
Stop memorizing: A data-dependent regularization framework for intrinsic
pattern learning∗

Wei Zhu† , Qiang Qiu‡ , Bao Wang§ , Jianfeng Lu¶, Guillermo Sapiro‡ , and Ingrid Daubechies†

Abstract. Deep neural networks (DNNs) typically have enough capacity to fit random data by brute force
even when conventional data-dependent regularizations focusing on the geometry of the features are
imposed. We find out that the reason for this is the inconsistency between the enforced geometry and
the standard softmax cross entropy loss. To resolve this, we propose a new potential framework for
data-dependent DNN regularization, the Geometrically-Regularized-Self-Validating neural Networks
(GRSVNet). During training, the geometry enforced on one batch of features is simultaneously
validated on a separate batch using a validation loss consistent with the geometry. We study
a particular case of GRSVNet, the Orthogonal-Low-rank Embedding (OLE)-GRSVNet, which is
capable of producing highly discriminative features residing in orthogonal low-dimensional subspaces.
Numerical experiments show that OLE-GRSVNet outperforms DNNs with conventional regularization
when trained on real data, especially when the training samples are scarce. More importantly, unlike
conventional DNNs, OLE-GRSVNet refuses to memorize random data or random labels, suggesting it
only learns intrinsic patterns by reducing the memorizing capacity of the baseline DNN.

Key words. deep neural networks, data-dependent regularization, network memorization, intrinsic pattern
learning.

AMS subject classifications. 68T45, 68T10

1. Introduction. It remains an open question why DNNs, typically with far more model
parameters than training samples, can achieve such small generalization error. Previous work
used various complexity measures from statistical learning theory, such as VC dimension [24],
Radamacher complexity [2], and uniform stability [3, 18], to provide an upper bound for
the generalization error, suggesting that the effective capacity of DNNs, possibly with some
regularization techniques, is usually limited.

However, the experiments by Zhang et al. [28] showed that, even with data-independent
regularization, DNNs can perfectly fit the training data when the true labels are replaced by
random labels, or when the training data are replaced by Gaussian noise. This suggests that
DNNs with data-independent regularization have enough capacity to “memorize” the training
data. This poses an interesting question for network regularization design: is there a way
for DNNs to refuse to (over)fit training samples with random labels, while exhibiting better
generalization power than conventional DNNs when trained with true labels? Such networks
are very important because they will extract only intrinsic patterns from the training data
instead of memorizing miscellaneous details.

∗Submitted to the editors June 18, 2019.
Funding: This work was partially supported by NSF, DoD, NIH, and Google.
†Department of Mathematics, Duke University, Durham, NC (zhu@math.duke.edu, ingrid@math.duke.edu).
‡ECE Department, Duke University, Durham, NC (qiang.qiu@duke.edu, guillermo.sapiro@duke.edu).
§Department of Mathematics, University of California, Los Angeles, Los Angeles, CA (wangbao@math.ucla.edu).
¶Department of Mathematics, Department of Physics and Department of Chemistry, Duke University, Durham,

NC (jianfeng@math.duke.edu)

1

mailto:zhu@math.duke.edu
mailto:ingrid@math.duke.edu
mailto:qiang.qiu@duke.edu
mailto:guillermo.sapiro@duke.edu
mailto:wangbao@math.ucla.edu
mailto:jianfeng@math.duke.edu

2 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

One would expect that data-dependent regularizations should be a better choice for reducing
the memorizing capacity of DNNs. Such regularizations are typically enforced by penalizing
the standard softmax cross entropy loss with an extra geometric loss which regularizes the
feature geometry [15, 26, 27, 29]. However, regularizing DNNs with an extra geometric loss
has two disadvantages: First, the output of the softmax layer, usually viewed as a probability
distribution, is typically not derived based on the feature geometry enforced by the geometric
loss. Thus minimizing the geometric loss would not necessarily benefit the validation, and these
two losses are therefore inconsistent. As a result, the geometric loss typically has a small weight
to avoid jeopardizing the minimization of the softmax loss. Second, we find that DNNs with
such regularization can still perfectly (over)fit random training samples or random labels. The
reason is that the geometric loss (because of its small weight) is ignored and only the softmax
loss is minimized.

This suggests that simply penalizing the softmax loss with a geometric loss is not sufficient
to regularize DNNs. Instead, the softmax loss should be replaced by a validation loss that
is consistent with the enforced geometry. More specifically, every training batch B is split
into two sub-batches, the geometry batch Bg and the validation batch Bv. The geometric
loss lg is imposed on the features of Bg for them to exhibit a desired geometric structure. A
semi-supervised learning algorithm based on the proposed feature geometry is then used to
generate a predicted label distribution for the validation batch, which combined with the true
labels defines a validation loss on Bv. The total loss on the training batch B is then defined as
the weighted sum l = lg + λlv. Because the predicted label distribution on Bv is based on the
enforced geometry, the geometric loss lg can no longer be neglected. Therefore, lg and lv will
be minimized simultaneously, i.e., the geometry is correctly enforced (small lg) and it can be
used to predict validation samples (small lv). We call such DNNs Geometrically-Regularized-
Self-Validating neural Networks (GRSVNets). See Figure 1a for a visual illustration of the
network architecture.

GRSVNet is a general architecture because every consistent geometry/validation pair can
fit into this framework as long as the loss functions are differentiable. In this paper, we focus
on a particular type of GRSVNet, the Orthogonal-Low-rank-Embedding-GRSVNet (OLE-
GRSVNet). More specifically, we impose the OLE loss [19] on the geometry batch to produce
features residing in orthogonal subspaces, and we use the distances between the validation
features and those subspaces to define a predicted label distribution on the validation batch.
We prove that the loss function obtains its minimum if and only if the subspaces of different
classes spanned by the features in the geometry batch are orthogonal, and the features in the
validation batch reside perfectly in the subspaces corresponding to their labels (see Figure 1f).
We show in our experiments that OLE-GRSVNet has better generalization performance when
trained on real data, but it refuses to memorize the training samples when given random
training data or random labels, which suggests that OLE-GRSVNet effectively learns intrinsic
patterns.

Our contributions can be summarized as follows:
• We proposed a potential framework, GRSVNet, to effectively impose data-dependent

DNN regularization. The core idea is the self-validation of the enforced geometry with
a consistent validation loss on a separate batch of features.
• We study a particular case of GRSVNet, OLE-GRSVNet, that can produce highly

A DATA-DEPENDENT REGULARIZATION FRAMEWORK FOR INTRINSIC PATTERN LEARNING 3

�(·; ✓)

Xg

Zg

�(·; ✓)

Zv

Xv

(U1, . . . ,UK)

Ŷv Yv

lv(Yv, Ŷv)lg(Z
g)

l = lg + �lv

(a) GRSVNet architecture

0 20 40 60 80 100 120 140 160

Epoch

80

82

84

86

88

90

92

94

96

98

100

102

A
c
c
u

ra
c
y

Training: Softmax
Testing: Softmax
Training: Softmax+wd
Testing: Softmax+wd
Training: Softmax+OLE
Testing: Softmax+OLE
Training: OLE-GRSVNet
Testing: OLE-GRSVNet

(b) Learning curves

(c) Softmax
Accuracy = 93.10%

(d) Weight decay
Accuracy = 93.73%

(e) Softmax + OLE
Accuracy = 94.04%

(f) OLE-GRSVNet
Accuracy = 94.75%

Figure 1: GRSVNet architecture and the results of different networks with the same VGG-11 baseline architecture
on the SVHN dataset with real data and real labels. (a) GRSVNet architecture (better understood in its special
case OLE-GRSVNet detailed in section 3). (b) Training/testing accuracy. (c)-(f) Features of the test data
learned by different networks visualized in 3D using PCA. Note that for OLE-GRSVNet, only four classes (out
of ten) have nonzero 3D embedding (Theorem 3.2).

discriminative features: samples from the same class belong to a low-dimensional
subspace, and the subspaces for different classes are orthogonal.
• OLE-GRSVNet achieves better generalization performance when compared to DNNs
with conventional regularizers. This is especially the case when the training data are
scarce. More importantly, unlike conventional DNNs, OLE-GRSVNet refuses to fit the
training data (i.e., with a training error close to random guess) when the training data
or the training labels are randomly generated. This implies that OLE-GRSVNet tends
not to memorize the training samples, and instead learns intrinsic patterns.

