Recall that given a (periodic) function $f : T \to C$, its Fourier series is given by
\[f(x) = \frac{1}{\sqrt{2\pi}} \sum_{k=-\infty}^{\infty} \hat{f}(k) e^{ikx}, \] where
\[\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) e^{-ikx} \, dx. \]

1. Consider the Heat equation on an infinitely long rectangular plate, namely
\[u_t = u_{xx} + u_{yy}, \quad \text{for } t > 0, \quad -1 < x < 1, \quad 0 < y, \]
with boundary conditions (BCs)
\[u(t, \pm 1, y) = u(t, x, \infty) = 0 \quad \text{and} \quad u(t, x, 0) = f(x), \]
where $f(x)$ is a given temperature at the short, nearby edge of the plate. Assume that the data f is symmetric in x:
\[f(-x) = f(x). \]

(a) Argue informally or physically that as $t \to \infty$, the solution approaches a steady state $U(x,y)$, and write down the PDE and boundary conditions for the steady state; sketch the domain and label the BCs.

(b) Use separation of variables, $U(x,y) = F(x)G(y)$, to solve the steady equation and BCs, noting that $F(x) = \cos(kx)$ satisfies the BCs for appropriate k.

(c) Find the steady solution for any boundary data of the form
\[f(x) = \sum_{k=1}^{N} a_k \cos\left(\frac{(2k-1)\pi}{2}x\right). \]

Controversy arose when Fourier took a limit as $N \to \infty$.

2. We construct a C^∞ “bump function” on $B_1(0) \subset \mathbb{R}^d$, and corresponding kernel, as follows:

(a) Show that the function $h(x) = e^{-1/x} \chi_{(0,\infty)}(x)$ is a monotone, C^∞ bounded function on \mathbb{R}. What does this tell us about the function $\phi(x) = h(1-x^2) = e^{1/(1-x^2)} \chi_{(-1,1)}$?

(b) Use ϕ to define $\psi : \mathbb{R}^d \to \mathbb{R}$ which is non-negative, C^∞, supported on $B_1(0)$ and satisfies $\int_{\mathbb{R}^d} \psi = 1$. [Hint: use radial symmetry but NOT polar decomposition!]

(c) Now for $\delta > 0$, define $K_\delta(x) = \delta^d \psi(x/\delta)$, and show that K_δ is a (strong) approximate identity.

3. Show that the Heat kernel in \mathbb{R}^d,
\[H_\delta(x) = \frac{1}{(4\pi t)^{d/2}} e^{-|x|^2/4t}, \]
is a strong approximate identity with parameter $\delta = \sqrt{t}$. Also verify that for $t > 0$, it satisfies the heat equation, $u_t = \Delta u$.
4. The Dirichlet kernel is given by

\[D_N(x) = \frac{\sin \left(\left(N + \frac{1}{2} \right) x \right)}{\sin \left(\frac{x}{2} \right)}, \quad \text{for} \quad x \in \mathbb{T}. \]

(a) Show that \(D_N \) satisfies two properties of an approximation of the identity, but not the third.

(b) Compute \(D_N \ast f \) and interpret it in terms of the Fourier series of \(f \).

Hint: show that

\[D_N(x) = \frac{1}{2\pi} \sum_{k=-N}^{N} e^{ikx} = \frac{1}{2\pi} \left(1 + \sum_{k=1}^{N} \cos(kx) \right), \]

by trig identities or by manipulating a finite geometric series. It may also be helpful to plot \(D_N \).

5. The Fejér kernel is given by the Cesàro sum of Dirichlet kernels, namely

\[F_N(x) = \frac{1}{N} \sum_{k=0}^{N-1} D_N(x). \]

(a) Show that, for \(x \neq 0 \),

\[F_N(x) = \frac{1}{2\pi N} \frac{\sin^2 \left(\frac{Nx}{2} \right)}{\sin^2 \left(\frac{x}{2} \right)} = \frac{1}{2\pi} \frac{1 - \cos(Nx)}{1 - \cos(x)}. \]

(b) Show that \(F_N \) is an approximation of the identity.

