\right) \quad \text { s.t. } \mathcal{P}=\left\{\left(\boldsymbol{x}_{i}, f_{\theta}\left(\boldsymbol{x}_{i}\right)\right)\right\}_{i=1}^{N} \subset \mathcal{M}
$$

- Using the proposition, we have

$$
\begin{aligned}
\sum_{l=1}^{L}\left|\mathcal{M}_{l}\right| \operatorname{dim}\left(\mathcal{M}_{l}\right) & =\sum_{l=1}^{L} \int_{\mathcal{M}_{l}} \operatorname{dim}\left(\mathcal{M}_{l}\right) d \mu(\boldsymbol{p})=\sum_{l=1}^{L} \int_{\mathcal{M}_{l}} \sum_{j=1}^{d}\left|\nabla_{\mathcal{M}_{l}} \alpha_{j}(\boldsymbol{p})\right|^{2} d \mu(\boldsymbol{p}) \\
& =\sum_{j=1}^{d} \sum_{l=1}^{L}\left\|\nabla_{\mathcal{M}_{l}} \alpha_{j}\right\|_{L^{2}\left(\mathcal{M}_{l}\right)}^{2}=: \sum_{j=1}^{d}\left\|\nabla_{\mathcal{M}} \alpha_{j}\right\|_{L^{2}(\mathcal{M})}^{2}
\end{aligned}
$$

- Thus the original problem is equivalent to

$$
\min _{\theta, \mathcal{M}} L(\boldsymbol{\theta})+\lambda \sum_{j=1}^{d}\left\|\nabla_{\mathcal{M}} \alpha_{j}\right\|_{L^{2}(\mathcal{M})}^{2} \quad \text { s.t. } \mathcal{P}=\left\{\left(\boldsymbol{x}_{i}, f_{\theta}\left(\boldsymbol{x}_{i}\right)\right)\right\}_{i=1}^{N} \subset \mathcal{M} .
$$

Alternate Direction of Minimization

$$
\min _{\theta, \mathcal{M}} L(\theta)+\lambda \sum_{j=1}^{d}\left\|\nabla_{\mathcal{M}} \alpha_{j}\right\|_{L^{2}(\mathcal{M})}^{2} \text { s.t. } \mathcal{P}=\left\{\left(\boldsymbol{x}_{i}, f_{\theta}\left(\boldsymbol{x}_{i}\right)\right)\right\}_{i=1}^{N} \subset \mathcal{M} \text {. }
$$

Alternate Direction of Minimization

$$
\min _{\theta, \boldsymbol{\alpha} \in H^{1}\left(\mathcal{M}^{(k)}\right)} L(\boldsymbol{\theta})+\lambda \sum_{j=1}^{d}\left\|\nabla_{\mathcal{M}^{(k)}} \alpha_{j}\right\|_{L^{2}}^{2}, \quad \text { s.t. } \boldsymbol{\alpha}\left(\mathcal{P}^{(k)}\right)=\left\{\left(\boldsymbol{x}_{i}, f_{\theta}\left(\boldsymbol{x}_{i}\right)\right)\right\}_{i=1}^{N}
$$

Alternate Direction of Minimization

$$
\mathcal{M}^{(k+1)}:=\boldsymbol{\alpha}^{(k+1)}\left(\mathcal{M}^{(k)}\right)
$$

Alternate Direction of Minimization

$$
\min _{\theta, \mathcal{M}} L(\boldsymbol{\theta})+\lambda \sum_{j=1}^{d}\left\|\nabla_{\mathcal{M}} \alpha_{j}\right\|_{L^{2}(\mathcal{M})}^{2} \quad \text { s.t. } \mathcal{P}=\left\{\left(\boldsymbol{x}_{i}, f_{\theta}\left(\boldsymbol{x}_{i}\right)\right)\right\}_{i=1}^{N} \subset \mathcal{M} .
$$

Solving the Perturbed Embedding Function α

Each α_{j} update can be cast into the following Euler-Lagrange equation:

$$
\left\{\begin{aligned}
-\Delta_{\mathcal{M} u} u(\boldsymbol{p})+\gamma \sum_{\boldsymbol{q} \in P} \delta(\boldsymbol{p}-\boldsymbol{q})(u(\boldsymbol{q})-v(\boldsymbol{q})) & =0, \boldsymbol{p} \in \mathcal{M} \\
\frac{\partial u}{\partial n} & =0, \boldsymbol{p} \in \partial \mathcal{M}
\end{aligned}\right.
$$

where $P \subset \mathcal{M}$ is a (given) point cloud sampling the manifold \mathcal{M} (not explicitly parameterized), and v is a known function on P.

Solving the Perturbed Embedding Function α

Each α_{j} update can be cast into the following Euler-Lagrange equation:

$$
\left\{\begin{aligned}
-\Delta_{\mathcal{M} u} u(\boldsymbol{p})+\gamma \sum_{\boldsymbol{q} \in P} \delta(\boldsymbol{p}-\boldsymbol{q})(u(\boldsymbol{q})-v(\boldsymbol{q})) & =0, \boldsymbol{p} \in \mathcal{M} \\
\frac{\partial u}{\partial n} & =0, \boldsymbol{p} \in \partial \mathcal{M}
\end{aligned}\right.
$$

where $P \subset \mathcal{M}$ is a (given) point cloud sampling the manifold \mathcal{M} (not explicitly parameterized), and v is a known function on P.

Difficulties:

- How to deal with $\delta(\boldsymbol{p}-\boldsymbol{q})$?
- How to approximate $\Delta_{\mathcal{M} u}$ on the manifold \mathcal{M} ?