2. Related work. Many data-dependent regularizations focusing on feature geometry have
been proposed for deep learning [15, 26, 27, 29]. The center loss [26] produces compact clusters
by minimizing the Euclidean distance between features and their class centers. Weston et al.
proposed to recover a low dimensional feature structure via semi-supervised manifold embedding
[27]. LDMNet [29] extracts features sampling a collection of low dimensional manifolds by
explicitly minimizing the manifold dimension. The OLE loss [15, 19] increases inter-class

4 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

separation and intra-class similarity by embedding inputs into orthogonal low-dimensional
subspaces. However, as mentioned in section 1, these regularizations are imposed by adding
the geometric loss to the softmax loss, which, when viewed as a probability distribution, is
typically not consistent with the desired geometry. Our proposed GRSVNet instead uses a
validation loss based on the regularized geometry so that the predicted label distribution has a
meaningful geometric interpretation.

The way in which GRSVNets impose geometric loss and validation loss on two separate
batches of features extracted with two identical baseline DNNs bears a certain resemblance
to the siamese network architecture [5] used extensively in metric learning [4, 9, 11, 21, 23].
The difference is, unlike contrastive loss [9] and triplet loss [21] in metric learning, the feature
geometry is explicitly regularized in GRSVNets, and a representation of the geometry, e.g.,
basis of the low-dimensional subspace, can be later used directly for the classification of test
data.

Our work is also related to two recent papers [1, 28] addressing the memorization of DNNs.
Zhang et al. [28] empirically showed that conventional DNNs, even with data-independent
regularization, are fully capable of memorizing random labels or random data. Arpit et al.
[1] argued that DNNs trained with stochastic gradient descent (SGD) tend to fit patterns
first before memorizing miscellaneous details, suggesting that memorization of DNNs depends
also on the data itself, and SGD with early stopping is a valid strategy in conventional DNN
training. We empirically demonstrate in our paper that when data-dependent regularization is
imposed in accordance with the validation, GRSVNets have the potential to refuse memorizing
random labels or random data, and only extract intrinsic patterns. A conjecture to explain
this phenomenon is provided in section 4.

3. GRSVNet and its special case: OLE-GRSVNet. As pointed out in section 1, the
core idea of GRSVNet is to self-validate the geometry using a consistent validation loss. To
contextualize this idea, we study a particular case, the OLE-GRSVNet, where the regularized
feature geometry is orthogonal low-dimensional subspaces, and the validation loss is defined by
the distances between the validation features and the subspaces.

3.1. OLE loss. The OLE loss was originally proposed by Qiu and Sapiro in [19]. Consider
a K-way classification problem. Let X = [x1, . . . ,xN] ∈ Rd×N be a collection of data points
{xi}Ni=1 ⊂ Rd. Let Xc denote the submatrix of X formed by inputs of the c-th class. The
authors in [19] proposed to learn a linear transformation T : Rd → Rd that maps data from
the same class Xc into a low-dimensional subspace, while mapping the entire data X into a
high-dimensional linear space. This is achieved by solving:

min
T:Rd→Rd

K∑
c=1

‖TXc‖∗ − ‖TX‖∗, s.t. ‖T‖2 = 1,(3.1)

where ‖ · ‖∗ is the matrix nuclear norm, which is a convex lower bound of the rank function on
the unit ball in the operator norm [20]. The norm constraint ‖T‖2 = 1 is imposed to avoid the
trivial solution T = 0. It is proved in [19] that the OLE loss (3.1) is always nonnegative, and
the global optimum value 0 is obtained if TXc⊥TXc′ ,∀c 6= c′.

Lezama et al. [15] later used OLE loss as a data-dependent regularization for deep learning.
Let Φ(·; θ) : x ∈ Rd 7→ z = Φ(x, θ) ∈ RD be a baseline DNN feature extractor, where D is

A DATA-DEPENDENT REGULARIZATION FRAMEWORK FOR INTRINSIC PATTERN LEARNING 5

the dimension of the ambient feature space, which is typically chosen to be larger than the
number of classes. Given a batch of labeled inputs (X,Y) and their corresponding features
Z = Φ(X; θ), the OLE loss on Z is

lg(Z) =
K∑
c=1

‖Zc‖∗ − ‖Z‖∗ =
K∑
c=1

‖Φ(Xc; θ)‖∗ − ‖Φ(X; θ)‖∗.(3.2)

The OLE loss is later combined with the standard softmax loss for training. More specifically,
let W ∈ RD×K be the weights of the last fully connected layer, then the total loss on the input
batch is defined as

l(X,Y) = lg(Z) + λlsoftmax(W TZ,Y),(3.3)

where lsoftmax is the standard softmax cross entropy loss. We will henceforth call such network
“softmax+OLE.” Softmax+OLE significantly improves the generalization performance, but
it suffers from two problems because of the inconsistency between the softmax loss and the
OLE loss: First, the learned features no longer exhibit the desired geometry of orthogonal
low-dimensional subspaces. Second, as will be shown in section 4, softmax+OLE is still capable
of memorizing random data or random labels, i.e., it does not reduce the memorizing capacity
of DNNs.

3.2. OLE-GRSVNet. We will now explain how to incorporate OLE loss into the proposed
GRSVNet framework. First, let us better understand the geometry enforced by the OLE loss
by stating the following theorem.

Theorem 3.1. Let Z = [Z1, . . . ,Zc] be a horizontal concatenation of matrices {Zc}Kc=1. The
OLE loss lg(Z) defined in (3.2) is always nonnegative. Moreover, lg(Z) = 0 if and only if
Z∗cZc′ = 0,∀c 6= c′, i.e., the column spaces of Zc and Zc′ are orthogonal.

The proof of Theorem 3.1, as well as those of the remaining theorems, is detailed in the
Appendix. Note that Theorem 3.1 is stronger than the one in [19], which only showed one
direction of the result. We then need to define a validation loss lv that is consistent with
the geometry enforced by lg. A natural choice would be the distances between the validation
features and the subspaces spanned by {Zc}Kc=1.

Now we detail the architecture for OLE-GRSVNet. Given a baseline DNN, we split every
training batch X ∈ Rd×|B| into two sub-batches, the geometry batch Xg ∈ Rd×|Bg | and the
validation batch Xv ∈ Rd×|Bv |, both of which are mapped by the same baseline DNN into
features Zg = Φ(Xg; θ) and Zv = Φ(Xv; θ). Assume for now that both Xg and Xv contain
samples from all K classes (more details will be explained in Remark 3.5.) The OLE loss
lg(Z

g) is imposed on the geometry batch to ensure span(Zgc) are orthogonal low-dimensional
subspaces, where span(Zgc) is the column space of Zgc . Let Zgc = UcΣcV

∗
c be the (compact)

singular value decomposition (SVD) of Zgc , then the columns of Uc form an orthonormal basis
of span(Zgc). For any feature z = Φ(x; θ) ∈ Zv in the validation batch, its projection onto the
subspace span(Zgc) is projc(z) = UcU

∗
cz. The cosine similarity between z and projc(z) is then

6 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

defined as the (unnormalized) probability of x belonging to class c, i.e.,

ŷc(x) = P(x ∈ c)

,

〈
z,

projc(z)

max (‖projc(z)‖, ε)

〉/ K∑
c′=1

〈
z,

projc′(z)

max (‖projc′(z)‖, ε)

〉
, if ‖z‖ ≥ ε,

1/K, if ‖z‖ < ε.

