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Abstract Inspired by the nonlocal methods in image processing and the point integral
method, we introduce a novel weighted nonlocal Laplacian method to compute a continuous
interpolation function on a point cloud in high dimensional space. The numerical results in
semi-supervised learning and image inpainting show that the weighted nonlocal Laplacian
is a reliable and efficient interpolation method. In addition, it is fast and easy to implement.

Keywords Graph Laplacian · Nonlocal methods · Point cloud · Weighted nonlocal
Laplacian
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1 Introduction

In this paper, we consider interpolation on a point cloud in high dimensional space. This
is a fundamental problem in many data analysis problems and machine learning. Let P =
{ p1, . . . , pn} be a set of points in R

d and S = {s1, . . . , sm} be a subset of P . Let u be a
function on the point set P and the value of u on S ⊂ P is given as a function g over S, i.e.
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u(s) = g(s), ∀s ∈ S. The goal of the interpolation is to find the function u on P with the
given values on S.

Since the point set P is unstructured in high dimensional space, traditional interpolation
methods do not apply. One model which is widely used in many applications is to minimize
the following energy functional,

J (u) = 1

2

∑

x, y∈P

w(x, y)(u(x) − u( y))2, (1.1)

with the constraint
u(x) = g(x), x ∈ S. (1.2)

here w(x, y) is a given weight function. One often used weight is the Gaussian weight,

w(x, y) = exp(−‖x− y‖2
σ 2 ), σ is a parameter, ‖ · ‖ is the Euclidean norm in Rd .

It is easy to derive the Euler–Lagrange equation of the above optimization problem, which
is given as follows,

⎧
⎨

⎩

∑

y∈P

(w(x, y) + w( y, x))(u(x) − u( y)) = 0, x ∈ P\S,

u(x) = g(x), x ∈ S.

(1.3)

If the weight function w(x, y) is symmetric, above equation can be simplified further to be
∑

y∈P

w(x, y)(u(x) − u( y)) = 0.

This is just the well known nonlocal Laplacian which is widely used in nonlocal methods of
image processing [1,2,7,8]. It is also called graph Laplacian in graph and machine learning
literature [4,19]. In the rest of the paper, we use the abbreviation, GL, to denote this approach.

Recently, it was observed that the solution given by the graph Laplacian is not continuous
at the sample points, S, especially when the sample rate, |S|/|P|, is low [15]. Consider a
simple 1D example. Let P be the union of 5000 randomly sampled points over the interval
(0, 2) and we label 6 points in P . Points 0, 1, 2 are in the labeled set S and the other 3 points
are selected at random. The solution given by the graph Laplacian, (1.3) is shown in Fig.
1. Clearly, the labeled points are not consistent with the function computed by the graph
Laplacian. In other words, the graph Laplacian actually does not interpolate the given values.

It was also shown that the discontinuity is due to the fact that one important boundary
term is dropped in evaluating the graph Laplacian. Consider the harmonic extension in the
continuous formwhich is formulated as aLaplace–Beltrami equationwithDirichlet boundary
condition on manifold M, {

�Mu(x) = 0, x ∈ M,

u(x) = g(x), x ∈ ∂M,
(1.4)

In the point integral method [9,10,13,14], it is observed that the Laplace–Beltrami equa-
tion �Mu(x) = 0 can be approximated by the following integral equation.

1

t

∫

M
(u(x) − u( y))Rt (x, y)d y − 2

∫

∂M

∂u( y)
∂n

R̄t (x, y)dτ y = 0, (1.5)

where Rt (x, y) = R
(
−|x− y|2

4t

)
, R̄t (x, y) = R̄

(
−|x− y|2

4t

)
and d

ds R̄(s) = −R(s). If

R(s) = exp(−s), R̄ = R and Rt (x, y)becomes aGaussianweight function.n is the outwards
normal of the boundary ∂M.
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Fig. 1 Solution given by graph
Laplacian in 1D examples. Blue
line interpolation function given
by graph Laplacian; red circles
given values at label set S (Color
figure online)
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Comparing the above integral equation (1.5) and the equation in the graph Laplacian
(1.3), we can clearly see that the boundary term in (1.5) is dropped in the graph Laplacian.
However, this boundary term is not small and neglecting it causes trouble. To get an reasonable
interpolation, we need to include the boundary term. This is the idea of the point integral
method. To deal with the boundary term in (1.5), a Robin boundary condition is used to
approximate the Dirichlet boundary condition,

u(x) + μ
∂u(x)