(c) Compute \(F_N \ast f \) and interpret it as the Cesàro sum of Fourier series.

6. Show that the following three definitions of continuity at \(x \in X \) of a map \(f : X \to Y \) of metric spaces are equivalent:

- Given \(\epsilon > 0 \), there exists \(\delta > 0 \) such that if \(d_X(x, z) < \delta \), then \(d_Y(f(x), f(z)) < \epsilon \);
- For any sequence \(x_n \to x \), we have \(f(x_n) \to f(x) \);
- For any open set \(G \subset Y \) containing \(f(x) \), the pre-image \(f^{-1}(G) \subset X \) contains an open neighborhood of \(x \).

7. Carry out the construction of the completion of a metric space \(X \):

(a) Define the relation \(\sim \) of the set \(\mathbf{C} = \{ \langle x^k \rangle \} \) of Cauchy sequences in \(X \) by

\[\{x^k\} \sim \{y^k\} \iff \lim_{k \to \infty} d(x^k, y^k) = 0, \]

and check it’s an equivalence relation. Set \(\bar{X} = \mathbf{C}/\sim \), the set of equivalence classes.

(b) Define \(\bar{d} \) on \(\bar{X} \) by

\[\bar{d}(\langle x^k \rangle, \langle y^k \rangle) = \lim_{k \to \infty} d(x^k, y^k), \]

and show that \(\bar{d} \) is well-defined and a metric.
(c) Define the map \(\iota : X \to \bar{X} \) by \(\iota(x) = \langle x \rangle \), the constant sequence, and show that \(\iota \) is an isometry. Moreover, the image \(\iota(X) \) is dense in \(\bar{X} \).

(d) Use a diagonal argument to show that \(\bar{X} \) is complete.

You may skip some details as appropriate, but try to avoid reference to the text!

8. Show that Bolzano-Weierstrass (every bounded sequence has a convergent subsequence) implies Heine-Borel (a set is sequentially compact iff it is closed and bounded) in \(\mathbb{R}^d \) (\(d \) finite!).

9. Prove Urysohn’s lemma: this states that if \(F \subset G \subset \mathbb{R}^d \), with \(F \) closed and \(G \) open, then there exists a continuous separating function \(f : \mathbb{R}^d \to [0, 1] \), which satisfies

\[
f(x) = 1, \quad x \in E, \quad \text{and} \quad f(x) = 0, \quad x \notin G.
\]

[Hint: consider \(f(x) = d(x, K_1)/(d(x, K_1) + d(x, K_2)) \) for appropriate sets \(K_i \).]

10. A series \(\sum x_j \) in a normed vector space space \(X \) is absolutely convergent if the real series \(\sum \|x_j\| \) converges in \(\mathbb{R} \). Show that \(X \) is a Banach space if and only if every absolutely convergent series \(\{x_j\} \) converges in \(X \).
11. Recall that in class we defined the surface measure on the unit sphere to be the unique measure \(\Theta \) such that Lebesgue measure \(m = \rho \times \Theta \), where \(\rho = r^{d-1} dr \) on \((0, \infty)\). We calculate the surface area \(\omega_d \) of the \(d-1 \) sphere \(S^{d-1} \subset \mathbb{R}^d \), as follows:

(a) For each positive integer \(d \) and \(a > 0 \), define \(I_d(a) = \int_{\mathbb{R}^d} e^{-a|x|^2} \, dx \). Use Fubini’s theorem to show that for each \(d \), we have \(I_d(a) = (I_1(a))^d \).

(b) Use polar coordinates to calculate \(I_2(a) \), and conclude that for each \(d \), we have \(I_d(a) = (\pi/a)^{d/2} \).

(c) By using spherical coordinates on \(\mathbb{R}^d \), derive the equality \(I_d(1) = \Theta(S^{d-1}) \int_0^\infty g(r) \, dr \) for appropriate function \(g(r) \), and by expressing \(\int g \) in terms of the gamma function

\[
\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} \, dt, \quad z > 0,
\]

conclude that \(\omega_d = \Theta(S^{d-1}) = 2\pi^{d/2}/\Gamma(d/2) \).

