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We investigate a class of Hamiltonian particle systems and their stochastic behaviors. Using both

rigorous proof and numerical simulations, we show that the geometric configuration can

qualitatively change key statistical characteristics of the particle system, which are expected to be

retained by stochastic modifications. In particular, whether a particle system has an exponential

mixing rate or a polynomial mixing rate depends on whether the geometric setting allows a slow

particle being reached by adjacent fast particles. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4927300]

The derivation of Fourier’s law from microscopic

Hamiltonian principles is a major challenge to mathema-

ticians and physicists for the past over a century. Due to

the significant difficulty of studying deterministic

Hamiltonian models, one important approach is to ap-

proximate chaotic Hamiltonian dynamics by stochastic

processes. This paper is devoted to investigate statistical

properties and stochastic approximations of a billiard-

like microscopic heat conduction model proposed by

Bunimovich et al.4 We point out that the geometry of the

deterministic billiard-like model could lead to a slow rate

(polynomial) of mixing, which was overlooked by many

early studies. Through a series of analytical and numeri-

cal studies, we demonstrate the limitation of the stochas-

tic approximation that comes from some early studies. In

addition, we propose new rules of stochastic approxima-

tions and verified them numerically.

I. INTRODUCTION

Heat conduction in solids has been intensively studied

since the time of Joseph Fourier. For over a century, a major

challenge in statistical mechanics is the derivation of macro-

scopic heat conduction laws like Fourier’s law from

Hamiltonian microscopic dynamics. Up to now, limited rig-

orous results are known about Hamiltonian heat conduction

models.2,33 On the other hand, it is well known to mathema-

ticians and physicists that chaotic dynamics produce similar

statistics as stochastic processes (see Refs. 3, 7, 8, 12, 26, 32,

36, 38, and references therein). Therefore, one modification

is to randomize certain quantities and to turn deterministic

Hamiltonian dynamics into stochastic Markovian dynamics

while preserving key statistical properties.9,24,30 In this pa-

per, we address the behavior of stochastic modifications of a

class of locally confined interacting particle models. The

main goal of this paper is to illustrate that geometric configu-

rations of deterministic models can fundamentally change

many statistical characteristics, which are supposed to be

retained by their stochastic modifications.

Consider the following microscopic (Hamiltonian)

model for heat conduction, which is formed by a chain (or a

lattice) of locally confining cells in R2 like the one shown in

Figure 1. Each cell contains an identical rigid disk-shaped

particle. The diameter of the particle prevents it from passing

through the “bottleneck” between adjacent cells, but par-

ticles can collide with their neighbors. Therefore, despite the

absence of mass transport, kinetic energy can still be trans-

ported through particle-particle collisions. In addition, we

assume all particle-wall collisions and particle-particle colli-

sions being elastic. Under suitable conditions, the ergodicity

and strong chaotic properties of such locally confined parti-

cle system are rigorously proved in Ref. 4.

Therefore, it is natural to assume that the locally confined

particle system has a fast correlation decay, which rationalizes

a randomization of energy exchange at the cell-to-cell level.

In fact, it is the standard knowledge that chaotic billiard sys-

tems like the Lorentz gas have similar statistical properties as

random processes.5,6,25,36 Assume the locally confined particle

system is sufficiently chaotic such that its energy exchange

exhibits Poissonian statistics. This is to say, at the steady state

regime, conditioning on two nearest-neighbor particles carry-

ing energy E1 and E2, respectively, when starting from either

an energy exchange or the conditional steady state, the time

distribution to the next energy exchange has the same expo-

nential tail. The slope of this exponential tail, if exists, is

denoted by R(E1, E2) (see Section IV for details). In the pres-

ent paper, we name R(E1, E2) the stochastic energy exchange
rate as in Refs. 13 and 14. With additional assumptions of

rules of energy redistributions in energy exchanges, the

FIG. 1. A locally confined particle system.a)E-mail address: yaoli@cims.nyu.edu.
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locally confined particle system can be modified to a stochas-

tic heat conduction model like the KMP (Kipnis-Marchioro-

Presutti) model.24

Assume the existence of a stochastic energy exchange

rate R(E1, E2). We say, R(E1, E2)� f(E1, E2) for some func-

tion f(�,�), if there exist constants C1, C2 independent of E1

and E2 such that C1f(E1, E2)�R(E1, E2)�C2f(E1, E2). It

was derived non-rigorously in Ref. 14 that when the

“bottlenecks” between adjacent cells are sufficiently narrow

such that particle-particle collisions are rare, the energy

exchange rate R(E1, E2) satisfies RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
. See

the exact form of R(E1, E2) in Section VI and related works

in Refs. 13, 15–17. A number of mathematical results on sto-

chastic heat conduction models with or without energy

exchange with heat baths are based on the assumption that

RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
.19,29,34,35 For example, the spectral

gap of a closed heat conduction model (without heat bath)

was investigated in Ref. 19. Many of those theoretical results

will not hold if R(E1, E2) has other forms likeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfE1;E2g

p
. At the same time, there are also debates in

the physics literature about whether RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p

is universally valid. Some authors argue that very slow par-

ticles can play a significant role,27,28 while others think they

can be ignored because a slow particle appears in a suffi-

ciently small probability.18

In the present paper, we carefully investigate whether

such a stochastic energy exchange rate preserves the main

statistical characteristics of the locally confined particle sys-

tem. One important observation is that, the geometric config-

uration can qualitatively change main statistical features of

the energy exchange rate between consecutive cells. More

precisely, when one particle is very slow, whether it can be

hit by its neighbors can dramatically change its waiting time

distribution for the next particle-particle collision. If a slow

particle can always be “activated” by its faster neighbors,

then the stochastic energy exchange rate should primarily

depend on the kinetic energy of the faster particle. If, other-

wise, a slow particle can be out of reach of its neighbors and

will have to move to bottleneck areas by itself, then one

should expect that the kinetic energy of the slower particle

determines the stochastic energy exchange rate at the low

energy limit. This observation is confirmed by our studies, as

explained in the next paragraph.

A two-particle model is designed to elucidate this observa-

tion. It is chosen because (i) it is conceptually the same as the

inter-cell dynamics of general locally confined particle models

and (ii) it is simple enough to allow accurate numerical simula-

tions. Under the constraint E1þE2¼ 1, using a combination of

numerical simulations and rigorous proof, we show that

(A) If the geometric setting allows one particle to hide from

the other, that is, the small particle system, then
• An energy exchange rate R(E1, E2) exists. As E2

decreases, R(E1, E2) drops dramatically from �const

to �
ffiffiffiffiffi
E1

p
after a certain threshold (numerical result).