∂n
= g(x), x ∈ ∂M, (1.6)

where 0 < μ � 1 is a small parameter.
Substituting above Robin boundary condition to the integral equation (1.5), we get an

integral equation to approximate the Dirichlet problem (1.4),

1

t

∫

M
(u(x) − u( y))Rt (x, y)d y − 2

μ

∫

∂M
R̄t (x, y)(g( y) − u( y))dτ y = 0.

The corresponding discrete equations are

∑

y∈P

Rt (x, y)(u(x) − u( y)) + 2

μ

∑

y∈S
R̄t (x, y)(u( y) − g( y)) = 0, x ∈ P, (1.7)

The point integral method has been shown to give consistent solutions [9,14,15]. The inter-
polation algorithm based on the point integral method has been applied to image processing
problems and gives promising results [12].

Equation (1.7) is not symmetric, which makes the numerical solver not very efficient. The
main contribution of this paper is to propose a novel interpolation algorithm, the weighted
nonlocal Laplacian, which preserves the symmetry of the original Laplace operator. The key
observation in the weighted nonlocal Laplacian is that we need to modify the energy function
(1.1) to add a weight to balance the energy on the labeled and unlabeled sets.
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min
u

∑

x∈P\S

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠ + |P|
|S|

∑

x∈S

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠ ,

with the constraint

u(x) = g(x), x ∈ S.

|P|, |S| are the number of points in P and S, respectively. When the sample rate, |S|/|P|,
is high, the weighted nonlocal Laplacian becomes the classical graph Laplacian. When the
sample rate is low, the large weight in weighted nonlocal Laplacian forces the solution close
to the given values near the labeled set, such that the inconsistent phenomenon is removed.

We test the weighted nonlocal Laplacian on MNIST dataset and image inpainting prob-
lems. The results show that the weighted nonlocal Laplacian gives better results than the
graph Laplacian, especially when the sample rate is low. The weighted nonlocal Laplacian
provides a reliable and efficient method to find reasonable interpolation on a point cloud in
high dimensional space.

The rest of the paper is organized as follows. The weighted nonlocal Laplacian is intro-
duced inSect. 2. The tests of theweighted nonlocalLaplacian onMNISTand image inpainting
are presented in Sects. 3 and 4 respectively. Some conclusions are made in Sect. 5.

2 Weighted Nonlocal Laplacian

First, we split the objective function in (1.1) to two terms, one is over the unlabeled set and
the other over the labeled set.

min
u

∑

x∈P\S

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠ +
∑

x∈S

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠ ,

Ifwe substitute the optimal solution into above optimization problem, for instance the solution
in the 1Dexample (Fig. 1), it is easy to check that the summation over the labeled set is actually
pretty large due to the discontinuity on the labeled set. However, when the sample rate is low,
the summation over the unlabeled set actually overwhelms the summation over the labeled
set. So the continuity on the labeled set is sacrificed. One simple idea to assure the continuity
on the labeled set is to put a weight ahead of the summation over the labeled set.

min
u

∑

x∈P\S

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠ + μ
∑

x∈S

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠ ,

This is the basic idea of our approach. Since thismethod is obtained bymodifying the nonlocal
Laplacian to add a weight, we call this method the weighted nonlocal Laplacian, WNLL for
short.

To balance these two terms, one natural choice of the weightμ is the inverse of the sample
rate, |P|/|S|. Based on this observation, we get following optimization problem

min
u

∑

x∈P\S

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠ + |P|
|S|

∑

x∈S

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠ ,

(2.1)
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Fig. 2 Solution given by graph Laplacian and weighted nonlocal Laplacian in 1D examples. Blue line inter-
polation function given by graph Laplacian; red circles given values at label set S (Color figure online)

with the constraint

u(x) = g(x), x ∈ S.