12. Recall the heat kernel

\[
K_h(x) = \frac{1}{\sqrt{\pi h}} e^{-x^2/h}
\]

is an approximation of the identity on \(\mathbb{R} \) and that \(K_h \ast f \to f \) uniformly for any \(f \) supported in \([-R, R] \). For such \(f \), we can write

\[
K_h \ast f(x) = \frac{1}{\sqrt{\pi h}} \int_{-R}^R f(u) e^{-(x-u)^2/h} \, du.
\]

Use the approximation \(e^t \approx \sum_{k=0}^N t^k/k! \), uniform on compact sets, to approximate \(K_h \ast f \) by a polynomial of degree \(2N \). Now given fixed interval \([a, b] \), choose \(R \) such that \([a, b] \subset (-R, R) \) and find a continuous \(\tilde{f} : [-R, R] \) which extends \(f \). Then the restriction of \(K_h \ast \tilde{f} \) to \([a, b] \) is a uniform polynomial approximation of \(f \) on \([a, b] \). This is essentially Weierstrass’ proof of the polynomial approximation theorem.

13. Prove that the set \(\mathcal{L}_K \) of Lipschitz continuous functions on \([a, b] \) with Lipschitz constant less than or equal to \(K \) is compact in \(C([a, b]) \).

14. Let \(w : [0, 1] \to \mathbb{R} \) be a non-negative, continuous function. Define the weighted supnorm \(\| \cdot \|_w \) on \(C([0, 1]) \) by \(\| f \|_w = \sup_x |f(x) w(x)| \). If \(w(x) > 0 \) for \(x \in [0, 1] \), show that \(\| \cdot \|_w \) is equivalent to the usual supnorm on \(C([0, 1]) \), that is, there exist positive constants \(c \) and \(C \) such that

\[
c \| f \| \leq \| f \|_w \leq C \| f \|, \quad \text{for all} \quad f \in C([0, 1]),
\]

so the corresponding topologies are the same. On the other hand, if \(w(x) = x \), show that \(\| \cdot \|_w \) is not equivalent to the usual supnorm. Is \(C([0, 1]) \) with norm \(\| \cdot \|_w \) with \(w(x) = x \) a Banach space? Prove or give a counter-example.

15. Suppose that the sequence \((f_n) \subset C([0, 1]) \) is equicontinuous and \(f_n \to f \) pointwise. Show that \(f \) is continuous.

16. We briefly analyze the Babylonian (or Greek?!?) method for approximating square roots. Given a guess \(x_k \) for \(\sqrt{a} \), if \(x_k \) under- (respectively over-) estimates \(\sqrt{a} \), then \(a/x_k \) over-
(resp. under-) estimates it; it follows that the average of these should be a better estimate. This yields the iteration

\[x_{k+1} = Tx_k, \quad \text{where} \quad Tx = \frac{1}{2}(x + \frac{a}{x}), \]

and \(T \) is regarded as a map on \((0, \infty)\).

(a) Apply Newton’s method to the function \(f(x) = x^2 - a \), to get the same iteration, and show directly that there is a unique fixed point.

(b) Show that \(T \) is contractive on \([k\sqrt{a}, \infty)\) if and only if \(k > 1/\sqrt{3} \), and calculate the corresponding contraction constant \(\rho \).

(c) Show that for any \(x > 0 \), \(Tx - \sqrt{a} \geq 0 \), so we can take \(k = 1 \), for which \(\rho \) is minimized. Note that \(Tx_1 - Tx_2 = o(x_1 - x_2) \) near \(\sqrt{a} \), so we expect superlinear convergence.

(d) Setting \(e_k = x_k - \sqrt{a} \), show by induction that

\[\frac{e_{k+1}}{2\sqrt{a}} \leq \left(\frac{e_1}{2\sqrt{a}} \right)^{2^k}. \]

This is quadratic convergence, typical for (convergent) Newton methods.