• At the thermal equilibrium, the waiting time distribu-

tion for the first particle-particle collision has a poly-

nomial tail at most �t�2 (rigorous result). In addition,

the lower bound �t�2 is sharp (numerical result).

• The rate of convergence to the equilibrium and the

rate of mixing are at most �t�2 (rigorous result). In

addition, the lower bound �t�2 is sharp (numerical

result).

(B) If one particle can always be reached by the other, that

is, the big particle system, then

• An energy exchange rate R(E1, E2) exists and is

strictly positive for all pairs (E1, E2) under the con-

straint E1þE2¼ 1 (numerical result).
• At the thermal equilibrium, the waiting time distribu-

tion for the first particle-particle collision has an ex-

ponential tail (numerical result).
• The rate of convergence and rate of mixing are both

exponential (numerical result).

We remark that in A, RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfE1;E2g

p
is

compatible with the rigorous result about the lower bound of

mixing rate. It is easy to check that at the steady state, E1

and E2 are uniformly partitioned. Therefore,

P½no energy exchange occurs before t� � t�2 ;

which implies that the mixing rate is at most t�2.

A continuous time Markov chain (CTMC) model is then

proposed to illustrate our results for the small particle sys-

tem. When one particle can hide from the other, the energy

exchange rate can be approximated by the first passage time

to a certain state of the CTMC model. By solving the CTMC

model explicitly, we show that there is a threshold M> 0

such that RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
when minfE1;E2g � M�1

and RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfE1;E2g

p
when minfE1;E2g � M�1.

This constant M can be roughly seen as the ratio of the whole

area to the “bottleneck area” in a confining cell.

Therefore, the validity of estimates RðE1;E2Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
in Ref. 14 depends on many issues. It is reason-

able if either the geometric setting completely prevents

all particles from hiding from their neighbors; or the effects

of low energy particles are negligible. We remark that

whether the effects of low energy particles can be neglected

depends on the order of taking limits, as will be explained

in Section VI. Otherwise, our numerical study suggests

RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfE1;E2g

p
as minfE1;E2g ! 0. In particu-

lar, in the studies of asymptotic properties like the rate of

mixing, the assumption RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
does not cor-

rectly capture main asymptotic statistical features, such as

the decay of correlation, of the original locally confined par-

ticle model. No matter how narrow the “bottleneck” is, these

properties in the deterministic system can still be very differ-

ent from the stochastic energy exchange system with a rate

function RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
, which may be extremely

hard to capture by numerical simulations.

This paper is organized in the following way. A simple

locally confined two-particle system is introduced in

Section II. Section III investigates the mixing rate, which

rigorously disproves the estimate RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
in

Ref. 14 for the small particle system. Our numerical simula-

tions in Section IV then suggest RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfE1;E2g

p
for those settings. A CTMC model is proposed in Section V

to further explain our numerical results. A comparison of
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our results and the result from Ref. 14 is provided in

Section VI. Remarks of numerical simulations are given in

Section VII. Section VIII is the conclusion.

II. MODEL DESCRIPTION

In this section, we introduce a simple two-particle sys-

tem as the model example that can both capture the essential

characteristics of the locally confined particle system and

facilitate our analysis.

Consider two cells in R2 that are formed by finite many

piecewise C3 curves and connected by a “bottleneck” open-

ing. Inside each cell is a rigid disk-shaped moving particle
with mass 2 and radius r. A particle can move freely until it

collides with either the cell boundary or the other particle.

All collisions are assumed to be elastic. We design the model

such that it has the following properties:

(1) Each particle is confined by a cell such that all trajecto-

ries of two particles are contained by two disjoint com-

pact sets, respectively.

(2) Particles can collide with each other without passing

through the “bottleneck” between cells.

(3) Particles do not rotate.

In addition, we assume that the locally confined particle

system is sufficiently chaotic such that each cell forms a

strongly chaotic billiard table. More precisely, in the absence

of one particle, we assume that the billiard map of the other

particle has an exponential correlation decay. We refer

Ref. 6 for details of relevant definitions and major results of

dynamic billiards.

Therefore, with the given initial locations and initial

velocities, moving particles can move, collide, and exchange

their kinetic energy. Kinetic energy of particles is denoted

by E1 and E2, respectively. The total kinetic energy is invari-

ant and assumed to be 1 throughout this paper.

Let X ¼ fðx1; x2Þ; ðv1; v2Þg be the state space of the

locally confined particle system, where xi 2 R2 and vi 2 R2

for i¼ 1, 2 denote the coordinates of particle center positions

and particle velocities, respectively. Then, it is clear that the

collection of all possible locations of (x1, x2) forms a

Lebesgue measurable set C 	 R2 
R2 and the collection of

all possible velocities (v1, v2) forms S
3
. The collection of all

possible locations of xi is denoted by Ci for i¼ 1, 2. C1 and

C2 are two disjoint compact subsets of R2 as assumed. Let

CC
1 ¼ fx1 2 C1 j 9x2 2 intðC2Þ such that jx1 � x2j ¼ 2rg

and define CC
2 analogously. A locally confined particle sys-

tem is called a big particle system if Ci ¼ CC
i for i¼ 1, 2 and

a small particle system if intðCinCC
i Þ 6¼ ; for i¼ 1, 2. The

main difference is that two particles can always collide with

each other in the big particle system, while a static particle

can be out of reach of the other particle in the small particle

system.

We fix also the following notations. Let Ut : X! X be

the billiard flow and Pt : X
 BðXÞ ! ½0; 1� be the transition

kernel of Ut, where BðXÞ represents the Borel algebra on

X. It is well known that Ut admits a Liouville measure

p :¼ ck4jC 
 ujS3 as its invariant probability measure, where

knjA is the restricted Lebesgue measure on A 	 Rn; ujS3 is

the surface area on S
3
, and c is a constant that is determined

by the geometry of the model. p is also the thermal

equilibrium.

The model example described in Figure 2 will be used

to illustrate our numerical results. We remark that we also

worked with other examples of the same type. This example

is chosen for the demonstration because (i) each cell forms a

strongly chaotic billiard table as all orbits have frequent col-

lisions with the dispersing parts of the boundary, that is, the

circles; (ii) the placement of disks allows us to have big par-

ticle systems and small particle systems with minimal

changes, and (iii) the relatively simple geometry simplifies

numerical simulations.