Point Integral Method (PIM)

Theorem ([Li, Shi, Sun 2016; Osher, Shi, Z. 2017])

Let \mathcal{M} be a smooth manifold and $u \in C^{3}(\mathcal{M})$, then

$$
\begin{array}{r}
\|-\frac{1}{t} \int_{\mathcal{M}}(u(\boldsymbol{x})-u(\boldsymbol{y})) R_{t}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}+2 \int_{\partial \mathcal{M}} \frac{\partial u}{\partial n}(\boldsymbol{y}) R_{t}(\boldsymbol{x}, \boldsymbol{y}) d \tau_{\boldsymbol{y}} \\
-\int_{\mathcal{M}} \Delta_{\mathcal{M}} u(\boldsymbol{y}) R_{t}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} \|_{L^{2}(\mathcal{M})}=O\left(t^{1 / 4}\right),
\end{array}
$$

where R_{t} is the heat kernel:

$$
R_{t}(\boldsymbol{x}, \boldsymbol{y})=C_{t} \exp \left(-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|^{2}}{4 t}\right)
$$

Point Integral Method (PIM)

Theorem ([Li, Shi, Sun 2016; Osher, Shi, Z. 2017])

Let \mathcal{M} be a smooth manifold and $u \in C^{3}(\mathcal{M})$, then

$$
\begin{aligned}
& \|-\frac{1}{t} \int_{\mathcal{M}}(u(\boldsymbol{x})-u(\boldsymbol{y})) R_{t}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}+2 \int_{\partial \mathcal{M}} \frac{\partial u}{\partial n}(\boldsymbol{y}) R_{t}(\boldsymbol{x}, \boldsymbol{y}) d \tau_{\boldsymbol{y}} \\
&-\int_{\mathcal{M}} \Delta_{\mathcal{M}} u(\boldsymbol{y}) R_{t}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} \|_{L^{2}(\mathcal{M})}=O\left(t^{1 / 4}\right)
\end{aligned}
$$

where R_{t} is the heat kernel:

$$
R_{t}(\boldsymbol{x}, \boldsymbol{y})=C_{t} \exp \left(-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|^{2}}{4 t}\right)
$$

Solving the Perturbed Embedding Function α

$$
\left\{\begin{aligned}
-\Delta_{\mathcal{M}} u(\boldsymbol{p})+\gamma \sum_{\boldsymbol{q} \in P} \delta(\boldsymbol{p}-\boldsymbol{q})(u(\boldsymbol{q})-v(\boldsymbol{q})) & =0, \boldsymbol{p} \in \mathcal{M} \\
\frac{\partial u}{\partial n} & =0, \boldsymbol{p} \in \partial \mathcal{M}
\end{aligned}\right.
$$

(A) Convolve with the heat kernel $R_{t}(\boldsymbol{p}, \boldsymbol{q})=C_{t} \exp \left(-\frac{|\boldsymbol{p}-\boldsymbol{q}|^{2}}{4 t}\right)$

$$
-t \int_{\mathcal{M}} \Delta_{\mathcal{M}} u(\boldsymbol{q}) R_{t}(\boldsymbol{p}, \boldsymbol{q}) d \boldsymbol{q}+\gamma t \sum_{\boldsymbol{q} \in P} R_{t}(\boldsymbol{p}, \boldsymbol{q})(u(\boldsymbol{q})-v(\boldsymbol{q}))=0
$$

(B) PIM: $-t \int_{\mathcal{M}} \Delta_{\mathcal{M}} u(\boldsymbol{y}) R_{t}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} \approx \int_{\mathcal{M}}(u(\boldsymbol{x})-u(\boldsymbol{y})) R_{t}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}$

$$
\int_{\mathcal{M}}(u(\boldsymbol{p})-u(\boldsymbol{q})) R_{t}(\boldsymbol{p}, \boldsymbol{q}) d \boldsymbol{q}+\gamma t \sum_{\boldsymbol{q} \in P} R_{t}(\boldsymbol{p}, \boldsymbol{q})(u(\boldsymbol{q})-v(\boldsymbol{q}))=0
$$

(C) Becomes a (sparse) linear system after discretization.

Experiments：Image Classification

SVHN	
EM12	目5010515
$1{ }^{4}$	1而回目2
IIO 1	319118
45	51518 1127
F6160	
1m5：	
7154	8151
1	

CIFAR－10

Classification Accuracy

	MNIST test accuracy (\%)		
Training per class	Weight decay	DropOut	LDMNet
50	91.32 ± 0.23	92.31 ± 0.31	$\mathbf{9 5 . 5 7} \pm \mathbf{0 . 2 8}$
100	93.38 ± 0.19	94.05 ± 0.17	$\mathbf{9 6 . 7 3} \pm \mathbf{0 . 2 4}$
400	97.23 ± 0.21	97.95 ± 0.17	$\mathbf{9 8 . 4 1} \pm \mathbf{0 . 1 5}$
700	97.67 ± 0.13	98.07 ± 0.11	$\mathbf{9 8 . 6 1} \pm \mathbf{0 . 0 9}$
	SVHN test accuracy (\%)		
50	71.46 ± 0.45	71.94 ± 0.37	$\mathbf{7 4 . 6 4} \pm \mathbf{0 . 3 3}$
100	79.05 ± 0.28	79.94 ± 0.30	$\mathbf{8 1 . 3 6} \pm \mathbf{0 . 2 4}$
400	87.38 ± 0.19	87.16 ± 0.41	$\mathbf{8 8 . 0 3} \pm \mathbf{0 . 1 6}$
700	89.69 ± 0.26	89.83 ± 0.26	$\mathbf{9 0 . 0 7} \pm \mathbf{0 . 1 2}$
CIFAR-10 test accuracy (\%)			
50	34.70 ± 0.80	35.94 ± 0.67	$\mathbf{4 1 . 5 5} \pm \mathbf{0 . 7 1}$
100	42.45 ± 0.45	43.18 ± 0.32	$\mathbf{4 8 . 7 3} \pm \mathbf{0 . 5 5}$
400	56.19 ± 0.34	56.79 ± 0.23	$\mathbf{6 0 . 0 8} \pm \mathbf{0 . 2 4}$
700	61.84 ± 0.41	62.59 ± 0.28	$\mathbf{6 5 . 5 9} \pm \mathbf{0 . 2 2}$
Full data	87.72 ± 0.10		