(3.4)

where a small ε is chosen for numerical stability. The validation loss for x is then defined as
the cross entropy between the predicted distribution ŷ = (ŷ1, . . . , ŷK)T ∈ RK and the true
label y ∈ {1, . . . ,K}. More specifically, let Yv ∈ R1×|Bv | and Ŷv ∈ RK×|Bv | be the collection
of true labels and predicted label distributions on the validation batch, then the validation loss
is defined as

lv(Y
v, Ŷv) =

1

|Bv|
∑
x∈Xv

H(δy(x), ŷ(x)) = − 1

|Bv|
∑
x∈Xv

log ŷ(x)y(x),(3.5)

where δy is the Dirac distribution at label y, and H(·, ·) is the cross entropy between two
distributions. The empirical loss l on the training batch X is then defined as

l(X,Y) = l([Xg,Xv], [Yg,Yv]) = lg(Z
g) + λlv(Y

v, Ŷv).(3.6)

See Figure 1a for a visual illustration of the OLE-GRSVNet architecture. Because of the
consistency between lg and lv, we have the following theorem:

Theorem 3.2. For any λ > 0, and any geometry/validation splitting of X = [Xg,Xv]
satisfying Xv contains at least one sample for each class, the empirical loss function defined
in (3.6) is always nonnegative. Moreover, l(X,Y) = 0 if and only if both of the following
conditions hold:

• The features of the geometry batch belonging to different classes are orthogonal, i.e.,
span(Zgc)⊥ span(Zgc′),∀c 6= c′

• For every datum x ∈ Xv
c , i.e., x belongs to class c in the validation batch, its feature

z = Φ(x; θ) belongs to span(Zgc).
Moreover, if l <∞, then rank(span(Zgc)) ≥ 1, ∀c, i.e., Φ(·; θ) does not trivially map data to 0.

Remark 3.3. The requirement that λ > 0 is crucial in Theorem 3.2, because otherwise
the network can map every input into 0 and achieve the minimum. This is validated in our
numerical experiments.

Remark 3.4. Since the low-dimensional subspaces spanned by features of different classes
are orthogonal, the dimension of the ambient feature space has to be at least larger than the
number of classes K. Empirically, we find out that the dimension of each subspace is typically
less than three after convergence. Thus the minimally required feature dimension scales linearly
with respect to K.

Remark 3.5. When the number of classes K is large, requiring Xg and Xv to contain
samples from all K classes will result in a large batch size. If this is the case, a training batch
X is sampled in the following way: we first randomly choose L out of K classes, where L� K.
The training batch X is then sampled from these L classes, satisfying that both Xg and Xv

contain at least one sample from each of the L classes.

A DATA-DEPENDENT REGULARIZATION FRAMEWORK FOR INTRINSIC PATTERN LEARNING 7

0 100 200 300 400 500 600 700 800

Epoch

0

10

20

30

40

50

60

70

80

90

100

110

A
c
c
u
ra

c
y

Training: Softmax
Testing: Softmax
Training: Softmax+wd
Testing: Softmax+wd
Training: Softmax+OLE
Testing: Softmax+OLE
Training: OLE-GRSVNet
Testing: OLE-GRSVNet

(a) Training/testing accuracy with random labels

0 100 200 300 400 500 600 700 800

Epoch

0

10

20

30

40

50

60

70

80

90

100

110

A
c
c
u
ra

c
y

Training: Softmax
Testing: Softmax
Training: Softmax+wd
Testing: Softmax+wd
Training: Softmax+OLE
Testing: Softmax+OLE
Training: OLE-GRSVNet
Testing: OLE-GRSVNet

(b) Training/testing accuracy with random data

Figure 2: Training and testing accuracy of different networks on the SVHN dataset with random labels or
random data (Gaussian noise). Note that softmax, sotmax+wd, and softmax+OLE can all perfectly (over)fit
the random training data or training data with random labels. Only the proposed OLE-GRSVNet refuses to fit
the training data when there is no intrinsically learnable patterns.

After the training process has finished, we can then map the entire training data Xall =
[Xall

1 , . . . ,X
all
K] (or a random portion of Xall) into their features Zall = Φ(Xall; θ∗), where θ∗ is

the learned parameter. The low-dimensional subspace span(Zall
c) for class c can be obtained

via the SVD of Zall
c . The label of a test datum x is then determined by the distances between

z = Φ(x; θ∗) and {span(Zall
c)}Kc=1.

4. Two toy experiments. Before delving into the implementation details of OLE-GRSVNet,
we first present two toy experiments to illustrate our proposed framework. We use VGG-11
[22] as the baseline architecture, and compare the performance of the following four DNNs:
(a) The baseline network with a softmax classifier (softmax). (b) VGG-11 with weight decay
(softmax+wd). (c) VGG-11 regularized by penalizing the softmax loss with the OLE loss
(softmax+OLE). (d) OLE-GRSVNet.

We first train these four DNNs on the Street View House Numbers (SVHN) dataset [16]
with the original data and labels without data augmentation. The test accuracy and the PCA
embedding of the learned test features are shown in Figure 1. OLE-GRSVNet has the highest
test accuracy among the comparing DNNs. Moreover, because of the consistency between the
geometric loss and the validation loss, the test features produced by OLE-GRSVNet are even
more discriminative than softmax+OLE: features of the same class reside in a low-dimensional
subspace, and different subspaces are (almost) orthogonal. Note that in Figure 1f, features of
only four classes out of ten have nonzero 3D embedding, although ideally it should be at most
three because features of at least seven classes are orthogonal to the three leading principal
components due to Theorem 3.2.

Next, we train the same networks, without changing hyperparameters, on the SVHN
dataset with either (a) randomly generated labels, or (b) random training data (Gaussian
noise). We train the DNNs for 800 epochs to ensure their convergence, and the learning curves
of training/testing accuracy are shown in Figure 2. Note that the baseline DNN, with either

8 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

-100

100

-50

50 100

0

50

50

0

0

100

-50
-50

-100 -100

(a) Original three classes of one-
dimensional data in R10

-100

100

-50

50 100

0

50

50

0

0

100

-50
-50

-100 -100

(b) Labels randomly shuffled

-3

5

-2

-1

20

0

1

15

Accuracy = 100.0%

0

2

10

3

5

0
-5 -5

(c) Softmax with 3-layer MLP (ac-
curacy = 100.0%)

-0.4

0.6

-0.2

0

0.4 1.5

0.2

Accuracy = 33.4%

1

0.4

0.2

0.6

0.5
0

0

-0.2 -0.5

(d) OLE-GRSVNet with 3-layer
MLP (accuracy = 33.4%)

-0.1

1

0

1

0.1

0.5

Accuracy = 33.4%

0.2

0.5

0.3

0
0

-0.5 -0.5

(e) OLE-GRSVNet with 5-layer
MLP (accuracy = 33.4%)

-0.2

1

0

1.5

0.2

0.5
1

Accuracy = 34.2%

0.4

0.5

0.6

0 0

-0.5
-0.5 -1

(f) OLE-GRSVNet with 10-layer
MLP (accuracy = 34.2%)

-0.1

1

0

4

0.1

0.5
3

Accuracy = 35.0%

0.2

2

0.3

0 1

0
-0.5 -1

(g) OLE-GRSVNet with 20-layer
MLP (accuracy = 35.0%)

-0.05

0.6

0

0.05

0.4 1

0.1

Accuracy = 30.6%

0.15

0.2 0.5

0.2

0 0

-0.2 -0.5

(h) OLE-GRSVNet with 50-layer
MLP (accuracy = 30.6%)

-0.2

0.3

-0.1

0

0.2 600

0.1

Accuracy = 29.8%

400

0.2

0.1

0.3

200
0

0

-0.1 -200

(i) OLE-GRSVNet with 100-layer
MLP (accuracy = 29.8%)

Figure 3: Visual illustration of the second toy experiment in section 4. (a) Three classes of one-dimensional
data in R10. (b) Labels randomly shuffled. (c)-(i) Features extracted by baseline MLP with softmax classifier or
OLE-GRSVNet. Only three layers of MLP are needed for conventional DNNs to perfectly memorize random
labels. But even with 100 layers of MLP, OLE-GRSVNet still refuses to memorize the random labels because
there are no intrinsically learnable patterns.

data-independent or conventional data-dependent regularization, can perfectly (over)fit the
training data, while OLE-GRSVNet refuses to memorize the training data when there are no
intrinsically learnable patterns.

