LECTURE 6: J-HOLOMORPHIC CURVES AND APPLICATIONS

WEIMIN CHEN, UMASS, SPRING 07

1. Basic elements of J-holomorphic curve theory

Let (M, ω) be a symplectic manifold of dimension $2 n$, and let $J \in \mathcal{J}(M, \omega)$ be an ω-compatible almost complex structure. Let $g_{J}(\cdot, \cdot) \equiv \omega(\cdot, J \cdot)$ be the corresponding hermitian metric (i.e. J-invariant Riemannian metric) on M.

Let (Σ, j) be a Riemann surface (not necessarily compact) with complex structure j. A smooth map $u: \Sigma \rightarrow M$ is called a (J, j)-holomorphic map (or simply a J-holomorphic map) if $d u \circ j=J \circ d u$, or equivalently,

$$
\bar{\partial}_{J}(u) \equiv \frac{1}{2}(d u+J \circ d u \circ j)=0 .
$$

The equation $\bar{\partial}_{J}(u)=0$ is a first order, non-linear equation of Cauchy-Riemann type. We give a description of it in a local coordinate system. Let $z_{0} \in \Sigma$ be any point and let $p=u\left(z_{0}\right) \in M$ be its image in M under u. Supppose $s+i t$ is a local holomorphic coordinate centered at z_{0} and $\phi: U \rightarrow \mathbb{R}^{2 n}$ is a local chart centered at $p \in M$. Set $\phi \circ u=\left(u^{1}, \cdots, u^{2 n}\right)^{T}$. Then

$$
\bar{\partial}_{J}(u)=\frac{1}{2}\left(\left(\partial_{s} u^{j}\right)+J\left(u^{1}, \cdots, u^{2 n}\right)\left(\partial_{t} u^{j}\right)\right) d s+\frac{1}{2}\left(\left(\partial_{t} u^{j}\right)-J\left(u^{1}, \cdots, u^{2 n}\right)\left(\partial_{s} u^{j}\right)\right) d t,
$$

and $\bar{\partial}_{J}(u)=0$ is equivalent to

$$
\left(\partial_{s} u^{j}\right)+J\left(u^{1}, \cdots, u^{2 n}\right)\left(\partial_{t} u^{j}\right)=0 .
$$

If J is integrable and $\left(u^{1}, \cdots, u^{2 n}\right)$ is coming from a local holomorphic coordinate system $\left(z^{1}, \cdots, z^{n}\right)$ with $z^{j}=u^{j}+i u^{j+n}, j=1, \cdots, n$, then $J\left(u^{1}, \cdots, u^{2 n}\right)$ is constant in $u^{1}, \cdots, u^{2 n}$ and equals the matrix

$$
J_{0}=\left(\begin{array}{ll}
0 & -I \\
I & 0
\end{array}\right)
$$

where I denotes the $n \times n$ identity matrix. In this case, $\bar{\partial}_{J}(u)=0$ becomes the Cauchy-Riemann equations

$$
\partial_{s} u^{j}-\partial_{t} u^{j+n}=0, \quad \partial_{s} u^{j+n}+\partial_{s} u^{j}=0, \quad j=1, \cdots, n .
$$

Hence when J is integrable, J-holomorphic maps are simply the usual holomorphic maps. On the other hand, it is easy to see that for a general J, the linearization of the non-linear equation $\bar{\partial}_{J}(u)=0$ is a zero-th order perturbation of the Cauchy-Riemann equations.

Local properties. We shall next list several relevant local analytical properties of J-holomorphic maps.

Let $u, v: \Sigma \rightarrow M$ be two smooth maps and let $z_{0} \in \Sigma$ be a point. We say that u, v agree to the infinite order at z_{0} if $u\left(z_{0}\right)=v\left(z_{0}\right)=p_{0}$, and there is a local chart centered at $p_{0}, \phi: U \rightarrow \mathbb{R}^{2 n}$, such that all partial derivatives of the $\mathbb{R}^{2 n}$-valued function $\phi \circ u-\phi \circ v$ vanish at z_{0}.
Proposition 1.1. (Unique continuation). If $u, v: \Sigma \rightarrow M$ are two J-holomorphic maps which agree to the infinite order at a point $z_{0} \in \Sigma$, then $u \equiv v$ in the connetced component of Σ which contains z_{0}.