NIR-VIS Heterogeneous Face Recognition

The CASIA NIR-VIS 2.0 dataset.

NIR-VIS Heterogeneous Face Recognition

Difficulties in NIR-VIS face recognition:

- Limited NIR face images.

NIR-VIS Heterogeneous Face Recognition

Difficulties in NIR-VIS face recognition:

- Limited NIR face images.
- Cross-modality comparison.

NIR-VIS Heterogeneous Face Recognition

Difficulties in NIR-VIS face recognition:

- Limited NIR face images.
- Cross-modality comparison.

Only train this

NIR-VIS Heterogeneous Face Recognition

	Accuracy (\%)
VGG-face	74.51 ± 1.28
VGG-face + triplet [Lezama et al., 2017]	75.96 ± 2.90
VGG-face + low-rank [Lezama et al., 2017]	80.69 ± 1.02
VGG-face Weight Decay	63.87 ± 1.33
VGG-face DropOut	66.97 ± 1.31
VGG-face LDMNet	85.02 ± 0.86

NIR-VIS Heterogeneous Face Recognition

VGG-face

DropOut

Weight decay

LDMNet

Research Objectives

Improved generalization

Interpretability

Symmetry
destroyed

Wakey wakey! Awesome pweeple!

Invariant/Equivariant Representation

Geometric regularization improves the generalization of DNNs.
Question: How to better resolve the (low-dimensional) geometric structure using limited data.

Invariant/Equivariant Representation

Geometric regularization improves the generalization of DNNs.
Question: How to better resolve the (low-dimensional) geometric structure using limited data.

Invariant/Equivariant Representation

Geometric regularization improves the generalization of DNNs.
Question: How to better resolve the (low-dimensional) geometric structure using limited data.

Contents

(1) Applied differential geometry

- Low-Dimensional-Manifold-regularized neural Network (LDMNet)
[Z., Qiu, Huang, Calderbank, Sapiro, Daubechies 2018]
(2) Applied harmonic analysis
- Scale-equivariant CNN with decomposed convolutional filters (ScDCFNet)
[Z., Qiu, Calderbank, Sapiro, Cheng 2019]

CNNs Are Translation-Equivariant

- Input: $x: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Input

2

CNNs Are Translation-Equivariant

- Input: $x: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- Output: $y_{w}[x]: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
y_{w}[x](u)=\int_{\mathbb{R}^{2}} x\left(u+u^{\prime}\right) w\left(u^{\prime}\right) d u^{\prime}
$$

CNNs Are Translation-Equivariant

- Input: $x: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- Output: $y_{w}[x]: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
y_{w}[x](u)=\int_{\mathbb{R}^{2}} x\left(u+u^{\prime}\right) w\left(u^{\prime}\right) d u^{\prime}
$$

- Spatial translation: $D_{v} y(u)=y(u-v)$.

CNNs Are Translation-Equivariant

- Input: $x: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- Output: $y_{w}[x]: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
y_{w}[x](u)=\int_{\mathbb{R}^{2}} x\left(u+u^{\prime}\right) w\left(u^{\prime}\right) d u^{\prime}
$$

- Spatial translation: $D_{v} y(u)=y(u-v)$.

CNNs Are Translation-Equivariant

- Input: $x: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- Output: $y_{w}[x]: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
y_{w}[x](u)=\int_{\mathbb{R}^{2}} x\left(u+u^{\prime}\right) w\left(u^{\prime}\right) d u^{\prime}
$$

- Spatial translation: $D_{v} y(u)=y(u-v)$.
- Translation-equivariance:

$$
y_{w}\left[D_{v} x\right]=D_{v} y_{w}[x]
$$

i.e., the diagram is commutative.

CNNs Are Translation-Equivariant

- Input: $x: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- Output: $y_{w}[x]: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
y_{w}[x](u)=\int_{\mathbb{R}^{2}} x\left(u+u^{\prime}\right) w\left(u^{\prime}\right) d u^{\prime}
$$

- Spatial translation: $D_{v} y(u)=y(u-v)$.
- Translation-equivariance:

$$
y_{w}\left[D_{v} x\right]=D_{v} y_{w}[x],
$$

i.e., the diagram is commutative.

When the input is translated, the output is translated accordingly.

Tasks That Prefer Equivariant Models

Are CNNs Scale-Equivariant?