17. Consider the (nonlinear) second order boundary value problem,

\[-u'' + \lambda \sin u = f(x), \quad x \in (a, b), \]
\[u(a) = 0, \quad u(b) = 0, \]

where \(f \in C([a, b]) \) is given, and we wish to find \(u = u(x) \). Integrate twice and use the boundary conditions to reformulate this as a nonlinear integral equation,

\[u(x) = T_n(u) + T_l(f), \]

where \(T_n \) and \(T_l \) are integral operators. Beginning with \(u_0 = 0 \), write out the first two iterates of a sequence of approximations. Also show that this iteration converges uniformly, provided \(\lambda \) is small enough.
18. Let X and Y be normed linear spaces, and denote the space of bounded maps from X to Y by $B(X,Y)$. Show that $B(X,Y)$ is a normed linear space and that if Y is complete, the so is $B(X,Y)$.

19. Prove Young’s inequality: for $a, b > 0$,
\[ab \leq \frac{a^p}{p} + \frac{b^q}{q}, \quad \text{provided } \frac{1}{p} + \frac{1}{q} = 1, \]
and use this to reprove Hölder’s inequality.
[Hint: For Young, use Jensen’s inequality with $\log t$; then choose $a = f(x)/A, b = g(x)/B$ for appropriate scalings.]

23. Show that a linear functional on a vector space X is bounded iff its kernel is closed.

24. Let X be a Banach space and let $T \in B(X,X)$.

(a) If I is the identity operator and $\|I - T\| < 1$, show that T is invertible (use a Neumann series).

(b) If T is invertible and $\|S - T\| < 1/\|T^{-1}\|$, show that S is invertible. Thus the set of invertible operators is open in $B(X,X)$.

25. We define quotient spaces as follows. If M is a closed subspace of a vector space X, say $x \sim y$ iff $x - y \in M$. Then \sim is an equivalence relation and we denote the equivalence of x by $x + M$ and the set of these by $X/M = \{ x + M \mid x \in X \}$.

(a) Define linear operations on X/M and norm $\|x + M\| = \inf\{\|x + y\| \mid y \in M\}$, so that X/M becomes a normed vector space. Moreover, if X is Banach, so is X/M.

(b) Given $\epsilon > 0$, there exists $x \in X$ with $\|x\| = 1$, such that $\|x + M\| \geq 1 - \epsilon$. Also, the projection $\pi : X \to X/M$ given by $\pi(x) = x + M$ has norm 1.

(c) If $\|\cdot\|$ is a seminorm (ie $\|x\| = 0$ for $x \neq 0$ is allowed), then this construction for $M = \{ x \in X \mid \|x\| = 0 \}$ turns X/M into a normed vector space.

26. For a convex set $K \subset X$, we defined the Minkowski gauge function by
\[p_K(x) = \inf \{ r \geq 0 \mid x \in rK \}. \]
Show that p_K satisfies the following conditions:

(a) $p_K(tx) = tp_K(x)$ for any $t \geq 0$;

(b) $p_K(\alpha x + (1 - \alpha)y) \leq \alpha p_K(x) + (1 - \alpha)p_K(y)$ for any $\alpha \in [0,1]$;

(c) $p_K(x) \leq 1$ for $x \in K$ and $p_K(x) \geq 1$ for $x \notin K$.

27. Prove that given a subspace Z of a normed vector space X and $y \in X$ with $\text{dist}(y,Z) = \delta$, there exists $\Lambda \in X^*$ satisfying
\[\|\Lambda\| \leq 1, \quad \Lambda(y) = \delta, \quad \text{and} \quad \Lambda(z) = 0 \quad \text{for all} \quad z \in Z. \]
28. Let X be a vector space and $P \subset X$ such that: (i) if $x, y \in P$ then $x + y \in P$; (ii) if $x \in P$ and $\lambda \geq 0$, then $\lambda x \in P$; and (iii) if $x \in P$ and $-x \in P$, then $x = 0$. Check that the relation \leq defined by $x \leq y$ iff $y - x \in P$ defines a partial ordering on X. Next, prove the Krein Extension Theorem: Suppose that M is a subspace of X, such that for each $x \in X$, there is a $y \in M$ satisfying $x \leq y$, and f is a linear functional on M such that $f(x) \geq 0$ for all $x \in P$, and $f|_M = f$. [Hint: consider $p(x) = \inf \{ f(y) \mid y \in M, \ x \leq y \}$.]