The model example is a locally confined particle system

on R2 that consists of eight circles with radius 1, two line

segments, and two moving particles. The coordinates of

centers of the circles are (0, 2), (2.5, 2), (3.5, 0), (2.5, �2),

(0, �2), (�2.5, �2), (�3.5, 0), and (�2.5, 2). The coordi-

nates of ends of two line segments are {(0, 1), (0, a)} and

{(0, �1), (0, �a)}, respectively, where 1
4
< a < 1 is a param-

eter. Both moving particles have radii (aþ �), where 0<�
� 1, so that they are trapped by the cells.

For illustration, we study one big particle system with

a¼ 0.99, �¼ 0.01 and one small particle system with

a¼ 0.35, �¼ 0.001 in our numerical simulations.

III. RATE OF CONVERGENCE AND MIXING

Rates of convergence to equilibrium and mixing are the

most important statistical characteristics of a deterministic

dynamical system, which are supposed to be preserved by

any stochastic approximations. In this section, we will show

that the small particle system has a polynomial rate of mix-

ing/convergence, while the big particle system has an expo-

nential rate of mixing/convergence.

For d> 0, define

Si
0ðdÞ ¼ fx 2 Ci j distðx; @ðCinCC

i ÞÞ � dg

for i¼ 1, 2 and

Si
t dð Þ ¼ x 2 X j xi 2 Si

0; jvij �
d
t

� �

FIG. 2. A 2-particle system model example: a¼ 0.35, �¼ 0.351.
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and StðdÞ ¼ S1
t ðdÞ [ S2

t ðdÞ. By the definition of the small par-

ticle system, there exists a d> 0 such that Si
0ðdÞ are well

defined for i¼ 1, 2. Hence, we drop the notation d from now

on for the sake of simplicity.

The following result is about the rate of convergence, in

which lPt indicates the push-forward measure of l by Ut.

Lemma 3.1. In any given small particle system, for any
probability measure k � p such that dk � ð1þ cÞdp on St0

for some constants c> 0 and t0> 0, there exists C0> 0 such
that

kkPt � pkTV �
C0

t2

for all t> t0. In particular, the mixing rate of Ut is at most
polynomial, that is, there exists a Borel set A 	 X such that

CA tð Þ :¼ sup
B2B Xð Þ

����
ð

A

Pt x;Bð Þp dxð Þ � p Að Þp Bð Þ
���� � p Að Þ � C0

t2

for all t> t0.

Proof. The proof uses the idea in Refs. 39 and 37. By

the definition of Bt, there exist constants t0 and C1 such that

p Stð Þ ¼
C1

t2

for any t� t0. Let a> (1� (1þ c)�1=2)�1 be a constant.

We have

kkPt � pkTV � kPt Satð Þ � p Satð Þ
� 1þ cð Þp Satþtð Þ � p Satð Þ

¼ 1þ cð Þ � a2

aþ 1ð Þ2
� 1

" #
� C1

a2
� t�2

¼: C0t�2 :

The bound of the mixing rate follows easily by letting

A ¼ St0 . Let k be the probability measure such that

dk ¼ 1

p Að Þ
1Adp :

Then,

1

p Að Þ
sup

B2B Xð Þ

����
ð

A

Pt x;Bð Þp dxð Þ � p Að Þp Bð Þ
����

¼ kkPt � pkTV �
C0

t2
:

�

Although a sharp upper bound of kkPt � pkTV is beyond

the reach of rigorous proof, our numerical results show that

the rate of mixing of the small particle system is �t�2.

We remark that for the small particle system, the exact

rate of mixing is difficult to compute numerically. Let

CA;BðtÞ :¼
����
ð

A

Ptðx;BÞpðdxÞ � pðAÞpðBÞ
���� :

Clearly CA,B(t) is the difference of two relatively large num-

bers. As a result, when the value of CA,B(t) is o(t�2), the

variance is still around a constant number. Therefore, to con-

trol the relative error of CA,B(t) to be less than �, the sample

size of the Monte Carlo simulation must be at least O(t4��2).

This makes the total computational cost O(t5��2). In addition,

the rate of mixing captures the shape of the tail of CA,B(t). To

observe a polynomial rate of mixing, a very large t is

required. In fact, as shown in Figure 3(a), t should be �105 in

order to clearly observe the polynomial tail. This brings the

total computational cost to �1027 (assume �¼ 0.1).

Instead of direct computation, the rate of mixing t�2 is

supported by the following numerical evidence. Consider two

sets A;B 	 X where the kinetic energy of particle 2 in A is

significantly smaller than that in B. One approach to estimate

CA,B(t) is to compute the distribution of the first passage time

from A to B. The assumption behind this approach is that

once particle 2 obtains a certain amount of energy, the corre-

lation decays fast enough such that it “forgets” its history.

Let

A ¼ fðx1; x2; v1; v2Þ 2 X j x1 2 ½1; 1:5� 
 ½�0:25; 0:25�;
x2 2 ½�1:5; 1� 
 ½�0:25; 0:25�; jv2j2 < 0:01g

and

B ¼ fðx1; x2; v1; v2Þ 2 X j jv2j2 � 0:4g :

Let U0 be uniformly distributed on A. The tail of the first pas-

sage time distribution to B is demonstrated in Figure 3(a) and

compared with t�2, from which one can see the first passage

time distribution to B has the tail �t�2. Therefore, we believe

the small particle system has the rate of mixing �t�2.

In contrast, in a big particle system, the slow particle

can be “activated” by the fast particle almost surely. Hence,

an exponential mixing rate is expected due to the strong

chaos. This exponential rate of mixing is supported by nu-

merical evidence too. We first choose sets A and B same as

above to estimate the tail of the first passage time distribu-

tion to B. As seen in Figure 3(b), the first passage time distri-

bution to B has an exponential tail. In addition, due to much

more frequent particle�particle collisions, computing the

correlation function of the big particle system becomes pos-

sible. Let A0 ¼ fx1 2 ½1; 1:5� 
 ½�0:25; 0:25�; x2 2 ½�1:5; 1�

½�0:25; 0:25�; jv2j2 < 0:1g and B0 ¼ f0:4 � jv2j � 0:6g.
The correlation function CA0;B0

ðtÞ is numerically computed

up to t� 40 in Figure 4, in which an exponential decay of

CA0;B0
ðtÞ is observed.