The optimal solution of (2.1) can be obtained by solving a linear system
∑

y∈P

(w(x, y) + w( y, x)) (u(x) − u( y))

+
( |P|

|S| − 1

) ∑

y∈S
w( y, x)(u(x) − u( y)) = 0, x ∈ P\S,

u(x) = g(x), x ∈ S. (2.2)

This linear system is symmetric and positive definite. Comparing WNLL with the graph
Laplacian, in WNLL, we see that a large positive term is added to the diagonal of the
coefficient matrix which makes the linear system easier to solve. After solving the above
linear system using some iterative method, for instance conjugate gradient, we find out that it
converges faster than graph Laplacian. In our tests, the weighted nonlocal Laplacian is about
two times faster than graph Laplacian on average.

Figure 2 shows the comparison between WNLL and GL in the 1D example. The result of
WNLL perfectly interpolates the given values while GL fails.

We want to remark that there are other choices of the weight μ in WNLL. |P|/|S| works
in many applications. Based on our experience, |P|/|S| seems to be the lower bound of μ.
In some applications, we may make μ larger to better fit the sample points.

Theweighted nonlocal Laplacian is actually closely relatedwith the point integralmethod.
To see the connection, we choose the weight function to be the Gaussian weight both in
weighted nonlocal Laplacian and the point integral method, i.e.

Rt (x, y) = R̄t (x, y) = w(x, y) = exp

(
−‖x − y‖2

σ 2

)
.

With the Gaussian weight, comparing (1.7) and (2.2), the only difference between the point
integral method and the weighted nonlocal Laplacian is in the summation over the labelled
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Algorithm 1 Semi-Supervised Learning

Require: A point set P = { p1, p2, . . . , pn} ⊂ R
d and a partial labeled set S = ∪l

i=1Si .
Ensure: A complete label assignment L : P → {1, 2, . . . , l}
for i = 1 : l do
Compute φi on P , with the constraint

φi (x) = 1, x ∈ Si , φi (x) = 0, x ∈ S\Si ,
end for
for (x ∈ P\S) do
Label x as following

L(x) = k, where k = arg max
1≤i≤l

φi (x).

end for

set S, u( y) is changed to u(x). After this changing, the equation becomes symmetric and
positive definite which is much easier to solve. In addition to the symmetry, it is easy to show
that the weighted nonlocal Laplacian also preserves the maximum principle of the original
Laplace–Beltrami operator, which is important in some applications.

3 Semi-Supervised Learning

In this section, we briefly describe the algorithm of semi-supervised learning based on that
proposed by Zhu et al. [19]. We plug into the algorithm the aforementioned approach for
weighted nonlocal Laplacian, and apply them to thewell-knownMNISTdataset, and compare
their performances.

Assume we are given a point set P = { p1, p2, . . . , pn} ⊂ R
d , and some labels

{1, 2, . . . , l}. A subset S ⊂ P is labeled,

S =
l⋃

i=1

Si ,

Si is the labeled set with label i . In a typical setting, the size of the labeled set S is much
smaller than the size of the data set P . The purpose of the semi-supervised learning is to
extend the label assignment to the entire P , namely, infer the labels for the unlabeled points.
The algorithm is summarized in Algorithm 1.

In Algorithm 1, we use both graph Laplacian and weighted nonlocal Laplacian to compute
φi respectively. Inweighted nonlocal Laplacian,φi is obtained by solving the following linear
system

∑

y∈P

(w(x, y) + w( y, x)) (φi (x) − φi ( y))

+
( |P|

|S| − 1

) ∑

y∈S
w( y, x)(φi (x) − φi ( y)) = 0, x ∈ P\S,

φi (x) = 1, x ∈ Si , φi (x) = 0, x ∈ S\Si .