Are CNNs Scale-Equivariant? (Spoiler Alert:

Are CNNs Scale-Equivariant? (Spoiler Alert: \quad)

Input

Are CNNs Scale-Equivariant? (Spoiler Alert: No)

Previous Works on Group-Equivariant CNNs

- Discrete symmetry groups
- [Cohen, Welling 2016].
- 2D rotation group
- [Marcos, Volpi, Komodakis, Tuia 2017].
- [Worrall, Garbin, Turmukhambetov, Brostow 2017].
- [Zhou, Ye, Qiu, Jiao 2017].
- [Weiler, Hamprecht, Storath 2018].
- [Cheng, Qiu, Calderbank, Sapiro 2019].
- Scaling group
- [Kanazawa, Sharma, Jacobs 2014].
- [Xu, Xiao, Zhang, Yang, Zhang 2014].
- [Marcos, Kellenberger, Lobry, Tuia 2018].
- [Ghosh, Gupta 2019].

What is lacking in the existing works for scale-equivariant CNNs?

- No general framework of imposing scale equivariance.
- No theory that guarantees the stability of the equivariant representation.

Group Equivariance

$$
f: X \rightarrow Y
$$

$$
x \in X \longrightarrow \stackrel{f}{\longrightarrow}(x) \in Y
$$

Group Equivariance

- $f: X \rightarrow Y$.
- G is a group. $D_{g}: X \rightarrow X$ and $T_{g}: Y \rightarrow Y$ are group actions on X and Y.

Group Equivariance

- $f: X \rightarrow Y$.
- G is a group. $D_{g}: X \rightarrow X$ and $T_{g}: Y \rightarrow Y$ are group actions on X and Y.
- The mapping f is said to be G-equivariant if

$$
f\left(D_{g} x\right)=T_{g}(f(x)), \quad \forall x, g .
$$

T_{g}

Group Equivariance

- $f: X \rightarrow Y$.
- G is a group. $D_{g}: X \rightarrow X$ and $T_{g}: Y \rightarrow Y$ are group actions on X and Y.
- The mapping f is said to be G-equivariant if

$$
f\left(D_{g} x\right)=T_{g}(f(x)), \quad \forall x, g
$$

Group Equivariance

- $f: X \rightarrow Y$.
- G is a group. $D_{g}: X \rightarrow X$ and $T_{g}: Y \rightarrow Y$ are group actions on X and Y.
- The mapping f is said to be G-equivariant if

$$
f\left(D_{g} x\right)=T_{g}(f(x)), \quad \forall x, g
$$

- When $T_{g}=\operatorname{Id}_{Y}$,

$$
f\left(D_{g} x\right)=f(x), \quad \forall x, g
$$

i.e., f is G-invariant.

Intuition on Constructing Scale-Equivariant CNNs

How to construct scale-equivariant CNNs, i.e., CNN models that are equivariant to the scaling-translation group $\mathcal{S T}=\mathcal{S} \ltimes \mathbb{R}^{2} \cong \mathbb{R} \times \mathbb{R}^{2}$?

Intuition on Constructing Scale-Equivariant CNNs

How to construct scale-equivariant CNNs, i.e., CNN models that are equivariant to the scaling-translation group $\mathcal{S T}=\mathcal{S} \ltimes \mathbb{R}^{2} \cong \mathbb{R} \times \mathbb{R}^{2}$?

$$
x^{(l-1)}(\lambda) \quad x^{(l)}(\lambda)
$$

$$
x^{(l)}(\lambda)=\sum_{\lambda^{\prime}=1}^{M_{l-1}} x^{(l-1)}\left(\lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}
$$

Intuition on Constructing Scale-Equivariant CNNs

How to construct scale-equivariant CNNs, i.e., CNN models that are equivariant to the scaling-translation group $\mathcal{S T}=\mathcal{S} \ltimes \mathbb{R}^{2} \cong \mathbb{R} \times \mathbb{R}^{2}$?
$x^{(l-1)}(u, \lambda)$

$W_{\lambda^{\prime}, \lambda}(u)$

$$
1 \leq \lambda \leq M_{l-1} \quad u \in \mathbb{R}^{2}
$$

$$
1 \leq \lambda \leq M_{l} \quad u \in \mathbb{R}^{2}
$$

$$
\begin{aligned}
x^{(l)}(u, \lambda) & =\sum_{\lambda^{\prime}=1}^{M_{l-1}} \int_{\mathbb{R}^{2}} x^{(l-1)}\left(u+u^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}\left(u^{\prime}\right) d u^{\prime} \\
& =\sum_{\lambda^{\prime}=1}^{M_{l-1}}\left(x^{(l-1)}\left(\cdot, \lambda^{\prime}\right) * W_{\lambda^{\prime}, \lambda}(\cdot)\right)(u)
\end{aligned}
$$

Intuition on Constructing Scale-Equivariant CNNs

How to construct scale-equivariant CNNs, i.e., CNN models that are equivariant to the scaling-translation group $\mathcal{S T}=\mathcal{S} \ltimes \mathbb{R}^{2} \cong \mathbb{R} \times \mathbb{R}^{2}$?

$$
x^{(l)}(u, \alpha, \lambda)=\sum_{\lambda^{\prime}=1}^{M_{l-1}}\left(x^{(l-1)}\left(\cdot, \cdot, \lambda^{\prime}\right) \stackrel{?}{*} W_{\lambda^{\prime}, \lambda}(\cdot, \cdot)\right)(u, \alpha)
$$

Scale-Equivariant CNN

${ }^{x^{00}(t, x)}$

Scale-Equivariant CNN

- $D_{\beta, v} x^{(0)}(u, \lambda):=x^{(0)}\left(2^{-\beta}(u-v), \lambda\right), \forall(\beta, v) \in \mathcal{S T} \cong \mathbb{R} \times \mathbb{R}^{2}$.