In another experiment, we generate three classes of one-dimensional data in R10: the data
points in the i-th class are i.i.d. samples from the Gaussian distribution with the standard
deviation in the i-th coordinate 50 times larger than other coordinates. Each class has 500
data points, and we randomly shuffle the class labels after generation. We then train a
multilayer perceptron (MLP) with 128 neurons in each layer for 2000 epochs to classify these

A DATA-DEPENDENT REGULARIZATION FRAMEWORK FOR INTRINSIC PATTERN LEARNING 9

low dimensional data with random labels. We found out that only three layers are needed
to perfectly classify these data when using a softmax classifier. However, after incrementally
adding more layers to the baseline MLP, we found out that OLE-GRSVNet still refuses to
memorize the random labels even for 100-layer MLP. This further suggests that OLE-GRSVNet
refuses to memorize training data by brute force when there is no intrinsic patterns in the data.
A visual illustration of this experiment is shown in Figure 3.

We provide an intuitive explanation for why OLE-GRSVNet can generalize significantly
better than conventional DNNs when given true labeled data but refuses to memorize random
data or random labels. For conventional DNNs with softmax activations, the class distribution
of a single input datum is determined solely by itself, even if a mini-batch |B| of input data are
used during training. On the other hand, in OLE-GRSVNets, the class distribution of an input
datum is determined instead by the geometry of the entire training batch. Thus the training
object in OLE-GRSVNets is no longer a single datum, but the entire random batch of size
|B|. Hence we conjecture that OLE-GRSVNets are implicitly conducting O(N |B|)-fold data
augmentation, where N is the number of training data, while conventional data augmentation
by the manipulation of the inputs, e.g., random cropping, flipping, etc., is typically O(N). This
poses a very interesting question: does it mean that OLE-GRSVNets can also memorize random
data if the baseline DNN has exponentially many model parameters? Or is it because of the
learning algorithm (SGD) that prevents OLE-GRSVNets from learning a decision boundary
too complicated for classifying random data? Answering this question will be the focus of our
future research.

5. Implementation details of OLE-GRSVNet. Most of the operations in the computa-
tional graph of OLE-GRSVNet (Figure 1a) explained in section 3 are basic matrix operations.
The only two exceptions are the OLE loss (Zg → lg((Zg))) and the SVD (Zg → (U1, . . . ,UK)).
We hereby specify their forward and backward propagations.

5.1. Backward propagation of the OLE loss. According to the definition of the OLE
loss in (3.2), we only need to find a (sub)gradient of the nuclear norm to back-propagate the
OLE loss. The characterization of the subdifferential of the nuclear norm is explained in [25].
More specifically, assuming m ≥ n for simplicity, let U ∈ Rm×m,Σ ∈ Rm×n, V ∈ Rn×n be the
SVD of a rank-s matrix A. Let U = [U(1),U(2)], V = [V(1),V(2)] be the partition of U, V,
respectively, where U(1) ∈ Rm×s and V(1) ∈ Rn×s, then the subdifferential of the nuclear norm
at A is:

∂‖A‖∗ =
{

U(1)V(1)∗ + U(2)WV(2)∗, ∀W ∈ R(m−s)×(n−s) with ‖W‖2 ≤ 1
}
,(5.1)

where ‖ · ‖2 is the spectral norm. Note that to use (5.1), one needs to identify the rank-s
column space of A, i.e., span(U(1)) to find a subgradient, which is not necessarily easy because
of the existence of numerical error. The authors in [15] intuitively truncated the numerical
SVD with a small parameter chosen a priori to ensure the numerical stability. We show in the
following theorem using the backward stability of SVD [6, 8] that such concern is, in theory,
not necessary.

Theorem 5.1. Let Uε,Σε,Vε be the numerically computed reduced SVD of A ∈ Rm×n, i.e.,
Uε ∈ Rm×n, Vε ∈ Rn×n, (Uε + δUε)Σε(Vε + δVε)∗ = A + δA = Aε, and ‖δU‖2, ‖δV‖2,

10 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

‖δA‖2 are all O(ε), where ε is the machine error. If rank(A) = s ≤ n, and the smallest
singular value σs(A) of A satisfies σs(A) ≥ η > 0, we have

d(UεVε∗, ∂‖A‖∗) = O(ε/η).(5.2)

However, in practice we did observe that using a small threshold (10−6 in this work) to
truncate the numerical SVD can speed up the convergence, especially in the first few epochs of
training. With the help of Theorem 5.1, we can easily find a stable subgradient of the OLE
loss in (3.2).

5.2. Forward and backward propagation of Zg → (U1, . . . ,UK). Unlike the computation
of the subgradient in Theorem 5.1, we have to threshold the singular vectors of Zgc , because the
desired output Uc should be an orthonormal basis of the low-dimensional subspace span(Zgc).
In the forward propagation, we threshold the singular vectors Uc such that the smallest singular
value is at least 1/10 of the largest singular value.

As for the backward propagation, one needs to know the Jacobian of SVD, which has been
explained in [17]. Typically, for a matrix A ∈ Rn×n, computing the Jacobian of the SVD of A
involves solving a total of O(n4) 2× 2 linear systems. We have not implemented the backward
propagation of SVD in this work because this involves technical implementation with CUDA
API. In our current implementation, the node (U1, . . . ,UK) is detached from the computational
graph during back propagation, i.e., the validation loss lv is only propagated back through the
path lv → Ŷv → Zv → θ. Our rational is this: The validation loss lv can be propagated back
through two paths: lv → Ŷv → Zv → θ and lv → Ŷv → (U1, . . . ,UK) → Zg → θ. The first
path will modify θ so that Zvc moves closer to Uc, while the second path will move Uc closer
to Zvc . Cutting off the second path when computing the gradient might decrease the speed of
convergence, but numerical experiments suggest that the training process is still well-behaved
under such simplification. With such simplification, the only extra computation is the SVD of
a mini-batch of features, which is negligible (<5%) when compared to the time of training the
baseline network.

6. Experimental results. In this section, we demonstrate the superiority of OLE-GRSVNet
when compared to conventional DNNs in two aspects: (a) It has greater generalization power
when trained on true data with real labels, and the improvement of the test accuracy is especially
significant when the number of training examples is small. (b) Unlike conventionally regularized
DNNs, OLE-GRSVNet refuses to memorize the training samples when given random training
data or random labels. This gives OLE-GRSVNets a significant advantage when dealing with
training data with corrupted labels.

The following benchmark datasets are chosen to evaluate the effectiveness of the different
regularizations:

• MNIST. The MNIST dataset contains 28× 28 grayscale images of digits from 0 to 9.
There are 60,000 training samples and 10,000 testing samples. No data augmentation
was used.
• SVHN. The Street View House Numbers (SVHN) dataset contains 32×32 RGB images
of digits from 0 to 9. The training and testing set contain 73,257 and 26,032 images
respectively. No data augmentation was used.

A DATA-DEPENDENT REGULARIZATION FRAMEWORK FOR INTRINSIC PATTERN LEARNING 11

VGG-11 C64-MP-C128-MP-C256(x2)-MP-C512(x2)-MP-C512(x2)-MP-FC512

VGG-16 C64(x2)-MP-C128(x2)-MP-C256(x3)-MP-C512(x3)-MP-C512(x3)-MP-FC512

VGG-19 C64(x2)-MP-C128(x2)-MP-C256(x4)-MP-C512(x4)-MP-C512(x4)-MP-FC512

LeNet C6-MP-C16-MP-FC120

ResNet C16-R64/16(x9)-R128/32(x9)-R256/64(x9)-BN-ReLU-AP

DenseNet C32-MP-C64-MP-C128-MP-C256-C256-MP

CNN-5 C64-MP-C128-MP-C256-MP-C512-MP-C512-MP-FC512

Table 1: Summary of the network architectures. The last fully-connected layer, the size of which depends on the
number of classes, is omitted from the table. CX: Convolutional block with the kernel size set to 3x3. MP: Max
Pooling with kernel size 2x2 and stride 2. FCX: Fully-connected layer. RX/Y: Residual block. AP: Global
Average Pooling. DX/G: DenseNet block. For all the modules, X is the number of output channels, Y is the
number of inner channels for R, and G is the growth rate for D blocks. See text for detailed block definitions.