Let $u: \Sigma \rightarrow M$ be a J-holomorphic map. A point $z \in \Sigma$ is called a critical point if $d u(z)=0$. Correspondingly the image $u(z) \in M$ is called a critical value. We remark that u is locally an embedding at any point which is not a critical point. To see this, we suppose $d u(z) \neq 0$ for some $z \in \Sigma$. Let $u(z)=p$ and let $s+i t$ be a local holomorphic coordinate centered at z. Then $d u(z) \neq 0$ means that either $\partial_{s} u(z) \in$ $T_{p} M$ or $\partial_{t} u(z) \in T_{p} M$ is non-zero. But u is J-holomorphic so that $\partial_{s} u+J(u) \partial_{t} u=0$, which implies that both $\partial_{s} u(z), \partial_{t} u(z) \in T_{p} M$ are non-zero. Hence u is locally an embedding near z.

Lemma 1.2. A critical point of a non-constant J-holomorphic map is isolated. In particular, a non-constant J-holomorphic map from a compact Riemann surface has only finitely many critical points.

Lemma 1.3. Let $\Omega \subset \mathbb{C}$ be an open neighborhood of $0 \in \mathbb{C}$ and let $u, v: \Omega \rightarrow M$ be J-holomorphic maps such that

$$
u(0)=v(0), \quad d u(0) \neq 0
$$

Moreover, assume that there exist sequences $z_{n}, w_{n} \in \Omega$ such that

$$
u\left(z_{n}\right)=v\left(w_{n}\right), \quad \lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} w_{n}=0, \quad w_{n} \neq 0
$$

Then there exists a holomorphic function $\phi: B_{\epsilon}(0) \rightarrow \Omega$ defined in some neighborhood of $0 \in \mathbb{C}$ such that $\phi(0)=0$ and

$$
v=u \circ \phi .
$$

Lemmas 1.2 and 1.3 have the following consequence.
Corollary 1.4. Let $u: \Sigma \rightarrow M$ be a non-constant J-holomorphic map from a compact Riemann surface. Then there exists a compact Riemann surface Σ^{\prime} and a non-constant J-holomorphic map $v: \Sigma^{\prime} \rightarrow M$ such that in the complement of finitely many points, v is an embedding onto its image. Moreover, there exists a biholomorphism or branched covering map $\phi: \Sigma \rightarrow \Sigma^{\prime}$ such that

$$
u=v \circ \phi .
$$

The map v in the above corollary is called simple and the map u is called multiply covered if $\operatorname{deg}(\phi)>1$. The image $C \equiv \operatorname{Im} v$ is called a J-holomorphic curve in M, and the map $v: \Sigma^{\prime} \rightarrow M$ is called a parametrization of C. We call C a rational J-holomorphic curve if $\Sigma^{\prime}=\mathbb{S}^{2}$.

Let $u: \Sigma \rightarrow M$ be a smooth map, where Σ is given a complex structure j, M is given a $J \in \mathcal{J}(M, \omega)$. We denote by g_{J} the associated hermitian metric on M. In
order to define the energy of the map u, we fix a Kähler metric h on Σ, and with h and g_{J}, the norm $|d u|$ is well-defined. We define the energy of u to be

$$
E(u) \equiv \int_{\Sigma}|d u|^{2} d v o l_{\Sigma}
$$

An important fact about $E(u)$ is that even though the energy density $|d u|^{2}$ may depend on the choice of the Kähler metric h on Σ, the energy $E(u)$ depends only on the complex structure j, i.e., $E(u)$ is invariant under comformal transformations on the domain of u.

The following energy identity can be easily derived

$$
E(u)=\int_{\Sigma}\left|\bar{\partial}_{J}(u)\right|^{2} d v o l_{\Sigma}+\int_{\Sigma} u^{*} \omega,
$$

which has the following important consequence. (This is where the closedness of ω plays a real role.)