Scale-Equivariant CNN

- $D_{\beta, v} x^{(0)}(u, \lambda):=x^{(0)}\left(2^{-\beta}(u-v), \lambda\right), \forall(\beta, v) \in \mathcal{S T} \cong \mathbb{R} \times \mathbb{R}^{2}$.

Scale-Equivariant CNN

- $D_{\beta, v} x^{(0)}(u, \lambda):=x^{(0)}\left(2^{-\beta}(u-v), \lambda\right), \forall(\beta, v) \in \mathcal{S T} \cong \mathbb{R} \times \mathbb{R}^{2}$.
- $T_{\beta, v} x^{(l)}(u, \alpha, \lambda):=x^{(l)}\left(2^{-\beta}(u-v), \alpha-\beta, \lambda\right), \forall(\beta, v) \in \mathcal{S T}$.

Scale-Equivariant CNN

- $D_{\beta, v} x^{(0)}(u, \lambda):=x^{(0)}\left(2^{-\beta}(u-v), \lambda\right), \forall(\beta, v) \in \mathcal{S T} \cong \mathbb{R} \times \mathbb{R}^{2}$.
- $T_{\beta, v} x^{(l)}(u, \alpha, \lambda):=x^{(l)}\left(2^{-\beta}(u-v), \alpha-\beta, \lambda\right), \forall(\beta, v) \in \mathcal{S T}$.

Scale-Equivariant CNNs (Joint Convolution over $\mathbb{R}^{2} \times \mathcal{S}$)

Theorem (Z., Qiu, Calderbank, Sapiro, Cheng 2019)

A feedforward neural network with an extra index $\alpha \in \mathcal{S}$ is scale-equivariant if and only if the layerwise operations are:

$$
\begin{aligned}
& x^{(1)}\left[x^{(0)}\right](u, \alpha, \lambda)=\sigma\left(\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(0)}\left(u+u^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(1)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}+b^{(1)}(\lambda)\right) \\
& x^{(l)}\left[x^{(l-1)}\right](u, \alpha, \lambda)=\sigma\left(\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}} x^{(l-1)}\left(u+u^{\prime}, \alpha+\alpha^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(l)}\left(2^{-\alpha} u^{\prime}, \alpha^{\prime}\right) .\right. \\
&\left.2^{-2 \alpha} d \alpha^{\prime} d u^{\prime}+b^{(l)}(\lambda)\right), \quad \forall l>1,
\end{aligned}
$$

where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is a pointwise nonlinear activation, e.g., ReLU, and $W_{\lambda^{\prime}, \lambda}^{(1)}\left(u^{\prime}\right), W_{\lambda^{\prime}, \lambda}^{(l)}\left(u^{\prime}, \alpha^{\prime}\right)$ are the (trainable) convolutional filters.

Scale-Equivariant CNNs (Joint Convolution over $\mathbb{R}^{2} \times \mathcal{S}$)

Theorem (Z., Qiu, Calderbank, Sapiro, Cheng 2019)

A feedforward neural network with an extra index $\alpha \in \mathcal{S}$ is scale-equivariant if and only if the layerwise operations are:

$$
\begin{aligned}
& x^{(1)}\left[x^{(0)}\right](u, \alpha, \lambda)=\sigma\left(\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(0)}\left(u+u^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(1)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}+b^{(1)}(\lambda)\right) \\
& x^{(l)}\left[x^{(l-1)}\right](u, \alpha, \lambda)=\sigma\left(\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}} x^{(l-1)}\left(u+u^{\prime}, \alpha+\alpha^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(l)}\left(2^{-\alpha} u^{\prime}, \alpha^{\prime}\right) .\right. \\
&\left.2^{-2 \alpha} d \alpha^{\prime} d u^{\prime}+b^{(l)}(\lambda)\right), \quad \forall l>1,
\end{aligned}
$$

where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is a pointwise nonlinear activation, e.g., ReLU, and $W_{\lambda^{\prime}, \lambda}^{(1)}\left(u^{\prime}\right), W_{\lambda^{\prime}, \lambda}^{(l)}\left(u^{\prime}, \alpha^{\prime}\right)$ are the (trainable) convolutional filters.

Scale-Equivariant CNNs (Joint Convolution over $\mathbb{R}^{2} \times \mathcal{S}$)

Theorem (Z., Qiu, Calderbank, Sapiro, Cheng 2019)

A feedforward neural network with an extra index $\alpha \in \mathcal{S}$ is scale-equivariant if and only if the layerwise operations are:

$$
\begin{aligned}
& x^{(1)}\left[x^{(0)}\right](u, \alpha, \lambda)=\sigma\left(\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(0)}\left(u+u^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(1)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}+b^{(1)}(\lambda)\right) \\
& x^{(l)}\left[x^{(l-1)}\right](u, \alpha, \lambda)=\sigma\left(\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}} x^{(l-1)}\left(u+u^{\prime}, \alpha+\alpha^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(l)}\left(2^{-\alpha} u^{\prime}, \alpha^{\prime}\right) .\right. \\
&\left.2^{-2 \alpha} d \alpha^{\prime} d u^{\prime}+b^{(l)}(\lambda)\right), \quad \forall l>1,
\end{aligned}
$$

where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is a pointwise nonlinear activation, e.g., ReLU, and $W_{\lambda^{\prime}, \lambda}^{(1)}\left(u^{\prime}\right), W_{\lambda^{\prime}, \lambda}^{(l)}\left(u^{\prime}, \alpha^{\prime}\right)$ are the (trainable) convolutional filters.