• CIFAR. The CIFAR dataset [13] contains 32 × 32 RGB images of ten classes, with
50,000 images for training and 10,000 images for testing. We use “CIFAR+” to denote
experiments on CIFAR with data augmentation: 4 pixel padding, 32 × 32 random
cropping and horizontal flipping.
• Tiny ImageNet. The Tiny ImageNet (tImageNet) dataset1

We use the similar experimental setup as in section 4, i.e., the same four modifications
to the baseline DNNs are considered: (a) Softmax. (b) Softmax+wd. (c) Softmax+OLE
(d) OLE-GRSVNet. The performance of the different regularizations is evaluated on the
following baseline architectures2

6.1. Training details. All networks are trained from scratch with the “Xavier” initialization
[7]. SGD with Nesterov momentum 0.9 is used for the optimization, and the batch size is set
to 200 (a 100/100 split for geometry/validation batch is used in OLE-GRSVNet). Without

1The dataset is available at https://tiny-imagenet.herokuapp.com/ contains 64× 64 RGB images from 200
classes. Each class has 500 training and 50 test data.

2The code is available at https://services.math.duke.edu/~zhu/software.html:
• VGG [22]. The VGG-11, 16, 19 architectures are composed of five blocks of convolutional layers

with ReLU activations and Batch Normalization (BN). Five Max-Pooling layers are used to gradually
decrease the spatial dimension of the input images.

• LeNet [14]. This is a simple 5-layer network consisting of two convolutional layers, two Max-Pooling
layers, and a final fully connected layer. We use this architecture mainly for the MNIST dataset.

• ResNet [10]. The basic building block, i.e., the residual block, of the ResNet consists of a concatenation
of seven operations: conv.-BN-conv.-BN-conv.-BN-ReLU. The input of each residual block is added to
the output through a short connection. The ResNet architecture with 27 residual blocks is used for the
experiments.

• DenseNet [12]. DenseNets are composed of three DenseNet blocks, each of which contains multiple
densely connected convolutional blocks with a small number of output channels. The DenseNet with
40 layers of operations and a growth rate of 12 is used for the experiments.

• CNN-5. This is a plain convolutional neural network consisting of five convolution and Max-Pooling
layers. This network is mainly used for the experiments in subsection 6.4.

The detailed network architectures are summarized in Table 1.

https://tiny-imagenet.herokuapp.com/
https://services.math.duke.edu/~zhu/software.html

12 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

Dataset LeNet VGG-11 VGG-16 VGG-19 ResNet DenseNet CNN-5

MNIST 0.1/5/100 0.5/10/100 - - - - 0.1/5/100

SVHN - 0.5/5/160 - - - 0.5/10/300 0.25/5/100

CIFAR - 0.5/5/200 0.5/5/300 0.25/1/400 0.25/10/300 - 0.1/5/100

CIFAR+ - 0.5/5/200 0.5/5/300 0.25/1/400 - - -

tImageNet - - - 0.1/1/400 - - -

Table 2: Hyperparameters and numbers of the training epochs used for the experiments with true labels on the
entire data. For every entry ν/λ/N , ν is the weight for the OLE loss in “softmax+OLE”, λ is the weight of the
validation loss in OLE-GRSVNets (3.6), and N is the number of training epochs.

explicitly mentioning, we set the initial learning rate to 0.01, and decrease it ten-fold at 50%
and 75% of the total training epochs. The number of training epochs for the experiments with
true labels are reported in Table 2. In order to ensure the convergence of SGD, all networks
are trained for 800 epochs for the experiments with random labels. The mean accuracy after
five independent trials is reported.

As for the hyperparameters, the weight decay parameter, if used, is always set to µ = 10−4.
The weight for the OLE loss in “softmax+OLE” and the parameter λ in (3.6) are determined
by cross-validation and reported in Table 2.

6.2. Testing/training performance when trained on the entire datasets with real or
random labels. Table 3 reports the performance of the networks trained on the entire datasets
with real or randomly generated labels. The numbers in the upper block are the percentage
accuracies on the testing data when networks are trained with real labels. The numbers
in the lower block are the accuracies on the training data when networks are trained with
random labels. Accuracies on the training data with real labels (always 100%) and accuracies
on the test data with random labels (always close to random guess) are omitted from the
table. As we can see, similar to the experiment in section 4, when trained with real labels,
OLE-GRSVNet exhibits better generalization performance than the competing networks. This
is because the feature geometry is better enforced through consistent self-validation in each step
of the training (see Figure 1 and Theorem 3.2.) However, when trained with random labels,
OLE-GRSVNet refuses to memorize the training samples like the other networks because there
are no intrinsically learnable patterns. This is still the case even if we increase the number
of training epochs to 2000. We did not report the results of “softmax+centerloss” [26] and
“softmax+LDMNet” [29] because they have entirely different geometric constraint, but the
story is the same: they are both capable of perfectly (over)fitting random labels. As mentioned
in section 5, the extra computational time during the training of the OLE-GRSVNet, i.e., the
SVD of the features of a random batch, is negligible (<5%) when compared to that of training
the VGG-11 baseline, and even more so for more complicated baseline DNNs.

It is worth mentioning that the performance of the proposed OLE-GRSVNet seems to
be more stable with respect to the choice of the initial learning rate. As can be seen from
Table 3, when ResNets are trained on the CIFAR dataset with the initial learning rate set
to 0.1, the proposed OLE-GRSVNet (test accuracy = 85.16%) slightly underperforms the

A DATA-DEPENDENT REGULARIZATION FRAMEWORK FOR INTRINSIC PATTERN LEARNING 13

Testing accuracy (%) when trained with real label

Dataset Architecture Softmax Softmax+wd Softmax+OLE OLE-GRSVNet

MNIST LeNet 99.25± 0.09 99.31± 0.07 99.37± 0.11 99.41± 0.08

MNIST VGG-11 99.40± 0.03 99.47± 0.03 99.49± 0.02 99.57± 0.02

SVHN VGG-11 93.10± 0.04 93.73± 0.05 94.04± 0.08 94.75± 0.06

SVHN DenseNet 93.24± 0.26 93.89± 0.11 93.35± 0.16 95.08± 0.26

CIFAR VGG-11 81.81± 0.12 81.87± 0.10 82.04± 0.14 85.29± 0.10

CIFAR VGG-16 83.37± 0.13 83.97± 0.13 84.35± 0.14 87.44± 0.11

CIFAR VGG-19 83.56± 0.19 84.21± 0.17 84.71± 0.19 86.69± 0.20

CIFAR ResNet-0.01 75.79± 0.18 77.90± 0.19 78.53± 0.23 84.40± 0.16

CIFAR ResNet-0.1 81.93± 0.29 85.38± 0.27 82.60± 0.77 85.16± 0.21

CIFAR+ VGG-11 89.52± 0.15 89.68± 0.16 90.04± 0.20 90.58± 0.17

CIFAR+ VGG-16 91.21± 0.16 91.29± 0.19 91.40± 0.11 92.15± 0.12

CIFAR+ VGG-19 91.19± 0.22 91.53± 0.19 91.67± 0.24 91.65± 0.21

tImageNet VGG-19 45.28± 0.21 45.89± 0.18 46.36± 0.50 47.51± 0.47

Training accuracy (%) when trained with random label

Dataset VGG Softmax Softmax+wd Softmax+OLE OLE-GRSVNet

MNIST LeNet 99.99± 0.01 100.00± 0.00 99.97± 0.01 9.83± 0.51

MNIST VGG-11 100.00± 0.00 100.00± 0.00 100.00± 0.00 9.93± 0.23

SVHN VGG-11 99.99± 0.01 100.00± 0.00 99.99± 0.01 9.75± 0.47

SVHN DenseNet 100.00± 0.00 99.99± 0.01 99.96± 0.02 10.26± 0.43

CIFAR VGG-11 100.00± 0.00 100.00± 0.00 99.95± 0.02 9.97± 0.21

CIFAR VGG-16 100.00± 0.00 99.99± 0.01 99.96± 0.02 10.13± 0.33

CIFAR VGG-19 99.99± 0.00 99.97± 0.01 99.96± 0.02 9.86± 0.45

CIFAR ResNet-0.01 99.96± 0.02 99.97± 0.01 99.96± 0.02 9.67± 0.51

CIFAR+ VGG-11 99.98± 0.01 99.98± 0.01 99.93± 0.03 10.05± 0.39

CIFAR+ VGG-16 99.96± 0.02 99.96± 0.02 99.92± 0.04 9.94± 0.45

CIFAR+ VGG-19 99.96± 0.02 99.95± 0.03 99.91± 0.04 10.07± 0.32

tImageNet VGG-19 99.97± 0.02 99.96± 0.02 99.95± 0.02 0.48± 0.04

Table 3: Testing or training accuracies when trained on the entire datasets with real or random labels. The
numbers in the upper block are the percentage accuracies on the testing data when networks are trained
with real labels. The numbers in the lower block are the accuracies on the training data when networks
are trained with random labels. The means and standard deviations after five (three) independent trials are
reported. ResNet-0.01 and ResNet-0.1, respectively, denote the results of the DNNs with the ResNet baseline
architecture trained with the initial learning rate 0.01 and 0.1.