123



J Sci Comput

Fig. 3 Some images in MNIST
dataset. The whole dataset
contains 70,000 28 × 28 gray
scale digit images

Table 1 Accuracy of weighted nonlocal Laplacian and graph Laplacian in the test of MNIST

100/70,000 70/70,000 50/70,000

WNLL (%) GL (%) WNLL (%) GL (%) WNLL (%) GL (%)

91.83 74.56 84.31 29.67 79.20 33.93

89.20 58.16 87.74 42.29 78.66 21.12

93.13 62.98 83.19 37.02 71.29 24.50

90.43 41.27 91.08 12.57 71.92 29.79

92.27 44.57 84.74 35.15 80.92 37.50

In graph Laplacian, we need to solve
∑

y∈P

(w(x, y) + w( y, x)) (φi (x) − φi ( y)) = 0, x ∈ P\S,

φi (x) = 1, x ∈ Si , φi (x) = 0, x ∈ S\Si .
We test Algorithm 1 onMNIST dataset of handwritten digits [3]. MNIST dataset contains

70,000 28 × 28 gray scale digit images (Fig. 3). We view digits 0 ∼ 9 as ten classes. Each
image can be seen as a point in 784-dimensional Euclidean space. The weight function
w(x, y) is constructed as following

w(x, y) = exp

(
−‖x − y‖2

σ(x)2

)
(3.1)

σ(x) is chosen to be the distance between x and its 20th nearest neighbor, Tomake the weight
matrix sparse, the weight is truncated to the 50 nearest neighbors.

In our test, we label 100, 70 and 50 images respectively. The labeled images are selected
at random in 70,000 images. For each case, we do 5 independent tests and the results are
shown in Table 1. It is quite clear that WNLL has a better performance than GL. The average
accuracy of WNLL is much higher than that of GL. In addition, WNLL is more stable
than GL. The fluctuation of GL in different tests is much higher. Due to the inconsistency,
in GL, the values in the labeled points are not well spread on to the unlabeled points. On
many unlabeled points, the function φi is actually close to 1/2. This makes the classification
sensitive to the distribution of the labeled points.
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As for the computational time, in our tests, WNLL takes about half the time of GL on
average, 15 versus 29s (not including the time to construct the weight), with Matlab code in
a laptop equipped with CPU Intel i7-4900 2.8 GHz. In WNLL, a positive term is added to
the diagonal of the coefficient matrix which makes conjugate gradient converge faster.

As a remark, in this paper, we do not intend to give a state-of-the-art method in semi-
supervised learning. We just use this example to test the weighted nonlocal Laplacian.

4 Image Inpainting

In this section, we apply theweighted nonlocal Laplacian to the reconstruction of subsampled
images. To apply the weighted nonlocal Laplacian, first, we construct a point cloud from a
given image by taking patches. We consider a discrete image f ∈ R

m×n . For any (i, j) ∈
{1, 2, . . . ,m} × {1, 2, . . . , n}, we define a patch pi j ( f ) as a 2D piece of size s1 × s2 of the
original image f , and the pixel (i, j) is the center of the rectangle of size s1 × s2. The patch
set P( f ) is defined as the collection of all patches:

P( f ) = {pi j ( f ) : (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}} ⊂ R
d , d = s1 × s2.

To get the patches near the boundary, we extend the images by mirror reflection. For a given
image f , the patch set P( f ) gives a point cloud in R

d with d = s1 × s2. We also define a
function u on P( f ). At each patch, the value of u is defined to be the intensity of image f
at the central pixel of the patch, i.e.

u(pi j ( f )) = f (i, j),

where f (i, j) is the intensity of image f at pixel (i, j).
Now, we subsample the image f in the subsample domain� ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤

j ≤ n}. The problem is to recover the original image f from the subsamples f |�. This
problem can be transferred to interpolation of function u in the patch set P( f ) with u is
given in S ⊂ P( f ), S = {pi j ( f ) : (i, j) ∈ �}. Notice that the patch set P( f ) is not known,
we need to update the patch set iteratively from the recovered image. Summarizing this idea,
we get an algorithm to reconstruct the subsampled image which is stated in Algorithm 2.