It is worth mentioning that to accurately capture the tail

distribution of quantities like the first passage time and the

correlation function, trajectories should be run for suffi-

ciently long time. As we can see, the initial slopes of curves

in Figure 3, later in Figures 6 and 7, and possibly in Figure

4, are deeper than their tail slopes. One possible explanation

is that due to their slow motion, effects of low energy par-

ticles are not significant over a small time period.

Remark 3.2. As one of the most important statistical prop-

erty, the rate of mixing and rate of convergence must be

preserved by any stochastic approximations of the determinis-

tic model. Therefore, our result disproves the estimate

RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
in Ref. 14 for the small particle
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system. The reason is that, assume E1 þ E2

¼ 1; RðE1;E2Þ � const. If the energy redistribution satisfies

ðE01;E02Þ ¼ ðpðE1 þ E2Þ; ð1� pÞðE1 þ E2ÞÞ

for some random variable p that has a uniformly positive

density on (0, 1), then the Markov chain generated by this

stochastic model satisfies the Doeblin’s condition, which

implies an exponential mixing rate and an exponential

convergence rate to its invariant probability measure. This

cannot happen for the small particle system because of

Lemma 1. Instead, our simulations in Section IV suggest

RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfE1;E2g

p
for the small particle system.

FIG. 3. Black: Tail of the first passage

time distribution from A to B; red:

Two standard deviation error bars;

blue in (a): Reference plot of

100
 t�2.

FIG. 4. Blue: Correlation function

CA,B(t); red: Two standard deviation

error bars. CA,B(t) is normalized such

that CA,B(0)¼ 1.
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IV. RATES OF ENERGY EXCHANGE

A. Definition of stochastic energy exchange rate

The purpose of this subsection is to define the stochastic

energy exchange rate R(E1, E2) for the locally confined parti-

cle system.

For a Poisson process, it is well known that the time

interval between jumps and the waiting time to the next

jump from any t> 0 satisfy the same exponential distribu-

tion, whose rate is the rate of this Poisson process. Since a

locally confined particle system generates an ergodic deter-

ministic process with quick correlation decay, it is natural to

expect it to exhibit similar Poissonian statistics. At the

steady-state regime, since particle-particle collisions form a

subset in the phase space X, the time to the next particle-

particle collision is called the hitting time and the time dura-

tion between two consecutive particle-particle collisions is

called the return time. The times of energy exchanges of the

locally confined particle system resemble a Poisson process

if and only if conditioning on fixed energy configurations,

the tail distribution of the hitting time, and that of the return

time coincide. A stochastic energy exchange rate can there-

fore be defined from the slope of this exponential tail.

Let

sB ¼ infft> 0ja particle–particle collision occurs at time tg :

A function R(E1, E2) is called the stochastic energy
exchange rate if

R E1;E2ð Þ ¼ lim
t!1
� 1

t
log P sB > t j p; jv1j2 ¼ E1; jv2j2 ¼ E2

� �� 	
¼ lim

t!1
� 1

t
log P½sB > t j p; jv1 0þð Þj2

¼ E1; jv2 0þð Þj2 ¼ E2

x1 2 int C1ð Þ; x2 2 int C2ð Þ; jx1 � x2j ¼ 2r�:

The first limit gives the tail distribution of the condi-

tional hitting time when starting from the conditional

Liouville measure, on which particle energy is E1 and E2,

respectively. The second limit gives the tail distribution of

the conditional return time when starting from the condi-

tional Liouville measure, on which two particles collide at

t¼ 0, and particle energy after the collision is E1 and E2,

respectively.

Since

sB jU0¼ðx1;x2;av1;av2Þ ¼ a�1sB jU0¼ðx1;x2;v1;v2Þ;

we have R(aE1, aE2)¼ a1=2R(E1, E2). Therefore, the assump-

tion E1þE2¼ 1 does not lose generality.

Remark 4.1. For ergodic dynamical systems, the relation

between the return time and the hitting time to asymptoti-

cally small set is well-known.20 It is also known that in

many highly chaotic dynamical systems, the return time dis-

tribution and the hitting time distribution to asymptotically

small set coincide.21–23,31 There are also examples where the

hitting time distribution differs from the return time distribu-

tion.10,11 To be best of the author’s knowledge, it is very

difficult to directly apply these existing results to our cases,

that is, tail distributions of the conditional hitting/return

time. Instead, we will verify numerically that these two tails

coincide, which implies a well defined stochastic energy

exchange rate.

B. Non-exponential tails

We first rigorously show that for some initial distribu-

tions, the hitting time distribution of the small particle sys-

tem cannot have an exponential tail, which further disproves

the estimate RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
.

Let � be a probability measure on X such that

� ¼ ck4jC 
 �̂ , where c is a constant and �̂ is a probability

measure on BðS3Þ. We say, U0¼ �, if � is the probability

distribution of U0.

Lemma 4.2. For any given small particle system, there
exist constants h1, h2> 0 such that

P½sB > t jU0 ¼ �� � h1�̂ðfjv1j < h2t�1gÞ

for any t> 0.

Proof. By the assumption of the small particle system,

there exists a set C1 	 C1 with positive Lebesgue measure

and a constant h2> 0, such that the Hausdorff distance

between C1 and CC
1 is greater than h2.

Therefore, if x1 2 C1 at t¼ 0, s is at least h2

jv1j. The proof

is completed by letting h1 ¼ cuCðfðx1; x2Þ j x1 2 C1gÞ
¼ cuCðC1 
 C2Þ > 0.

�

An analogous result holds for particle 2.

Therefore, P½sB > t� has an at-most-polynomial tail for

some initial distribution �.

Corollary 4.3. There exists a constant h0 such that

P½sB > t jU0 ¼ p� � h0t�2

for every t� 1.

Proof. It is well known that given X¼ (X1, …, Xn),

where Xi are i.i.d. standard normal random variables, the ran-

dom vector X
jXj is uniformly distributed on S

n�1. Then, it is

easy to check that E1 is uniformly distributed on (0, 1) and

E2¼ 1�E1.

The corollary then follows easily from the fact that

ujS3ðfjv1j <
ffiffi
�
p
gÞ ¼ �

for every 0<�< 1, where ujS3 is the uniform distribution on

S
3

as introduced in Section II. �

At the steady state regime, the hitting time distribution

of the small particle system has an at-most-polynomial tail

instead of an exponential one. In addition, E1 (and E2) is uni-

formly distributed at the steady state. Therefore (if R(E1, E2)

is well-defined), the estimate RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
cannot

hold for every pair (E1, E2).