29. (a) Show that a (complex) normed vector space is an inner product space if and only if the parallelogram law holds:

$$\|a + b\|^2 + \|a - b\|^2 = 2\|a\|^2 + 2\|b\|^2.$$

[Hint: you need to find both real and imaginary parts of (x, y).]

(b) Show that $L^p[0, 1]$ can be realized as a Hilbert space only if $p = 2$.

31. Given an independent set $U = \{u_\alpha\}$ in a separable Hilbert space, use the Gram-Schmidt procedure to show that there is an orthonormal basis V such that $\text{Span}(U) = \text{Span}(V)$.

35. Let $H = L^2([\pi, \pi])$ be the Hilbert space of functions $F(e^{i\theta})$ on the unit circle, with inner product

$$(F, G) = \frac{1}{2\pi} \int_{-\pi}^\pi F(e^{i\theta}) G(e^{i\theta}) \, d\theta.$$

Using the mapping

$$\phi : \mathbb{R} \to S^1 \text{ given by } \phi(x) = \frac{i - x}{i + x}$$

of \mathbb{R} to the unit circle, show that:

(a) The map $U : H \to L^2(\mathbb{R})$ given by

$$U(F) = f, \text{ where } f(x) = \frac{1}{\sqrt{\pi(i + x)}} F \circ \phi(x)$$

is unitary.

(b) As a result,

$$\left\{ \frac{1}{\sqrt{\pi}} \left(\frac{i - x}{i + x} \right)^n \frac{1}{i + x} \right\}_{n \in \mathbb{Z}}$$

is an orthonormal basis for $L^2(\mathbb{R})$.

36. Show that any integrable function $f : \mathbb{R} \to \mathbb{R}$ which is polynomially bounded (that is, there is a polynomial $p(x)$ such that $|f(x)| \leq p(x)$ for all x) defines a tempered distribution. Does e^{ax} define a tempered distribution? Why or why not?
37. Consider the function \(f(x) = \log |x|, \; x \in \mathbb{R} \). Show that this defines a distribution and that its distributional derivative is \(\text{p.v.}(1/x) \).

38. Suppose that \(f \) are \(g \) are continuous on \((a,b)\), with \(Df = g \) as distributions. Show that for every \(x \in (a,b) \),

\[
\frac{f(x+h) - f(x)}{h} \to g(x) \quad \text{as} \quad h \to 0,
\]

as follows. Pick a bump function \(\psi(x) \in C^\infty_c \) which satisfies \(\int \psi = 1 \) and scale to get approximate identities \(\psi_\eta \) (i.e. \(\psi_\eta \to \delta \) as \(\eta \to 0 \)). For fixed \(x_0 \in (a,b) \), consider the test function

\[
\varphi_{h,\eta}(x) = \int_{-\infty}^{x} \psi_\eta(x_0 + h - y) - \psi_\eta(x_0 - y) \, dy,
\]

apply \(Df = g \), and take appropriate limits.

39. (a) Find distributional derivatives of all orders of the function

\[
g_p(x) = \begin{cases}
 x^p, & x \geq 0, \\
 0, & x < 0,
\end{cases}
\]

where \(p \) is a positive integer.

(b) Find the Fourier transforms of the Heaviside function \(H \) and Dirac mass \(\delta \), as tempered distributions.

(c) Use (a) and (b) to find the Fourier transform of the functions \(g_p \).

40. Use the Fourier transform to (formally) solve the heat equation,

\[
u_t = \epsilon \Delta u, \quad u(x, 0) = f(x),
\]

where \(\Delta \) is the Laplacian and \(x \in \mathbb{R}^d \). You should derive an integral expression for the solution \(u(x, t) \) in terms of the Fourier components \(\hat{f}(k) \) of the data. Don’t worry about convergence issues!