14 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

Testing accuracy (%) of the OLE-GRSVNet with different |B|

Dataset Architecture |B| = 60 |B| = 80 |B| = 140 |B| = 200 |B| = 300 |B| = 400

MNIST LeNet 99.27 99.36 99.35 99.41 99.42 99.39

SVHN VGG-11 93.96 94.48 94.65 94.75 94.94 94.87

CIFAR VGG-11 84.01 84.57 85.16 85.29 85.21 85.27

Table 4: The effect of the training batch size |B| on the test accuracy of the OLE-GRSVNet. The mean
accuracies after three independent trials are reported.

data-independent weight decay regularization (test accuracy = 85.38%.) However, if we change
the initial learning rate to 0.01, all networks except for the OLE-GRSVNet experience a
significant decrease in the test accuracy. This might suggest that the OLE-GRSVNet is less
susceptible to converging to a “non-generalizable” minimum when a small initial learning rate is
chosen. Later in subsection 6.3, we will show that when ResNets are trained on a small fraction
(10%, 20%, and 40%) of the CIFAR training data, the OLE-GRSVNet always significantly
outperforms other competing networks, no matter which initial learning rate is chosen.

The effect of the training batch size |B| on the performance of the OLE-GRSVNet is shown
in Table 4. As we can see, the test accuracy generally increases before reaching a plateau as
|B| gets larger. This is because more training data are used to resolve the low-dimensional
subspaces in each training batch as the batch size increases. This empirical finding also
corroborates our claim in section 4 that OLE-GRSVNets are implicitly conducting O(N |B|)-fold
data augmentation.

6.3. Testing performance with limited training data. We next examine the efficacy of
different regularizations when the training data are scarce. Table 5 displays the test accuracies
of the different networks when trained on a small fraction (10%, 20%, and 40%) of the entire
training data. We use the same hyperparameters as those in subsection 6.2. It is clear from
Table 5 that OLE-GRSVNet significantly outperforms other competing networks when trained
with very limited samples. We note that, unlike in subsection 6.2, when the networks with the
ResNet baseline architecture are trained on a fraction of the CIFAR dataset, the OLE-GRSVNet
achieves substantially better test performance compared to other regularizations no matter
which initial learning rate is chosen.

6.4. Testing performance with corrupted labels. Finally, we demonstrate the practical
usage of the proposed OLE-GRSVNet in a realistic setting where part of the training samples
are wrongly labeled. To achieve this, we randomly choose 40% of the training data and replace
their real labels with random labels. All networks with the same CNN-5 baseline architecture
are first trained on the corrupted dataset for 100 epochs, after which each network produces its
own list of predicted “bad” training samples, i.e., the ones that the network refuses to fit. Each
network is then trained again on the “purified” training data after discarding its predicted “bad”
training samples.

Table 6 reports the performance of the networks in the aforementioned setting. It is clear
that the OLE-GRSVNet achieves much better test performance, the reason for which is that it

A DATA-DEPENDENT REGULARIZATION FRAMEWORK FOR INTRINSIC PATTERN LEARNING 15

Testing accuracy (%) when trained on 10% of the entire data

Dataset Architecture Softmax Softmax+wd Softmax+OLE OLE-GRSVNet

MNIST LeNet 98.00± 0.06 98.10± 0.09 98.39± 0.09 98.44± 0.10

SVHN VGG-11 85.75± 0.26 85.99± 0.25 86.72± 0.29 88.16± 0.27

CIFAR VGG-11 61.67± 0.24 62.54± 0.20 62.45± 0.17 66.66± 0.22

CIFAR ResNet-0.01 44.44± 0.23 47.73± 0.26 46.55± 0.32 57.23± 0.21

CIFAR ResNet-0.1 49.21± 0.24 50.39± 0.29 49.31± 0.32 60.50± 0.33

Testing accuracy (%) when trained on 20% of the entire data

Dataset Architecture Softmax Softmax+wd Softmax+OLE OLE-GRSVNet

MNIST LeNet 98.48± 0.02 98.56± 0.07 98.81± 0.12 98.84± 0.04

SVHN VGG-11 88.72± 0.20 88.83± 0.19 89.84± 0.21 90.78± 0.23

CIFAR VGG-11 68.70± 0.14 68.99± 0.16 68.84± 0.21 74.50± 0.17

CIFAR ResNet-0.01 55.20± 0.24 55.87± 0.26 55.73± 0.27 66.28± 0.24

CIFAR ResNet-0.1 59.50± 0.31 63.30± 0.29 60.67± 0.38 67.62± 0.26

Testing accuracy (%) when trained on 40% of the entire data

Dataset Architecture Softmax Softmax+wd Softmax+OLE OLE-GRSVNet

MNIST LeNet 98.93± 0.10 98.99± 0.02 99.14± 0.06 99.17± 0.02

SVHN VGG-11 90.84± 0.16 91.14± 0.21 91.99± 0.18 92.83± 0.25

CIFAR VGG-11 74.37± 0.22 74.79± 0.17 75.21± 0.24 79.92± 0.14

CIFAR ResNet-0.01 63.80± 0.14 64.23± 0.19 64.55± 0.19 74.29± 0.21

CIFAR ResNet-0.1 73.20± 0.22 74.55± 0.31 73.57± 0.41 77.88± 0.38

Table 5: Testing accuracies when the networks are trained on a small fraction of the entire datasets. The means
and standard deviations after three independent trials are reported. ResNet-0.01 and ResNet-0.1, respectively,
denote the results of the DNNs with the ResNet baseline architecture trained with the initial learning rate 0.01
and 0.1.

correctly detects part of the corrupted training data by refusing to memorize them through the
first round of training. On the contrary, all other networks suffer from low test accuracy by
(over)fitting the “bad” training samples.

We do want to mention that the OLE-GRSVNet is not able to perfectly detect all corrupted
labels in the training data, i.e., it still can “memorize” some “bad” training samples. This is
especially the case when baseline architectures with huge capacities are trained on complicated
datasets, e.g., CIFAR. We believe this is unavoidable because of the rich information intrinsic
in such datasets.

7. Conclusion and future work. We proposed a potential framework, GRSVNet, for data-
dependent DNN regularization. The core idea is the self-validation of the enforced geometry
on a separate batch using a validation loss consistent with the geometric loss, so that the

16 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

Testing accuracy (%) when trained with 40% corrupted labels

Dataset Architecture Softmax Softmax+wd Softmax+OLE OLE-GRSVNet

MNIST CNN-5 76.26± 0.31 77.69± 0.33 79.23± 0.29 85.13± 0.41

SVHN CNN-5 68.21± 0.28 67.70± 0.33 68.79± 0.39 85.24± 0.52

CIFAR CNN-5 54.39± 0.42 54.08± 0.28 55.64± 0.33 61.14± 0.23

Table 6: Testing accuracies when the networks are trained with 40% corrupted labels. The means and standard
deviations after three independent trials are reported. See subsection 6.4 for the detailed experimental set-up.

predicted label distribution has a meaningful geometric interpretation. In particular, we
study a special case of GRSVNet, the OLE-GRSVNet, which is capable of producing highly
discriminative features: samples from the same class belong to a low-dimensional subspace, and
the subspaces for different classes are orthogonal. When trained on benchmark datasets with
real labels, OLE-GRSVNet achieves better test accuracy when compared to DNNs with different
regularizations sharing the same baseline architecture. More importantly, unlike conventional
DNNs, OLE-GRSVNet refuses to memorize and overfit the training data when trained on
random labels or random data. This suggests that OLE-GRSVNet effectively reduces the
memorizing capacity of DNNs, and it only extracts intrinsically learnable patterns from the
data.