Proposition 1.5. J-holomorphic maps are the absolute minima of the energy functional $E(u)$ amongst the smooth maps u which carry a fixed homology class in M. In particular, J-holomorphic maps are harmonic maps, and the energy of a J-holomorphic map depends only on the homology class it carries, and a J-holomorphic map must be constant if it carries a trivial homology class.

Finally, we give the following important local analytical property of J-holomorphic maps.

Theorem 1.6. (Removal of singularities) Let $D \subset \mathbb{C}$ be the unit disc containing 0 and let $u: D \backslash\{0\} \rightarrow M$ be a J-holomorphic map such that $E(u)<\infty$. Then u may be extended to a J-holomorphic map $\hat{u}: D \rightarrow M$ with $\left.\hat{u}\right|_{D \backslash\{0\}}=u$.

Next we consider the moduli space of J-holomorphic maps. For simplicity, we shall assume $\Sigma=\mathbb{S}^{2}$. In this case, the complex structure j is unique, and the group of biholomorphisms of Σ is the group of Möbius trnsformations $G=\operatorname{PSL}(2, \mathbb{C})$:

$$
z \mapsto \frac{a z+b}{c z+d}, a, b, c, d \in \mathbb{C}, \quad a d-b c=1
$$

Fix a non-zero homology class $0 \neq A \in H_{2}(M ; \mathbb{Z})$. We consider the space of J holomorphic maps

$$
\mathcal{M}(A, J)=\left\{u: \mathbb{S}^{2} \rightarrow M \mid u \text { is } J \text {-holomorphic and } u_{*}\left[\mathbb{S}^{2}\right]=A\right\},
$$

and the subspace of $\mathcal{M}(A, J)$ consisting of simple J-holomorphic maps

$$
\mathcal{M}^{*}(A, J)=\left\{u: \mathbb{S}^{2} \rightarrow M \mid u \text { is } J \text {-holomorphic and simple, and } u_{*}\left[\mathbb{S}^{2}\right]=A\right\} .
$$

Note that the group $G=\operatorname{PSL}(2, \mathbb{C})$ acts on $\mathcal{M}(A, J)$ via reparametrization

$$
\phi \cdot u=u \circ \phi^{-1}, \quad \forall \phi \in G, u \in \mathcal{M}(A, J),
$$

which is free when restricted on the subspace $\mathcal{M}^{*}(A, J)$. We denote the quotient space by $\widetilde{\mathcal{M}}(A, J)$ and $\widetilde{\mathcal{M}}^{*}(A, J)$ respectively. Note that $\widetilde{\mathcal{M}}^{*}(A, J)$ is exactly the space of J-holomorphic curves C such that the homology class of C is A. We remark that
when A is a primitive class, i.e., A is not an integral multiple of another integral class, $\mathcal{M}(A, J)=\mathcal{M}^{*}(A, J)$.

Compactness. One of the fundamental issues concerning the moduli spaces is compactness. Note that the group $G=\operatorname{PSL}(2, \mathbb{C})$ acts freely on $\mathcal{M}^{*}(A, J)$ and G is not a compact group. Hence the moduli space of J-holomorphic maps $\mathcal{M}(A, J)$ and $\mathcal{M}^{*}(A, J)$ can not be compact, and one could best hope that the quotient spaces $\widetilde{\mathcal{M}}(A, J)$ and $\widetilde{\mathcal{M}}^{*}(A, J)$ are compact. However, this is also not true in general, as illustrated in the following example.
Example 1.7. Consider a family of holomorphic curves of degree 2 in $\mathbb{C P}^{2}$ parametrized by $0 \neq \lambda \in \mathbb{C}$

$$
C_{\lambda}=\left\{\left[z_{0}, z_{1}, z_{2}\right] \mid \lambda z_{0}^{2}=z_{1} z_{2}\right\} \in \widetilde{\mathcal{M}}^{*}\left(2\left[\mathbb{C P}^{1}\right], J_{0}\right) .
$$