Algorithm 2 Subsample image restoration
Require: A subsample image f |�.
Ensure: A recovered image u.

Generate initial image u0.

while not converge do

1. Generate patch set P(un) from current image un and get corresponding labeled set Sn ⊂ P(un).

2. Compute the weight function wn(x, y) for x, y ∈ P(un).

3. Update the image by computing un+1 on P(un), with the constraint

un+1(x) = f (x), x ∈ Sn .

4. n ← n + 1.
end while
u = un .
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There are different methods to compute un+1 on P(un) in Algorithm 2. In this paper,
we use weighted nonlocal Laplacian and graph Laplacian to compute un+1. In the weighted
nonlocal Laplacian, we need to solve the following linear system

∑

y∈P(un)

(wn(x, y) + wn( y, x))
(
un+1(x) − un+1( y)

)

+
(
mn

|�| − 1

) ∑

y∈Sn
wn( y, x)(un+1(x) − un+1( y)) = 0, x ∈ P(un)\Sn,

un+1(x) = f (x), x ∈ Sn .

While in the graph Laplacian, we solve the other linear system,
∑

y∈P(un)

(wn(x, y) + wn( y, x))
(
un+1(x) − un+1( y)

) = 0, x ∈ P(un)\Sn,

un+1(x) = f (x), x ∈ Sn .

Actually, Algorithm 2 with graph Laplacian is just a nonlocal method in image processing[1,
8]. In nonlocal methods, people try to minimize energy functions such as

min
u

m∑

i=1

n∑

j=1

|∇wu(i, j)|2,

with the constraint

u(i, j) = f (i, j), (i, j) ∈ �.

∇wu(i, j) is the nonlocal gradient which is defined as

∇wu(i, j) = √
w(i, j; i ′, j ′)(u(i ′, j ′) − u(i, j)), 1 ≤ i, i ′ ≤ m, 1 ≤ j, j ′ ≤ n.

w(i, j; i ′, j ′) is the weight from pixel (i, j) to pixel (i ′, j ′),

w(i, j; i ′, j ′) = exp

(
d( f (i, j), f (i ′, j ′))

σ 2

)

d( f (i, j), f (i ′, j ′)) is the patch distance in image f ,

d( f (i, j), f (i ′, j ′)) =
h1∑

k=−h1

h2∑

l=−h2

χ(k, l)| f (i + k, j + l) − f (i ′ + k, j ′ + l)|2

χ is often chosen to be 1 or a Gaussian, h1, h2 are half sizes of the patch. It is easy to check
that the above nonlocal method is the same as solving the graph Laplacian on the patch set.
If the weight w is updated iteratively, we get Algorithm 2 with the graph Laplacian. Next,
we will show that this method has inconsistent results, and we can use the weighted graph
Laplacian to address this issue.

In our calculations below, we take the weight w(x, y) as following:

w(x, y) = exp

(
−‖x − y‖2

σ(x)2

)
.

σ (x) is chosen to be the distance between x and its 20th nearest neighbor, Tomake the weight
matrix sparse, the weight is truncated to the 50 nearest neighbors. The patch size is 11× 11.
For each patch, the nearest neighbors are obtained by using an approximate nearest neighbor
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Fig. 4 Test of image restoration on image of Barbara. a original image; b 1% subsample; c result of GL; d
result of WNLL

(ANN) search algorithm. We use a k-d tree approach as well as an ANN search algorithm to
reduce the computational cost. The linear system in weighted nonlocal Laplacian and graph
Laplacian is solved by the conjugate gradient method.

PSNR defined as following is used to measure the accuracy of the results

PSNR( f, f ∗) = −20 log10(‖ f − f ∗‖/255) (4.1)

where f ∗ is the ground truth.
First, we run a simple test to see the performance of weighted nonlocal Laplacian and

graph Laplacian. In this test, the patch set is constructed using the original image, Fig. 4a.
The original image is subsampled at random, only keeping 1% pixels. Since the patch set is
exact, we do not update the patch set and only run WNLL and GL once to get the recovered
image.