Although we have mainly focused on the special case of the GRSVNet framework where
the geometric constraint is orthogonal low-dimensional subspaces, any consistent geome-
try/validation pair can fit into this potential framework. For example, we can enforce the
features to sample low dimensional manifolds as in [29], and choose a smooth manifold interpo-
lation function for label propagation as the consistent validation loss. Moreover, the similar
idea of imposing geometry consistent validation can be extended to other vision tasks such as
motion analysis and depth estimation.

We provided some intuitive explanation as to why GRSVNet generalizes well on real data
and refuses overfitting random data, but there are still open questions to be answered. For
example, what is the minimum representational capacity of the baseline DNN (i.e., number
of layers and number of units) to make even GRSVNets trainable on random data? Or is it
because of the learning algorithm (SGD) that prevents GRSVNets from learning a decision
boundary that is too complicated for random samples? Moreover, we still have not answered
why conventional DNNs, while fully capable of memorizing random data by brute force, typically
find generalizable solutions on real data. These questions will be the focus of our future work.

Appendix A. Proof of Theorem 3.1. It suffices to prove the case when K = 2, as the
case for larger K can be proved by induction. In order to simplify the notation, we restate the
original theorem for K = 2:

Theorem A.1. Suppose A ∈ RN×m and B ∈ RN×n are two matrices of the same row
dimension, and [A,B] ∈ RN×(m+n) is the concatenation of A and B. Let ‖ · ‖∗ be the nuclear
norm of a matrix defined as

‖A‖∗ = Tr (|A|) , where |A| = (A∗A)
1
2 .(A.1)

A DATA-DEPENDENT REGULARIZATION FRAMEWORK FOR INTRINSIC PATTERN LEARNING 17

Then we have

‖[A,B]‖∗ ≤ ‖A‖∗ + ‖B‖∗,(A.2)

Moreover, the equality holds if and only if A∗B = 0, i.e., the column spaces of A and B are
orthogonal.

Proof. Let
[

E G
G∗ F

]
=

[
A∗A A∗B
B∗A B∗B

] 1
2

= |[A,B]| be a symmetric positive semidefinite

matrix. We have
|A|2 = A∗A = E2 + GG∗

|B|2 = B∗B = F2 + G∗G

A∗B = EG + GF.

(A.3)

Suppose {ai}mi=1, {bi}ni=1 are the orthonormal eigenvectors of |A|, |B|, respectively, then

‖|A|ai‖2 =
〈
|A|2ai,ai

〉
=
〈
(E2 + GG∗)ai,ai

〉
= ‖Eai‖2 + ‖G∗ai‖2,(A.4)

‖|B|bi‖2 =
〈
|B|2bi, bi

〉
=
〈
(F2 + G∗G)bi, bi

〉
= ‖Fbi‖2 + ‖Gbi‖2.(A.5)

We thus have the following inequality chain that proves (A.2)

‖A‖∗ + ‖B‖∗ = Tr(|A|) + Tr(|B|) =
m∑
i=1

〈|A|ai,ai〉+
n∑
i=1

〈|B|bi, bi〉(A.6)

=
m∑
i=1

‖|A|ai‖+
n∑
i=1

‖|B|bi‖

=
m∑
i=1

(
‖Eai‖2 + ‖G∗ai‖2

) 1
2 +

n∑
i=1

(
‖Fbi‖2 + ‖Gbi‖2

) 1
2

≥
m∑
i=1

‖Eai‖+
n∑
i=1

‖Fbi‖ ≥
m∑
i=1

〈Eai,ai〉+
n∑
i=1

〈Fbi, bi〉

= Tr(E) + Tr(F) = Tr(|[A,B]|) = ‖[A,B]‖∗
We next show that the equality holds if and only if A∗B = 0.

• If A∗B = 0, then

‖[A,B]‖∗ = Tr(|[A,B]|) = Tr

([
A∗A 0

0 B∗B

] 1
2

)
= Tr

([
|A| 0
0 |B|

])
(A.7)

= Tr(|A|) + Tr(|B|) = ‖A‖∗ + ‖B‖∗.

• If ‖[A,B]‖∗ = ‖A‖∗ + ‖B‖∗, then both of the inequalities in the chain (A.6) must be
equalities. Note that the first inequality is an equality only if G = 0. This combined
with the last equation in (A.3) implies

A∗B = EG + GF = 0(A.8)

18 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

Appendix B. Proof of Theorem 3.2.

Proof. First, l is defined in equation (3.6) as

l(X,Y) = l([Xg,Xv], [Yg,Yv]) = lg(Z
g) + λlv(Y

v, Ŷv).(B.1)

The nonnegativity of lg(Zg) is guaranteed by Theorem 3.1. The validation loss lv(Yv, Ŷv) is
also nonnegative since it is the average (over the validation batch) of the cross entropy losses:

lv(Y
v, Ŷv) =

1

|Bv|
∑
x∈Xv

H(δy, ŷ) = − 1

|Bv|
∑
x∈Xv

log ŷy.(B.2)

Therefore l = lg + λlv is also nonnegative.
Next, for a given λ > 0, l(X,Y) obtains its minimum value zero if and only if both lg(Zg)

and lv(Yv, Ŷv) are zeros.
• By Theorem 3.1, lg(Zg) = 0 if and only if span(Zgc)⊥ span(Zgc′),∀c 6= c′.
• According to (B.2), lv(Yv, Ŷv) = 0 if and only if ŷ(x) = δy, ∀x ∈ Xv, i.e., for every
x ∈ Xv

c , its feature z = Φ(x; θ) belongs to span(Zgc).
At last, we want to prove that if λ > 0, and Xv contains at least one sample for each class,

then rank(span(Zgc)) ≥ 1 for any c ∈ {1, . . . ,K}.
If not, then there exists c ∈ {1, . . . ,K} such that rank(span(Zgc)) = 0. Let x ∈ Xv be a

validation datum belonging to class y = c. The predicted probability of x belonging to class c
is defined in (3.4):

ŷc = P(x ∈ c) ,
〈
z,

projc(z)

max (‖projc(z)‖, ε)

〉/ K∑
c′=1

〈
z,

projc′(z)

max (‖projc′(z)‖, ε)

〉
= 0.(B.3)

Thus we have

l ≥ λlv = − λ

|Bv|
∑
x∈Xv

log ŷy ≥ −
λ

|Bv|
log ŷ(x)c = +∞(B.4)

Appendix C. Proof of Theorem 5.1. As mentioned in subsection 5.1, we assume for
simplicity that m ≥ n. We first need the following lemma.

Lemma C.1. Let A ∈ Rm×n be a rank-s matrix, and let A = U(1)Σ(1)V(1)∗ be the compact
SVD of A, i.e., U(1) ∈ Rm×s,Σ(1) ∈ Rs×s,V(1) ∈ Rn×s, then the subdifferential of the nuclear
norm at A is:

∂‖A‖∗ =
{

U(1)V(1)∗ + Ũ(2)W̃Ṽ(2)∗
}
,(C.1)

where Ũ(2) ∈ Rm×(n−s), Ṽ(2) ∈ Rn×(n−s), W̃ ∈ R(n−s)×(n−s) satisfy that the columns of Ũ(2)

and Ṽ(2) are orthonormal, span(U(1))⊥ span(Ũ(2)), span(V(1))⊥ span(Ṽ(2)), and ‖W̃‖2 ≤ 1.

Remark C.2. Note that Ũ(2) ∈ Rm×(n−s) and Ṽ(2) ∈ Rn×(n−s) are used in Lemma C.1
instead of U(2) ∈ Rm×s and V(2) ∈ Rn×s in (5.1). The reason is that Ũ(2) and Ṽ(2) corre-
spond to the reduced SVD of the matrix A, and they are thus more suitable for numerical
implementation.