Here $\left[\mathbb{C P}^{1}\right] \in H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$ is the class of a line, and J_{0} is the complex structure of $\mathbb{C P}^{2}$. As $\lambda \rightarrow 0, C_{\lambda}$ converges to a union of two lines

$$
C_{0}=\left\{\left[z_{0}, z_{1}, z_{2}\right] \mid z_{1} z_{2}=0\right\}=\left\{\left[z_{0}, 0, z_{2}\right]\right\} \cup\left\{\left[z_{0}, z_{1}, 0\right]\right\}
$$

which intersect transversely at $[1,0,0]$. It is known that C_{0} can not be the image of a holomorphic map $u: \mathbb{S}^{2} \rightarrow \mathbb{C P}^{2}$, hence C_{0} does not lie in $\widetilde{\mathcal{M}}\left(2\left[\mathbb{C P}^{1}\right], J_{0}\right)$. This shows that both $\widetilde{\mathcal{M}}\left(2\left[\mathbb{C P}^{1}\right], J_{0}\right)$ and $\widetilde{\mathcal{M}}^{*}\left(2\left[\mathbb{C P}^{1}\right], J_{0}\right)$ are non-compact.

The phenomenon illustrated in the above example is called bubbling, i.e., during the limiting process as $\lambda \rightarrow 0$, the holomorphic curves C_{λ} split off a (non-constant) J holomorphic 2 -sphere which carries strictly less energy than the original curves. The bubbling phenomenon is the primary cause of non-compactness of moduli space of J-holomorphic curves, and when $\Sigma=\mathbb{S}^{2}$ as what we currently consider, it is the only cause. In other words, if there is no bubbling, the space $\widetilde{\mathcal{M}}(A, J)$ is compact.

Next we give a simple criterion which ensures compactness. Recall that a homology class $B \in H_{2}(M ; \mathbb{Z})$ is called spherical if it may be represented by a map from \mathbb{S}^{2} into M. Suppose the symplectic manifold (M, ω) contains no spherical classes B such that

$$
0<\omega(B)<\omega(A) .
$$

Such a condition has two consequences: (1) every element $u \in \mathcal{M}(A, J)$ is simple because otherwise the image of u represents a spherical class B satisfying $0<$ $\omega(B)<\omega(A)$, this gives $\mathcal{M}^{*}(A, J)=\mathcal{M}(A, J)$, (2) there is no bubbling for elements in $\widetilde{\mathcal{M}}(A, J)$ because a split-off J-holomorphic 2 -sphere would represent a spherical class B satisfying $0<\omega(B)<\omega(A)$. This gives rise to the following simple version of the Gromov Compactness Theorem.
Theorem 1.8. (Gromov). Suppose there are no spherical classes B such that

$$
0<\omega(B)<\omega(A) .
$$

Then for any compact subset $W \in \mathcal{J}(M, \omega)$ (given with C^{∞}-topology), $\cup_{J \in W} \widetilde{\mathcal{M}}(A, J)$ is compact with respect to the C^{∞}-topology.

The full version of the Gromov Compactness Theorem states that the moduli space of J-holomorphic curves carrying a fixed homology class can be suitably compactified. This is where the closedness of ω plays a real role, cf. Proposition 1.5.

Fredholm theory. Finally, we discuss the Fredholm theory of J-holomorphic maps, which allows us to analyze the topological structure of the moduli spaces.

Fix a sufficiently large integer $l>0$, we consider the Banach manifold

$$
B \equiv\left\{u: \mathbb{S}^{2} \rightarrow M \mid u \text { is a } C^{l} \text {-map and } u_{*}\left[\mathbb{S}^{2}\right]=A\right\}
$$

and the Banach bundle $E \rightarrow B$, where the fiber over $u \in B$ is

$$
E_{u} \equiv\left\{v \mid v \text { is a } C^{l-1} \text {-section of } \operatorname{Hom}\left(T \mathbb{S}^{2}, u^{*} T M\right) \rightarrow \mathbb{S}^{2} \text { such that } v \circ j=-J \circ v\right\} .
$$

The Banach bundle $E \rightarrow B$ has a natural smooth section $s: B \rightarrow E$ defined by

$$
s: u \mapsto\left(u, \bar{\partial}_{J}(u)\right) .
$$

By the elliptic regularity of the equation $\bar{\partial}_{J}(u)=0$, any C^{l}-solution is automatically a smooth solution, so that the moduli space of J-holomorphic maps $\mathcal{M}(A, J)$ is simply the zero loci of s, i.e.,

$$
s^{-1}(\text { zero-section })=\mathcal{M}(A, J)
$$

A crucial fact is that $s: B \rightarrow E$ is a Fredholm section, which means that the linearization of $\bar{\partial}_{J}(u)$ for each $u \in B, D_{u}: T_{u} B \rightarrow E_{u}$, is a Fredholm operator between the Banach spaces. This has the following implication on the topological structure of the moduli space $\mathcal{M}(A, J)$.