Scale-Equivariant CNNs

$$
\begin{aligned}
& x^{(1)}(u, \alpha, \lambda)=\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(0)}\left(u+u^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(1)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}, \\
& x^{(l)}(u, \alpha, \lambda)=\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}} x^{(l-1)}\left(u+u^{\prime}, \alpha+\alpha^{\prime}, \lambda^{\prime}\right) W_{\lambda, \lambda}^{(1)},\left(2^{-\alpha} u^{\prime}, \alpha^{\prime}\right) 2^{-2 \alpha} d \alpha^{\prime} d u^{\prime} \text {. }
\end{aligned}
$$

Separable Basis Decomposition

Separable Basis Decomposition

Separable Basis Decomposition

Theorem (Z., Qiu, Calderbank, Sapiro, Cheng 2019)
Both the training parameters and computational burden are reduced to a factor of $K K_{\alpha} / L^{2} L_{\alpha}$ after truncated basis decomposition.

In particular, $L=L_{\alpha}=5, K=8, K_{\alpha}=3 \Longrightarrow K K_{\alpha} / L^{2} L_{\alpha}=19.2 \%$.

Stability of the Equivariant Representation to Input Deformation

- The scaling effect in reality is never exact, e.g., changing view angles.

Stability of the Equivariant Representation to Input Deformation

original rescaled "in reality"

- The scaling effect in reality is never exact, e.g., changing view angles.
- A "perfect" scaling $D_{\beta, v}$ and a local deformation D_{τ} :

$$
x^{(0)} \mapsto D_{\beta, v} \circ D_{\tau} x^{(0)}
$$

where $D_{\tau} x^{(0)}(u, \lambda)=x^{(0)}(u-\tau(u), \lambda)$, and $\tau \in C^{2}\left(\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\right)$ is a small local deformation.

Stability of the Equivariant Representation to Input Deformation

Stability of the Equivariant Representation to Input Deformation

Theorem (Z., Qiu, Calderbank, Sapiro, Cheng 2019)
In an ScDCFNet with bounded expansion coefficients $a_{\lambda^{\prime}, \lambda}^{(l)}$ under the Fourier-Bessel norm (which is facilitated by truncated basis decomposition), we have, for any L,

$$
\left\|x^{(L)}\left[D_{\beta, v} \circ D_{\tau} x^{(0)}\right]-T_{\beta, v} x^{(L)}\left[x^{(0)}\right]\right\| \leq 2^{\beta+1}\left(4 L|\nabla \tau|_{\infty}+2^{-j_{L}}|\tau|_{\infty}\right)\left\|x^{(0)}\right\|
$$

Verification of Scale Equivariance (First-Layer Feature Maps)

(a) Regular CNN.

(b) ScDCFNet.

Verification of Scale Equivariance (Second-Layer Feature Maps)

(a) Regular CNN.

(b) ScDCFNet.

Multiscale Image Classification

SMNIST

SFashion

Multiscale Image Classification

		SMNIST test accuracy (\%)			SFashion test accuracy (\%)	
Architectures	Ratio	$N_{\mathrm{tr}}=2000$	$N_{\mathrm{tr}}=5000$		$N_{\mathrm{tr}}=2000$	$N_{\mathrm{tr}}=5000$
CNN, $M=32$	1.00	92.60 ± 0.17	94.86 ± 0.25		77.74 ± 0.28	82.57 ± 0.38
ScDCF, $M=16$						
$K=10, K_{\alpha}=3$	0.84	93.75 ± 0.02	95.70 ± 0.09		78.95 ± 0.31	83.51 ± 0.71
$K=8, K_{\alpha}=3$	0.67	93.91 ± 0.30	95.71 ± 0.10		79.22 ± 0.50	83.06 ± 0.32
$K=5, K_{\alpha}=3$	0.42	93.52 ± 0.29	95.19 ± 0.13		79.74 ± 0.44	83.46 ± 0.69
$K=5, K_{\alpha}=2$	0.28	93.51 ± 0.30	95.35 ± 0.21		78.57 ± 0.53	82.95 ± 0.46
ScDCF, $M=8$						
$K=10, K_{\alpha}=2$	0.14	93.68 ± 0.17	95.21 ± 0.12		79.11 ± 0.76	82.92 ± 0.68
$K=8, K_{\alpha}=2$	0.11	93.39 ± 0.25	95.25 ± 0.47		78.43 ± 0.76	83.05 ± 0.58
$K=5, K_{\alpha}=2$	0.09	93.21 ± 0.20	94.99 ± 0.12		77.97 ± 0.37	82.21 ± 0.67

Autoencoder

Autoencoder

Autoencoder

Autoencoder

Autoencoder

ScDCFNet

Summary

By "injecting" the modeling flavor back into deep learning, we achieved

Improved generalization

Interpretability

Thank you!!!

Directions for Further Development

Dimension minimization vs curvature minimization.

Directions for Further Development

Dimension minimization vs curvature minimization.

Proposition

Let $\boldsymbol{\alpha}: \mathcal{M}^{k} \rightarrow \mathbb{R}^{d}$ be the isometric embedding of \mathcal{M} in \mathbb{R}^{d}. The mean curvature vector $H(\boldsymbol{p})$ at any $\boldsymbol{p} \in \mathcal{M}$ can be obtained via the following

$$
\Delta_{\mathcal{M}} \boldsymbol{\alpha}(\boldsymbol{p})=\left(\Delta_{\mathcal{M}} \alpha_{1}(\boldsymbol{p}), \cdots, \Delta_{\mathcal{M}} \alpha_{d}(\boldsymbol{p})\right)=k H(\boldsymbol{p})
$$

Directions for Further Development

Symmetry-preserving DNNs on complex data sources:

Spectrogram

Multi-view data

DNN Regularizations

Most widely-used DNN regularizations typically do not take into account the geometry of the data.