A DATA-DEPENDENT REGULARIZATION FRAMEWORK FOR INTRINSIC PATTERN LEARNING 19

Proof. Based on (5.1), we only need to show the following two sets are identical:

D1 =
{

U(1)V(1)∗ + U(2)WV(2)∗ : ∀W ∈ R(m−s)×(n−s) with ‖W‖2 ≤ 1
}

(C.2)

D2 =
{

U(1)V(1)∗ + Ũ(2)W̃Ṽ(2)∗ : Ũ(2), Ṽ(2),W̃ specified in the lemma
}

(C.3)

On one hand, let d = U(1)V(1)∗ + U(2)WV(2)∗ ∈ D1, and let U(2)W = ŪΣ̄V̄∗ be the
reduced SVD of U(2)W ∈ Rm×(n−s), i.e., Ū ∈ Rm×(n−s), Σ̄ ∈ R(n−s)×(n−s), V̄ ∈ R(n−s)×(n−s).
Then we can set Ũ(2) = Ū, W̃ = Σ̄V̄∗, and Ṽ(2) = V(2). It is easy to check that Ũ(2), Ṽ(2),W̃
satisfy the conditions in the lemma, and

d = U(1)V(1)∗ + Ũ(2)W̃Ṽ(2)∗ ∈ D2(C.4)

On the other hand, let d = U(1)V(1)∗ + Ũ(2)W̃Ṽ(2)∗ ∈ D2, where Ũ(2), Ṽ(2),W̃ satisfy
the conditions in the lemma. Let Ũ(2) = U(2)P and Ṽ(2) = V(2)Q, where P ∈ R(m−s)×(n−s)

and Q ∈ R(n−s)×(n−s) have orthonormal columns. After setting W = PW̃Q∗, we have

Ũ(2)W̃Ṽ(2)∗ = U(2)PW̃Q∗V(2)∗ = U(2)WV(2)∗,(C.5)

where ‖W‖2 ≤ 1. Therefore,

d = U(1)V(1)∗ + Ũ(2)W̃Ṽ(2)∗ = U(1)V(1)∗ + U(2)WV(2)∗ ∈ D1(C.6)

Now we go on to prove Theorem 5.1.

Proof. Let rank(A) = s, and we split the computed singular vectors into two parts: Uε =
[U(1)ε,U(2)ε], Vε = [V(1)ε,V(2)ε], where U(1)ε ∈ Rm×s, U(2)ε ∈ Rm×(n−s),V(1)ε ∈ Rn×s, and
V(2)ε ∈ Rn×(n−s). By the backward stability of SVD [6, 8], we have ‖U(1) −U(1)ε‖2 = O(ε/η),
‖V(1) −V(1)ε‖2 = O(ε/η), and there exists Ũ(2), Ṽ(2) satisfying the condition in the lemma
and ‖Ũ(2) −U(2)ε‖2 = O(ε/η), ‖Ṽ(2) −V(2)ε‖2 = O(ε/η).

Because of the lemma, we have (U(1)V(1)∗ + Ũ(2)Ṽ(2)∗) ∈ ∂‖A‖∗, and

d(UεVε∗, ∂‖A‖∗) ≤ ‖UεVε∗ −
(
U(1)V(1)∗ + Ũ(2)Ṽ(2)∗

)
‖2

= ‖
(
U(1)εV(1)ε∗ + U(2)εV(2)ε∗

)
−
(
U(1)V(1)∗ + Ũ(2)Ṽ(2)∗

)
‖2

≤ ‖
(
U(1)ε −U(1)

)
V(1)ε∗‖2 + ‖U(1)

(
V(1)ε∗ −V(1)∗

)
‖2

+ ‖
(
U(2)ε − Ũ(2)

)
V(2)ε∗‖2 + ‖Ũ(2)

(
V(2)ε∗ − Ṽ(2)∗

)
‖2

= O(ε/η)(C.7)

Acknowledgments. The authors would like to thank José Lezama for providing the code
of OLE [15]. Work partially supported by NSF, DoD, NIH, and Google.

REFERENCES

20 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

[1] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj,
A. Fischer, A. Courville, Y. Bengio, and S. Lacoste-Julien, A closer look at memorization in
deep networks, in Proceedings of the 34th International Conference on Machine Learning, D. Precup
and Y. W. Teh, eds., vol. 70 of Proceedings of Machine Learning Research, International Convention
Centre, Sydney, Australia, 06–11 Aug 2017, PMLR, pp. 233–242.

[2] P. L. Bartlett and S. Mendelson, Rademacher and gaussian complexities: Risk bounds and structural
results, Journal of Machine Learning Research, 3 (2002), pp. 463–482.

[3] O. Bousquet and A. Elisseeff, Stability and generalization, Journal of machine learning research, 2
(2002), pp. 499–526.

[4] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, Person re-identification by multi-channel
parts-based cnn with improved triplet loss function, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 1335–1344.

[5] S. Chopra, R. Hadsell, and Y. LeCun, Learning a similarity metric discriminatively, with application
to face verification, in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, vol. 1, IEEE, 2005, pp. 539–546.

[6] J. W. Demmel, Applied numerical linear algebra, vol. 56, Siam, 1997.
[7] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in

Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010,
pp. 249–256.

[8] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3, JHU press, 2012.
[9] R. Hadsell, S. Chopra, and Y. LeCun, Dimensionality reduction by learning an invariant mapping,

in Computer vision and pattern recognition, 2006 IEEE computer society conference on, vol. 2, IEEE,
2006, pp. 1735–1742.

[10] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[11] J. Hu, J. Lu, and Y.-P. Tan, Discriminative deep metric learning for face verification in the wild, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1875–1882.

[12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, Densely connected convolutional
networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 4700–4708.

[13] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images, tech. report,
Citeseer, 2009.

[14] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and
L. D. Jackel, Handwritten digit recognition with a back-propagation network, in Advances in neural
information processing systems, 1990, pp. 396–404.

[15] J. Lezama, Q. Qiu, P. Musé, and G. Sapiro, OLE: Orthogonal low-rank embedding, a plug and play
geometric loss for deep learning, in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2018.

[16] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, Reading digits in natural
images with unsupervised feature learning, in NIPS workshop on deep learning and unsupervised
feature learning, vol. 2011, 2011, p. 5.

[17] T. Papadopoulo and M. I. A. Lourakis, Estimating the jacobian of the singular value decomposition:
Theory and applications, in Computer Vision - ECCV 2000, Berlin, Heidelberg, 2000, Springer Berlin
Heidelberg, pp. 554–570.

[18] T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi, General conditions for predictivity in learning
theory, Nature, 428 (2004), p. 419.

[19] Q. Qiu and G. Sapiro, Learning transformations for clustering and classification, The Journal of Machine
Learning Research, 16 (2015), pp. 187–225.

[20] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization, SIAM Review, 52 (2010), pp. 471–501.

[21] F. Schroff, D. Kalenichenko, and J. Philbin, Facenet: A unified embedding for face recognition and
clustering, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 815–823.

[22] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition,

A DATA-DEPENDENT REGULARIZATION FRAMEWORK FOR INTRINSIC PATTERN LEARNING 21

arXiv preprint arXiv:1409.1556, (2014).
[23] Y. Sun, Y. Chen, X. Wang, and X. Tang, Deep learning face representation by joint identification-

verification, in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds., Curran Associates, Inc., 2014, pp. 1988–1996.

[24] V. Vapnik, Statistical learning theory. 1998, Wiley, New York, 1998.
[25] G. A. Watson, Characterization of the subdifferential of some matrix norms, Linear algebra and its

applications, 170 (1992), pp. 33–45.
[26] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, A discriminative feature learning approach for deep face

recognition, in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, eds.,
Cham, 2016, Springer International Publishing, pp. 499–515.

[27] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, Deep Learning via Semi-supervised Embedding,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 639–655.

[28] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep learning requires
rethinking generalization, International Conference on Learning Representations, (2017).

[29] W. Zhu, Q. Qiu, J. Huang, R. Calderbank, G. Sapiro, and I. Daubechies, LDMNet: Low
dimensional manifold regularized neural networks, in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2018.

	Introduction
	Related work
	GRSVNet and its special case: OLE-GRSVNet
	OLE loss
	OLE-GRSVNet

	Two toy experiments
	Implementation details of OLE-GRSVNet
	Backward propagation of the OLE loss
	Forward and backward propagation of Zg(U1, …, UK)

	Experimental results
	Training details
	Testing/training performance when trained on the entire datasets with real or random labels
	Testing performance with limited training data
	Testing performance with corrupted labels

	Conclusion and future work
	Appendix A. Proof of thm:lg
	Appendix B. Proof of thm:global-min
	Appendix C. Proof of thm:stability
	Acknowledgments