The results of WNLL and GL are shown in Fig. 4c, d respectively. Obviously, the result
of WNLL is much better. To have a closer look at of the recovery, Fig. 5 shows the zoomed
in image enclosed by the boxes in Fig. 4a. In Fig. 5d, there are many pixels which are not
consistent with their neighbors. Compared with the subsample image 5b, it is easy to check
that these pixels are actually the retained pixels. The reason is that in graph Laplacian a non-
negligible boundary term is dropped [14,15]. On the contrary, in the result of WNLL, the
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Fig. 5 Zoomed in image in the test of image restoration on image of Barbara. a Original image; b 1%
subsample; c result of GL; d result of WNLL

inconsistency disappears and the resultant recovery is much better and smoother as shown
in Figs. 4d and 5d.

At the end of this section, we apply Algorithm 2 to recover the subsampled image. In this
test, we modify the patch to add the local coordinate

p̄i j ( f ) = [pi j ( f ), λ1i, λ2 j]
with

λ1 = 3‖( f |�)‖∞
m

, λ2 = 3‖( f |�)‖∞
n

.

This semi-local patch could accelerate the iteration and give better reconstruction. The num-
ber of iterations in our computation is fixed to be 10.

The initial image is obtained by filling the missing pixels with random numbers which
satisfy a Gaussian distribution, where μ0 is the mean of f |� and σ0 is the standard deviation
of f |�.

The results are shown in Fig. 6. As we can see, WNLL gives much better results than GL
both visually and numerically in PSNR. The results are comparable with those in LDMM
[12] while WNLL is much faster. For the image of Barbara (256× 256), WNLL needs about
1 min and LDMM needs about 20 min in a laptop equipped with CPU Intel i7-4900 2.8

123



J Sci Comput

original image 10% subsample GL WNLL

23.74 dB 26.13 dB

22.51 dB 25.21 dB

28.29 dB 31.29 dB

21.60 dB 23.05 dB

Fig. 6 Results of subsample image restoration

GHz with matlab code. In WNLL and GL, the weight update is the most computationally
expensive part in the algorithm by taking more than 90% of the entire computational time.
This part is the same in WNLL and GL. So the total time of WNLL and GL are almost same,
although the time of solving the linear system is about half in WNLL, 1.7 versus 3.1 s.

5 Conclusion and Future Work

In this paper, we introduce a novel weighted nonlocal Laplacian method. The numerical
results show that weighted nonlocal Laplacian provides a reliable and efficient method to
find reasonable interpolation on a point cloud in high dimensional space.

On the other hand, it was found that with extremely low sample rate, formulation of
the harmonic extension may fail [11,17]. In this case, we are considering minimizing L∞
norm of the gradient to compute the interpolation on point cloud, i.e. solving the following
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optimization problem

min
u

⎛

⎜⎝max
x∈P

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠
1/2

⎞

⎟⎠ ,

with the constraint

u(x) = g(x), x ∈ S.

This approach is closely related with the infinity Laplacian which has been studied a lot in
the machine learning community [5,6].

Another interesting problem is the semi-supervised learning studied in Sect. 3. In semi-
supervised learning, ideally, the functions, φi , should be either 0 or 1, so they are piecewise
constant. In this sense, minimizing the total variation should give better results [8,16,18].
Based on the weighted nonlocal Laplacian, we should also add a weight to correctly enforce
the constraints on the labeled points. This idea implies the following weighted nonlocal TV
method,

min
u

∑

x∈P\S

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠
1/2

+ |P|
|S|

∑

x∈S

⎛

⎝
∑

y∈P

w(x, y)(u(x) − u( y))2

⎞

⎠
1/2

,

with the constraint

u(x) = g(x), x ∈ S.

This seems to be a better approach than the weighted nonlocal Laplacian in the semi-
supervised learning. We will explore this approach and report its performance in our future
work.
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