Since in a small particle system, the particle with low

energy can hide from the other one for a very long time, we

expect that R(E1, E2) mainly depends on minfE1;E2g as

minfE1;E2g ! 0. This is supported by our numerical simu-

lations subsection IV C.
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C. Stochastic energy exchange rate

In this subsection, we will compute the tail distribution

of the conditional hitting time by Monte Carlo simulations.

Then, we will compare it and the tail distribution of the con-

ditional return time, which numerically verifies whether

R(E1, E2) is well defined. Overall, our numerical simulations

suggest RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
for the big particle system

and RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfE1;E2g

p
for the small particle

system.

1. R(E1, E2) from conditional hitting time

In Figure 5, we computed the conditional hitting time of

the big/small particle systems at different energy configura-

tions in the following way. Let U0 ¼ k4jC 
 dðjv1j � E1Þ.
A large number of sample paths are simulated to obtain

P½sB � t� for different t. The conditional hitting time, or

R(E1, E2), is estimated as the slope of P½sB � t� in the log-

linear plot. The rate R(E1, E2) of the small particle system

and that of the big particle system are measured for 28 and

29 distinct pairs of (E1, E2), respectively ((E1, E2)¼ (1, 0)

can only be measured for the big particle system). See details

of numerical simulations in Section VII.

We are interested in the scaling of R(E1, E2) as E2! 0.

From our numerical simulation results, R(1, 0)/R(0.5,

0.5)� 0.25 for the big particle system. Therefore, it is safe to

say, RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
. However, R(E1, E2) of the small

particle system has a completely different scaling as E2! 0.

For the small particle system, we have RðE2; 1� E2Þ
� const �

ffiffiffiffiffi
E2

p
with E2� 1, as seen in Figure 5.

Furthermore, when the initial distribution is taken to be

p, numerical simulations show that

P½sB � t j p� � t�2

for the small particle system (Figure 6), which suggests that

the lower bound in Corollary 4.3 is sharp. In contrast, in the

big particle system, P½sB � t j p� has an exponential tail

(Figure 7).

2. Tail distributions of hitting time and return time

We then compare tail distributions of the conditional

hitting time and that of the conditional return time. If the two

tails coincide, at least numerically, we see a well defined sto-

chastic energy exchange rate.

Let fðEð1Þ1 ; E
ð1Þ
2 ; tð1ÞÞ;…; ðEðNÞ1 ; E

ðNÞ
2 ; tðNÞÞg be a set of

samples obtained from a single trajectory starting from x0,

where the triplet ðEðiÞ1 ;E
ðiÞ
2 ; t

ðiÞÞ means the duration between

the (i� 1)-th and the i-th particle-particle collisions is t(i) and

the corresponding particle energy is ðEðiÞ1 ; E
ðiÞ
2 Þ. Due to the

FIG. 5. Computed value of R(E1, E2).

x-axis: E2. Red dotted line: Reference

line with slope 1/2; black solid line:

R(E1, E2) for big particle system; blue

dashed line: R(E1, E2) for small parti-

cle system. All three plots are normal-

ized such that R(0.5, 0.5)¼ 1.

R(1� 10�15, 10�15) on the log-log plot

are obtained from calculating R(1, 0).

FIG. 6. Small particle system. Black

solid line: Tail distribution of

P½sB > t�; red dotted line: Two stand-

ard deviation error bars; blue dashed

line: Reference plot of t�2.
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ergodicity of the system, a joint probability density function

of the conditional return time and the particle energy

qx0
ðE1;E2; tÞ can be constructed from these samples as

N!1. If the slope of the tail distribution of the conditional

return time is still R(E1, E2), we expect to see

lim
t!1

1

t
log

ð1
t

qx0
E1;E2; sð Þj E1;E2ð Þds


 �
¼ R E1;E2ð Þ

for a:e: x0

for the R(E1, E2) we have just computed. This can be verified

by the following two numerical simulations:

(1) Numerical simulation 1: If the tail distribution of the

conditional return time has the same slope R(E1, E2) as

the conditional hitting time, then the rescaled return time

distribution

KðtÞ :¼
ð1

t

ð1

0

qx0
ðE; 1� E; sÞRðE; 1� EÞdEds (4.1)

should have an exponential tail e�t. K(t) can be calcu-

lated from the sample ftðiÞRðEðiÞ1 ;E
ðiÞ
2 Þg

N
i¼1 with relatively

high accuracy

FIG. 8. Distribution of K(t) for the

small/big particle system.

FIG. 7. Big particle system. Black solid

line: Tail distribution of P½sB > t�; red

dotted line: Two standard deviation

error bars.

FIG. 9. R(E1, E2) obtained from two

different methods.
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K tð Þ � 1

N

���� t ið ÞR E ið Þ
1 ;E

ið Þ
2

� 

> t

n o����:
In Figure 8, one can find that K(t) and e�t are almost par-

allel in the log-linear plot.

(2) Numerical simulation 2: For any given (E1, E2), the con-

ditional return time distribution qx0
ðE1;E2; tÞjðE1;E2Þ can

be approximated by only selecting samples

fðEðk1Þ
1 ;E

ðk1Þ
2 ; tðk1ÞÞ;…; ðEðkMÞ

1 ;E
ðkMÞ
2 ; tðkMÞÞg

such that E
ðkiÞ
1 2 ðE1 � �;E1 þ �Þ; i ¼ 1 � M for some

sufficiently small �> 0. The tail distribution of the condi-

tional return time can then be computed. Since � � 1,

the sample size for each (E1, E2) is relatively small. As

seen in Figure 9, the tail distribution of the conditional

return time has visible numerical errors.

Tail distributions of the conditional hitting/return time

are compared in Figure 9 for the small particle system (left)

and the big particle system (right). In spite of numerical

errors, two tails match each other well.

From the above two numerical simulations, especially

the first one, we conclude that the conditional return time

and the conditional hitting time have the same tail distribu-

tion. This means statistically, times of energy exchanges of

the locally confined particle system resemble a (non-homo-

geneous) Poisson process. Therefore, the stochastic energy

exchange rate R(E1, E2) for this deterministic system is well-

defined.

V. CTMC MODEL OF SMALL PARTICLE SYSTEMS

In this section, we propose a CTMC approximate model

to explain why RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfE1;E2g

p
as minfE1;E2g

! 0 in the small particle system.