- L^{p} weight decay, i.e., $\min _{\boldsymbol{\theta}} L(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{p}^{p}$.
- DropOut.
- Data augmentation.
-

DNN Regularizations

Most widely-used DNN regularizations typically do not take into account the geometry of the data.

- L^{p} weight decay, i.e., $\min _{\boldsymbol{\theta}} L(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{p}^{p}$.
- DropOut.
- Data augmentation.
-

Data-dependent regularizations are mostly motivated by the empirical observation that data of interest typically lie close to manifolds.

- Tangent distance algorithm
- Tangent prop algorithm
- Manifold tangent classifier
-

Scale-Equivariant CNNs (Joint Convolution over $\mathbb{R}^{2} \times \mathcal{S}$)

Theorem (Z., Qiu, Calderbank, Sapiro, Cheng 2019)

$$
\begin{aligned}
& x^{(1)}\left[x^{(0)}\right](u, \alpha, \lambda)=\sigma\left(\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(0)}\left(u+u^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(1)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}+b^{(1)}(\lambda)\right) \\
& x^{(l)}\left[x^{(l-1)}\right](u, \alpha, \lambda)=\sigma\left(\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}} x^{(l-1)}\left(u+u^{\prime}, \alpha+\alpha^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(l)}\left(2^{-\alpha} u^{\prime}, \alpha^{\prime}\right) .\right. \\
&\left.2^{-2 \alpha} d \alpha^{\prime} d u^{\prime}+b^{(l)}(\lambda)\right), \quad \forall l>1,
\end{aligned}
$$

Special case: If $W_{\lambda^{\prime}, \lambda}^{(l)}(u, \alpha)=W_{\lambda^{\prime}, \lambda}^{(l)}(u) \cdot \delta(\alpha)$, then the joint convolutions reduce to only (multiscale) spatial convolutions

$$
\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(l-1)}\left(u+u^{\prime}, \alpha, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(l)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}
$$

Scale-Equivariant CNNs (a Special Case)

$$
\begin{aligned}
& x^{(1)}(u, \alpha, \lambda)=\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(0)}\left(u+u^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(1)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}, \\
& x^{(l)}(u, \alpha, \lambda)=\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(l-1)}\left(u+u^{\prime}, \alpha, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(l)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}, \forall l>1 . \\
& \vdots \\
& \vdots
\end{aligned}
$$

Scale-Equivariant CNNs (a Special Case)

$$
\begin{aligned}
& x^{(1)}(u, \alpha, \lambda)=\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(0)}\left(u+u^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(1)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}, \\
& x^{(l)}(u, \alpha, \lambda)=\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(l-1)}\left(u+u^{\prime}, \alpha, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(l)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}, \forall l>1 \text {. }
\end{aligned}
$$

Scale-Equivariant CNNs (

$$
\begin{aligned}
& x^{(1)}(u, \alpha, \lambda)=\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} x^{(0)}\left(u+u^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(1)}\left(2^{-\alpha} u^{\prime}\right) 2^{-2 \alpha} d u^{\prime}, \\
& x^{(l)}(u, \alpha, \lambda)=\sum_{\lambda^{\prime}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}} x^{(l-1)}\left(u+u^{\prime}, \alpha+\alpha^{\prime}, \lambda^{\prime}\right) W_{\lambda^{\prime}, \lambda}^{(l)}\left(2^{-\alpha} u^{\prime}, \alpha^{\prime}\right) 2^{-2 \alpha} d \alpha^{\prime} d u^{\prime} .
\end{aligned}
$$

Stability of the Equivariant Representation to Input Deformation

Theorem (Z., Qiu, Calderbank, Sapiro, Cheng 2019)

In an ScDCFNet with bounded expansion coefficients $a_{\lambda^{\prime}, \lambda}^{(l)}$ under the Fourier-Bessel norm (which is facilitated by truncated basis decomposition), we have, for any L,

$$
\left\|x^{(L)}\left[D_{\beta, v} \circ D_{\tau} x^{(0)}\right]-T_{\beta, v} x^{(L)}\left[x^{(0)}\right]\right\| \leq 2^{\beta+1}\left(4 L|\nabla \tau|_{\infty}+2^{-j_{L}}|\tau|_{\infty}\right)\left\|x^{(0)}\right\| .
$$

Sketch of the Proof

- If $F(u)=\sum_{k} a(k) \psi_{j, k}(u)$ is a smooth function on $2^{j} \overline{B(0,1)}$, then

$$
\int|F(u)| d u, \quad \int|u||\nabla F(u)| d u, 2^{j} \int|\nabla F(u)| d u \leq \pi\|a\|_{\mathrm{FB}}
$$