- For any open subset $U \subset \mathcal{M}(A, J)$, if $D_{u}: T_{u} B \rightarrow E_{u}$ is onto for any $u \in U$, then U is a canonically oriented, finite dimensional smooth manifold whose dimension is given by the index of D_{u}, which can be computed via the AtiyahSinger index theorem in the following formula

$$
\text { Index } D_{u}=2 n\left(1-g_{\mathbb{S}^{2}}\right)+2 c_{1}(T M) \cdot A .
$$

Here $2 n=\operatorname{dim} M$ and $g_{\mathbb{S}^{2}}=0$ is the genus of \mathbb{S}^{2}. Such a J is called regular (with respect to U). (We remark that the same holds true if one allows J to vary in an oriented finite dimensional space.)
When J is integrable, the operator $D_{u}: T_{u} B \rightarrow E_{u}$ is simply the $\bar{\partial}$-operator $\bar{\partial}$: $\Omega^{0}\left(\mathbb{C P}^{1}, V\right) \rightarrow \Omega^{0,1}\left(\mathbb{C P}^{1}, V\right)$ where $V=u^{*} T M$ is a holomorphic vector bundle over $\mathbb{C P}^{1}$. The cokernel of D_{u} is simply the Dolbeault cohomology group $H_{\bar{\partial}}^{0,1}\left(\mathbb{C P}^{1}, V\right)$, which by Kodaira-Serre duality is isomorphic to the space of holomorphic sections of $V^{*} \otimes K$. Here V^{*} is the dual of V and K is the canonical bundle of $\mathbb{C P}^{1}$. The following lemma follows immediately from vanishing theorems of holomorphic vector bundles.

Lemma 1.9. Suppose J is integrable and $V=u^{*} T M \rightarrow \mathbb{C P}^{1}$ is a holomorphic vector bundle of non-negative curvature tensor. Then D_{u} is onto.

In general, using the Sard-Smale theorem one has
Theorem 1.10. There exists an open, dense subset $\mathcal{J}_{\text {reg }}(A) \subset \mathcal{J}(M, \omega)$ of second Bair category such that for any $J \in \mathcal{J}_{\text {reg }}(A)$, J is regular with respect to $\mathcal{M}^{*}(A, J)$, so that $\mathcal{M}^{*}(A, J)$ is a smooth manifold of dimension

$$
\operatorname{dim} M+2 c_{1}(T M) \cdot A
$$

Moreover, for any $J_{1}, J_{2} \in \mathcal{J}_{\text {reg }}(A)$, there exists a path $J_{t} \in \mathcal{J}(M, \omega)$ connecting J_{1}, J_{2} such that

$$
\cup_{t} \mathcal{M}^{*}\left(A, J_{t}\right)
$$

is an oriented smooth manifold with boundary which is the disjoint union of $\mathcal{M}^{*}\left(A, J_{1}\right)$ and $\mathcal{M}^{*}\left(A, J_{2}\right)$.

2. The non-squeezing theorem and Gromov invariant

As one of the first applications of J-holomorphic curve theory, we describe the proof of the following non-squeezing theorem, where $B^{2 n}(R)$ denotes the closed ball of radius R in $\mathbb{R}^{2 n}$ which is equipped with the standard symplectic structure ω_{0}.

Theorem 2.1. (Gromov, 1985). There exist no symplectic embeddings $B^{2 n}(1) \rightarrow$ $B^{2}(r) \times \mathbb{R}^{2 n-2}$ if $r<1$.