The main assumption of the CTMC model is that the

locally confined particle system is so chaotic that particles

lose their memory of precise locations quickly. Therefore,

we take note of whether a particle is available for energy

exchange instead of its precise location. This converts the

locally confined particle system to a finite state Markov

jump process. For each particle, the time to its next jump

is determined by an exponential distribution with mean

/ x�1=2, where x is the instantaneous kinetic energy of the

particle.

Formally, our CTMC model is a four-state continuous

time Markov chain Wt on the state space {0, 1}2. State 0

means a particle is not available for energy exchange; state

1 means it is available for energy exchange. When Wt

reaches (1, 1), particles exchange energy immediately and

return to (0, 0). The locally confined particle system is

assumed to be symmetric. Transition rates of Wt are demon-

strated in Figure 10, where r1 and r2 are two constants

that depend on the geometry of the model. When the

“bottleneck” in the locally confined particle system is nar-

row, the ratio M:¼ r2/r1 is a large number in general. In

particular, M > k2ðC1nCC
1 Þ=k2ðCC

1 Þ (which is �11 for our

small particle system model example) because an event

fx1 2 CC
1 ; x2 2 CC

2 g does not guarantee a particle-particle

collision.

This is not a very precise model because in the deter-

ministic system, particles are still available for energy

exchange for a short time period after a particle-particle

collision. In addition, it is difficult to explicitly evaluate r1

and r2 merely from the geometric parameters. However,

many qualitative asymptotical properties of the locally con-

fined particle system can be captured by this CTMC

approximation. In particular, the hitting time sB is approxi-

mated by

s1;1 ¼ inf
t>0
fWt ¼ ð1; 1Þg;

the first passage time to the state (1, 1). Since the transition

rate from (1, 1) to (0, 0) is infinity, sð1;1ÞjW0¼ð0;0Þ also gives

the return time distribution.

From the infinitesimal generator of Wt, we have

P½s1;1 � t jW0 ¼ ð0; 0Þ� ¼ p14ðtÞ, where PðtÞ ¼ fpijðtÞg4
i;j¼1

¼ expðAtÞ, and

A ¼

�r1

ffiffiffiffiffi
E1

p
� r1

ffiffiffiffiffi
E2

p
r1

ffiffiffiffiffi
E2

p
r1

ffiffiffiffiffi
E1

p
0

r2

ffiffiffiffiffi
E2

p
�r2

ffiffiffiffiffi
E2

p
� r1

ffiffiffiffiffi
E1

p
0 r1

ffiffiffiffiffi
E1

p

r2

ffiffiffiffiffi
E2

p
0 �r2

ffiffiffiffiffi
E1

p
� r1

ffiffiffiffiffi
E2

p
r1

ffiffiffiffiffi
E1

p

0 0 0 0

2
66664

3
77775:

Therefore, R(E1, E2) can be approximated by �q2, where q2 is the greatest nonzero eigenvalue of A. As minfE1;E2g ! 0,

the scaling of q2 can be estimated analytically.

FIG. 10. A graph representation of CTMC model for a locally confined par-

ticle system.
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Let A¼ r1B, where

B ¼
�

ffiffiffiffiffi
E1

p
�

ffiffiffiffiffi
E2

p ffiffiffiffiffi
E2

p ffiffiffiffiffi
E1

p
0

M
ffiffiffiffiffi
E2

p
�

ffiffiffiffiffi
E2

p
M �

ffiffiffiffiffi
E1

p
0

ffiffiffiffiffi
E1

p

M
ffiffiffiffiffi
E1

p
0 �

ffiffiffiffiffi
E1

p
M �

ffiffiffiffiffi
E2

p ffiffiffiffiffi
E2

p

0 0 0 0

0
BB@

1
CCA: (5.1)

The characteristic equation p(k) of B is

pðkÞ ¼ ðE1 þ
ffiffiffiffiffi
E2

p
Þ
ffiffiffiffiffi
E1

p ffiffiffiffiffi
E2

p
ðM þ 1Þk

þ ð
ffiffiffiffiffi
E1

p ffiffiffiffiffi
E2

p
ðM2 þ 2M þ 3Þ þ E1ðM þ 1Þ

þ E2ðM þ 1ÞÞk2þð
ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p
ÞðM þ 2Þk3 þ k4:

(5.2)

Therefore, it is easy to verify that pð0Þ ¼ 0; p0ð0Þ
> 0; pð�

ffiffiffiffiffi
E1

p
Þ ¼ M2E

3=2
1

ffiffiffiffiffi
E2

p
> 0, and pð�

ffiffiffiffiffi
E2

p
Þ ¼ M2E

3=2
2ffiffiffiffiffi

E1

p
> 0. Hence, �q2 < r1minf

ffiffiffiffiffi
E1

p
;
ffiffiffiffiffi
E2

p
g. This confirms

our numerical observation: RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfE1;E2g

p
as

minfE1;E2g ! 0.

We compare �q2 and R(E1, E2) for different pairs of

(E1, E2). When the “bottleneck” area is narrow, it is reasona-

ble to assume that r1�M�1. We choose r1¼ 1/10 and r2¼ 2

and compare �q2 and R(E1, E2) in Figure 11. We can find

that �q2 and R(E1, E2) have similar scaling as

minfE1;E2g ! 0.

VI. COMPARISON WITH RESULTS FROM
REFERENCE 14

The stochastic energy exchange rate of a class of locally

confined particle systems is investigated in Ref. 14. Their

main assumption is that particle-wall collisions happen sig-

nificantly more frequently than particle-particle collisions.

The authors then implicitly assumed local systems of two ad-

jacent cells attain their local equilibria no later than the first

particle-particle collision between them. The following sto-

chastic rate function is derived:

R̂ E1;E2ð Þ ¼ const �
ffiffiffiffiffiffiffiffi
8E2

p3

r
2E E1

E2


 �
� 1� E1

E2


 �
K E1

E2


 �� �
(6.1)

for every E2�E1, where KðxÞ and EðxÞ are the Jacobi ellip-

tic functions of the first and the second kind, respectively. R̂
is symmetric in the sense R̂ðE1;E2Þ ¼ R̂ðE2;E1Þ, if E2<E1.

Then, it is easy to check that R̂ðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
.

If R̂ðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
is universally true, then all

locally confined particle systems should have exponential

mixing rates and exponential convergence rates to equilibria

regardless of geometric configurations. This contradicts our

rigorous results and numerical evidence. In fact, R̂ðE1;E2Þ of

the small particle system is only reasonable if neither E1 nor

E2 is extremely small. As seen in Figure 12, the prediction

from (6.1) is good until a “turning point.” We remark that in

our numerical simulations of the small particle system,

particle-wall collisions are about 700 times more frequent

than particle-particle collisions, which can be seen as dy-

namics in two time scales.