- Layerwise non-expansiveness: $\left\|x^{(l)}\left[x_{1}\right]-x^{(l)}\left[x_{2}\right]\right\| \leq\left\|x_{1}-x_{2}\right\|, \forall x_{1}, x_{2}, l \geq 1$.
- $\left\|x^{(l)}\left[D_{\tau} x^{(l-1)}\right]-D_{\tau} x^{(l)}\left[x^{(l-1)}\right]\right\| \leq 8|\nabla \tau|_{\infty}\left\|x^{(0)}\right\|, \quad \forall l \geq 1$.
- $\left\|T_{\beta, v} x^{(l)}\left[D_{\tau} x^{(l-1)}\right]-T_{\beta, v} D_{\tau} x^{(l)}\left[x^{(l-1)}\right]\right\| \leq 2^{\beta+3}|\nabla \tau|_{\infty}\left\|x^{(0)}\right\|, \forall l \geq 1$.
- $\left\|x^{(l)}\left[T_{\beta, v} \circ D_{\tau} x^{(l-1)}\right]-T_{\beta, v} D_{\tau} x^{(l)}\left[x^{(l-1)}\right]\right\| \leq 2^{\beta+3}|\nabla \tau|_{\infty}\left\|x^{(0)}\right\|, \quad \forall l \geq 1$.
- $\left\|\underline{x^{(L)}\left[D_{\beta, v} \circ D_{\tau} x^{(0)}\right]}-T_{\beta, v} D_{\tau} x^{(L)}\left[x^{(0)}\right]\right\| \leq 2^{\beta+3} L|\nabla \tau|_{\infty}\left\|x^{(0)}\right\|$.
- $\left\|T_{\beta, v} D_{\tau} x^{(L)}\left[x^{(0)}\right]-\underline{T}_{\beta, v} x^{(L)}\left[x^{(0)}\right]\right\| \leq 2^{\beta+1-j_{L}}|\tau|_{\infty}\left\|x^{(0)}\right\|$.
- $\left\|\underline{x^{(L)}\left[D_{\beta, v} \circ D_{\tau} x^{(0)}\right]}-\underline{T_{\beta, v} x^{(L)}\left[x^{(0)}\right]}\right\| \leq 2^{\beta+1}\left(4 L|\nabla \tau|_{\infty}+2^{-j_{L}}|\tau|_{\infty}\right)\left\|x^{(0)}\right\|$.

Multiscale Image Classification

		SMNIST test accuracy (\%)			SFashion test accuracy (\%)	
Architectures	Ratio	$N_{\mathrm{tr}}=2000$	$N_{\mathrm{tr}}=5000$		$N_{\mathrm{tr}}=2000$	$N_{\mathrm{tr}}=5000$
CNN, $M=32$	1.00	92.60 ± 0.17	94.86 ± 0.25		77.74 ± 0.28	82.57 ± 0.38
CNN (augment)	1.00	93.85 ± 0.15	95.51 ± 0.21		79.41 ± 0.22	83.33 ± 0.38
ScDCF, $M=16$						
$K=10, K_{\alpha}=3$	0.84	93.75 ± 0.02	95.70 ± 0.09		78.95 ± 0.31	83.51 ± 0.71
$K=8, K_{\alpha}=3$	0.67	93.91 ± 0.30	95.71 ± 0.10	79.22 ± 0.50	83.06 ± 0.32	
$K=5, K_{\alpha}=3$	0.42	93.52 ± 0.29	95.19 ± 0.13		79.74 ± 0.44	83.46 ± 0.69
$K=5, K_{\alpha}=2$	0.28	93.51 ± 0.30	95.35 ± 0.21	78.57 ± 0.53	82.95 ± 0.46	
ScDCF, $M=8$						
$K=10, K_{\alpha}=2$	0.14	93.68 ± 0.17	95.21 ± 0.12		79.11 ± 0.76	82.92 ± 0.68
$K=8, K_{\alpha}=2$	0.11	93.39 ± 0.25	95.25 ± 0.47		78.43 ± 0.76	83.05 ± 0.58
$K=5, K_{\alpha}=2$	0.09	93.21 ± 0.20	94.99 ± 0.12		77.97 ± 0.37	82.21 ± 0.67

Multiscale Image Classification

Architectures	Ratio	SMNIST test accuracy (\%)		SFashion test accuracy (\%)	
		$N_{\text {tr }}=2000$	$N_{\text {tr }}=5000$	$N_{\text {tr }}=2000$	$N_{\text {tr }}=5000$
CNN, $M=32$	1.00	92.60 ± 0.17	94.86 ± 0.25	77.74 ± 0.28	82.57 ± 0.38
CNN (augment)	1.00	93.85 ± 0.15	95.51 ± 0.21	79.41 ± 0.22	83.33 ± 0.38
ScDCF, $M=16$					
$K=10, K_{\alpha}=3$	0.84	93.75 ± 0.02	95.70 ± 0.09	78.95 ± 0.31	83.51 ± 0.71
$K=8, K_{\alpha}=3$	0.67	93.91 ± 0.30	95.71 ± 0.10	79.22 ± 0.50	83.06 ± 0.32
$K=5, K_{\alpha}=3$	0.42	93.52 ± 0.29	95.19 ± 0.13	79.74 ± 0.44	83.46 ± 0.69
$K=5, K_{\alpha}=2$	0.28	93.51 ± 0.30	95.35 ± 0.21	78.57 ± 0.53	82.95 ± 0.46
ScDCF, $M=8$					
$K=10, K_{\alpha}=2$	0.14	93.68 ± 0.17	95.21 ± 0.12	79.11 ± 0.76	82.92 ± 0.68
$K=8, K_{\alpha}=2$	0.11	93.39 ± 0.25	95.25 ± 0.47	78.43 ± 0.76	83.05 ± 0.58
$K=5, K_{\alpha}=2$	0.09	93.21 ± 0.20	94.99 ± 0.12	77.97 ± 0.37	82.21 ± 0.67
ScDCF (augment)	0.67	94.30 ± 0.17	96.01 ± 0.23	80.62 ± 0.25	83.94 ± 0.31

Thank you!!!