The gap between (6.1) and our results can be explained

by a similar CTMC model. In Ref. 14, to obtain (6.1), the

authors implicitly assume that in each pair of adjacent cells,

a local equilibrium is reached before the next particle-

particle collision between them. Hence, the waiting time for

the next particle-particle collision is in proportion to the

Lebesgue measure of the set at which particles are in contact.

This implicit assumption implies that R(E1, E2) should be

approximated by the steady state probability of the state (1,

1) in the CTMC model described in Figure 13, denoted by

p1,1. Therefore, it is necessary to compare p1,1 and �q2.

FIG. 11. x-axis: E2; blue solid line:

Energy exchange rate from numerical

simulations; red dashed line: Energy

exchange rate predicted by CTMC

model with parameter r1¼ 0.1 and

r2¼ 2.
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When the “bottleneck” is sufficiently narrow, it is reasonable to assume r1�M�1. Hence, p1,1�M�2. As a comparison,

we have the following calculation of the CTMC model in Section V:

For every M> 2,

p �
ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p

M


 �
¼

ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p� 	4

M4
� 2

ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p� 	4

M3
þ

ffiffiffiffiffi
E1

p ffiffiffiffiffi
E2

p ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p� 	2

M2

þ E1 þ
ffiffiffiffiffi
E2

p ffiffiffiffiffi
E1

p
þ E2

� 	 ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p� 	2

M
> 0 :

For every M> 4 and
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
> 3

M,

p �
ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p

2M


 �
¼

ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p� 	4

16M4
�

ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p� 	4

4M3
þ E1 þ 4

ffiffiffiffiffi
E2

p ffiffiffiffiffi
E1

p
þ E2

� 	 ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p� 	2

8M2

þ E1 þ E2ð Þ
ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p� 	2

4M
� 1

4

ffiffiffiffiffi
E1

p ffiffiffiffiffi
E2

p ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p� 	2
< 0 :

Hence, p(k) has a root between �
ffiffiffiffi
E1

p
þ
ffiffiffiffi
E2

p

2M and �
ffiffiffiffi
E1

p
þ
ffiffiffiffi
E2

p

M .

It follows from the assumption E1þE2¼ 1 that
ffiffiffiffiffi
E1

p

þ
ffiffiffiffiffi
E2

p
2 ½1;

ffiffiffi
2
p
�. Therefore, for sufficiently large M and ev-

ery (E1, E2) such that 0:5 � minf
ffiffiffiffiffi
E1

p
;
ffiffiffiffiffi
E2

p
g � const �M�1,

we have �q2 � r1M�1 � M�2. However, if minf
ffiffiffiffiffi
E1

p
;
ffiffiffiffiffi
E2

p
g

� M�1, we have �q2 � M�1minf
ffiffiffiffiffi
E1

p
;
ffiffiffiffiffi
E2

p
g � M�2. In

other words, p1,1, the steady-state probability of (1, 1), does

not differ from the rate of the first passage time to (1, 1) too

much if and only if minf
ffiffiffiffiffi
E1

p
;
ffiffiffiffiffi
E2

p
g is at least � M�1, as

seen in Figure 12. Therefore, the prediction (6.1) is valid

only if both
ffiffiffiffiffi
E1

p
and

ffiffiffiffiffi
E2

p
are above a certain threshold.

Remark 6.1. As a result, for the small particle system,

the prediction made by Ref. 14 is only valid when the effect

of low energy particles can be neglected. Let j and t denote

the size of the “bottleneck” and the time, respectively. We

remark that one approach to neglect the effect of low

energy particles is to rescale t by j while letting j ! 0,

before letting t ! 1. In this way, the stochastic energy

exchange rate will approach to a strictly positive function

almost everywhere as j ! 0. Therefore, at the limit, the

effect of low energy particles vanishes. Otherwise, if we

study the asymptotic properties as t ! 1 for any strictly

positive j, the effect of low energy particles cannot be

ignored. In other words, the order of limits makes a signifi-

cant difference here.

VII. NOTE ON NUMERICAL SIMULATIONS

Most numerical results in this paper are obtained from

directed Monte Carlo simulations on parallel machines. The

parallel random number generator used in our simulations

FIG. 12. x-axis: E2; blue: Rates of

energy exchange from numerical simu-

lations; black: Rates of energy

exchange predicted by Eq. 6.1. All

plots are normalized such that R(0.5,

0.5)¼ 1.

FIG. 13. Another CTMC model for a confined particle system.
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comes from the library TRNG.1 The main advantage of

TRNG is that it guarantees the independence of random

numbers generated by different threads. In addition, the non-

linear random generator used by TRNG has better perform-

ance than the standard Mersenne twister generator in many

tests of randomness.1 The period of the random number gen-

erator we choose is �4.61
 1018, which is at least �106

times larger than the number of pseudorandom numbers used

in our simulations.

The following Monte Carlo simulations are performed.

A. Simulation 1: Rate of mixing

The aim of this simulation is to compute the mixing rate

of the big/small particle system. We are interested in the esti-

mate of

CA;BðtÞ :¼
����
ð

A

Ptðx;BÞpðdxÞ � pðAÞpðBÞ
����

for some A;B 	 X.

As explained in Section IV, it is not practical to estimate

CA,B directly for the small particle system. Instead, we com-

pute the tail distribution of

rB :¼ inf
t>0
fUt 2 B jU0 is uniformly distributed in Ag :

We choose sets A ¼ fx1 2 ½1; 1:5� 
 ½�0:25; 0:25�; x2

2 ½�1:5; 1� 
 ½�0:25; 0:25�; jv2j2 < 0:01g and B ¼ fjv2j2
� 0:4g. 2
 1010 initial values are uniformly chosen in A.

The probability P½rB > t� is estimated at t¼ {0, 100, …,

1
 107}. The total computation time is about 1.246
 106 s

on 32 CPUs. The same computation of rB is also carried out

for the big particle system. The probability P½rB > t� is com-

puted at t¼ {0, 1, …, 200}. The total computation time is

12 420.9 s on 64 CPUs.

The rate of mixing is explicitly computed for the

big particle system. We choose sets A0 ¼ fx1 2 ½1; 1:5�

½�0:25; 0:25�; x2 2 ½�1:5; 1� 
 ½�0:25; 0:25�; jv2j2 < 0:1g
and B0 ¼ f0:4 � jv2j2 � 0:6g. The sample size is 1
 1011,

of which U0 is uniformly distributed in A0. The mixing func-

tion CA0;B0
ðtÞ is calculated at t¼ {0, 1, …, 50}. The total

computation time is 554 298 s on 64 CPUs.

B. Simulation 2: Tail distribution of the conditional
hitting time

The aim of this simulation is to estimate R(E1, E2) with

varying E1 and E2 in the big/small particle system from its

conditional hitting time. The results obtained from this simu-

lation are used in Figures 5, 12, and 11.

We first compute the tail distribution

pðt;E2Þ :¼ P½sB > t jU0 ¼ k4jC 
 dðjv1j � E1Þ

 dðjv2j � E2Þ�

of the big/small particle system.

Twenty-eight different initial values of E2 are chosen for

the small particle system: E2¼f0.5, 0.45, 0.4, 0.35, 0.3, 0.25,

0.2, 0.15, 0.1, 0.05, 0.02, 0.01, 0.005, 0.0025, 1
 10�3,

5
 10�4, 2.5
 10�4, 1
 10�4, 5
 10�5, 2.5
 10�5, 1


 10�5, 5
 10�6, 2.5
 10�6, 1
 10�6, 5
 10�7, 2.5
 10�7,

1
 10�7, 2.5
 10�8g. The sample size of each energy config-

uration is 5
 108. The standard deviation of p(t, E2) can be

estimated as

SD t;E2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
p̂ t;E2ð Þ 1� p̂ t;E2ð Þð Þ

r
;

where the estimator of p(t, E2), denoted by p̂ðt;E2Þ, is the

proportion of trajectories whose first energy exchange time

is greater than t. p̂ðt;E2Þ is kept if and only if SDðt;E2Þ
� 0:01 � p̂ðt;E2Þ. The total computation time is 361 630 s on

64 CPUs.

For the big particle system, twenty-nine different initial

values of E2 are chosen, which are the numbers listed above

together with E2¼ 0. The sample size of each energy config-

uration is 2
 109. p̂ðt;E2Þ is selected using the same crite-

rion. The total computation time is 8820.27 s on 25 CPUs.

The rate R(E1, E2), that is, the tail distribution of the

conditional hitting time, is estimated as the negative slope of

logðp̂ðt;E2ÞÞ, as introduced above. Slopes are estimated from

linear regressions. All 57 log-linear plots of p̂ðt;E2Þ form

perfect straight lines. The relative errors of slopes are <1%

for the big particle system and <0.01% for the small particle

system at the 95% confidence level. See Figure 14 for exam-

ples of log-linear plots of p̂ðt;E2Þ.
The waiting time for the first energy exchange from the

uniform initial distribution can be estimated in the same way

(i.e., U0¼ p). Results obtained from this simulation are used

in Figures 6 and 7. The sample size of the big particle system

is 2
 1010; the total computation time is 2939.89 s on 25

CPUs. The sample size and total computation time of the

small particle system are 8
 1010 and 438 854 s (on 64

CPUs), respectively.

C. Simulation 3: Comparison of tails

The aim of this simulation is to verify that the condi-

tional hitting time distribution and the conditional return

time distribution have the same exponential tail, which justi-

fies a well-defined stochastic energy exchange rate.

We start from a randomly chosen x0 and run the trajec-

tory for a large number of steps to obtain the tail distribution

of the return time. The simulation that produces Figure 8

compares the tails of K(t) defined in Eq. (1) and e�t for the

big/small particle system. The stochastic energy exchange

rate R(E1, E2) is obtained from simulation 2 and a cubic

spline interpolation. The number of particle-particle colli-

sions in both trajectories is 1
 108. The total computation

time for the big particle system and the small particle system

is 334.651 s and 43 225.3 s on a single CPU, respectively.

The simulation that produces Figure 9 compares tail

distributions of conditional hitting time and that of

conditional return time directly. We first collect samples

fðEðiÞ1 ;E
ðiÞ
2 ; t

iÞgN
i¼1 from running a single trajectory. These

samples are distributed into 1000 “bins” with size 5
 10�4

based on the value of minfE1;E2g. The corresponding expo-

nential tails of conditional return time distributions for
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samples in each “bin” are computed in the same way as in

simulation 2. Slopes of tails of conditional hitting time distri-

butions, that is, R(E1, E2), are also obtained from simulation

2. The number of particle-particle collisions in the trajecto-

ries of the big particle system and the small particle system

is 1
 109 and 5
 108, respectively. The total computation

time for those two cases is 5154.76 s and 209 824 s on a sin-

gle CPU, respectively.

VIII. CONCLUSION

The geometric setting of a locally confined particle sys-

tem can fundamentally change its statistical properties and

the energy exchange regime at the cell-to-cell level. If a very

slow particle in the system can hide from the others (small

particle systems), the waiting time before its next energy

exchange mainly depends on its own kinetic energy. As a

result, starting from a class of initial distributions, the wait-

ing time distribution to the next particle-particle collision,

the convergence rate to equilibrium, and the mixing rate

have only polynomial tails. In addition, our numerical evi-

dence suggests that a well-defined stochastic energy

exchange rate R(E1, E2) exists and is �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfE1;E2g

p
as

minfE1;E2g ! 0. This scaling can be further qualitatively

explained by a CTMC model.

In contrast, if the geometric configuration always allows

fast particles to “activate” slow ones (big particle systems),

the regime of energy exchange mainly depends on the total

energy stored in adjacent cells. Exponential mixing rates and

exponential convergence rates to the equilibrium are

observed as expected. Our numerical simulations also con-

firm the existence of a stochastic energy exchange rate R(E1,

E2), which has the scaling RðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
.

In addition, we find that when particle-particle collisions

are rare, that is, the “bottleneck” is narrow, the estimate

R̂ðE1;E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ E2

p
in Ref. 14 is roughly reasonable

unless minfE1;E2g � 1. The gap at the low energy limit

comes from a crucial hidden assumption in Ref. 14, which

assumes a local thermal equilibrium of two adjacent cells is

reached no later than the first particle-particle collision

between them. According to the analysis of our CTMC

approximation, this assumption is not valid if minfE1;E2g is

smaller than a certain threshold. As explained in Section VI,

one approach to close this gap is to change the order of

limits.

In summary, whether or not stochastic modifications

of locally confined particle systems preserve their main

statistical features depends on many factors, geometry in

particular. Stochastic modifications should be treated with

care, especially when studying asymptotic statistical

properties.
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