Proof. Suppose to the contrary, there exists an symplectic embedding $\psi: B^{2 n}(1) \rightarrow$ $B^{2}(r) \times \mathbb{R}^{2 n-2}$ for some $r<1$. Fix any $\epsilon>0$, we consider $B^{2}(r)$ as a subset of \mathbb{S}^{2} which is given a symplectic form σ with total area $\pi r^{2}+\epsilon$. On the other hand, since $\psi\left(B^{2 n}(1)\right)$ is compact, its projection into the $\mathbb{R}^{2 n-2}$ factor is contained in an open ball of radius λ centered at the origin. Let $T^{2 n-2}$ be the torus which is $\mathbb{R}^{2 n-2}$ modulo the lattice $\left\{\left(x_{1}, \cdots, x_{2 n}\right) \cdot \lambda \mid x_{j} \in \mathbb{Z}\right\}$, which inherits a natural symplectic form ω_{0}. We set $M=\mathbb{S}^{2} \times T^{2 n-2}$, which is given with the product symplectic structure $\omega=\sigma \oplus \omega_{0}$. With this understood, note that there is a symplectic embedding $\psi:\left(B^{2 n}(1), \omega_{0}\right) \rightarrow(M, \omega)$. We set $p_{0}=\psi(0)$ where $0 \in B^{2 n}(1)$ is the origin.

Lemma 2.2. For any $J \in \mathcal{J}(M, \omega)$, there exists a ratinal J-holomorphic curve C which contains p_{0} and carries the homology class $\left[\mathbb{S}^{2} \times\{p t\}\right]$.

Assuming Lemma 2.2 momentarily, the proof of Theorem 2.1 goes as follows. Note that there is a $J \in \mathcal{J}(M, \omega)$ such that the pull-back almost complex structure $\psi^{*} J$ is the standard complex structure J_{0} on $B^{2 n}(1)$. Let C be the rational J-holomorphic curve which contains p_{0} and carries the homology class $\left[\mathbb{S}^{2} \times\{p t\}\right]$. We set $C^{\prime} \equiv$ $\psi^{-1}(C) \subset B^{2 n}(1)$. Then C^{\prime} is a holomorphic curve in $B^{2 n}(1)$ containing the origin. Particularly, C^{\prime} is a minimal surface, and by the theory of minimal surfaces, the area of C^{\prime} is at least the area of the flat plane contained in $B^{2 n}(1)$, which equals π. This gives rise to the following inequalities

$$
\pi \leq \operatorname{Area}\left(C^{\prime}\right)=\int_{C^{\prime}} \omega_{0}=\int_{\psi\left(C^{\prime}\right)} \omega \leq \int_{C} \omega=\int_{\mathbb{S}^{2}} \sigma=\pi r^{2}+\epsilon .
$$

Let $\epsilon \rightarrow 0$, we obtain $\pi \leq \pi r^{2}$, which contradicts the assumption $r<1$. This proves the non-squeezing theorem.

The basic idea behind the proof of Lemma 2.2 is the so-called Gromov invariant, which is the "number" of rational J-holomorphic curves (counted with signs) for a given J, that carries a given homology class and satisfies a certain topological constraint. (Such a count of J-holomorphic curves is supposed to be independent of the choice of J.) Lemma 2.2 basically says that the Gromov invariant which counts the
number of rational curves carrying a homology class $\left[\mathbb{S}^{2} \times\{p t\}\right]$ and passing through a given point in M is non-zero.

We shall next explain how to define such a Gromov invarint in the current context, and explain why the Gromov invariant is non-zero.

To this end, we set $A=\left[\mathbb{S}^{2} \times\{p t\}\right] \in H_{2}(M ; \mathbb{Z})$. Since $\omega=\sigma \oplus \omega_{0}$ is a product symplectic structure, $c_{1}(T M)=c_{1}\left(T \mathbb{S}^{2}\right)+c_{1}\left(T^{2 n-2}\right)$, so that

$$
c_{1}(T M) \cdot A=c_{1}\left(T \mathbb{S}^{2}\right) \cdot A=2
$$

By Theorem 1.10, there is an open, dense subset of second Bair category $\mathcal{J}_{\text {reg }}(A) \subset$ $\mathcal{J}(M, \omega)$, such that for any $J \in \mathcal{J}_{\text {reg }}(A)$, the space $\mathcal{M}^{*}(A, J)$ is an oriented smooth manifold of dimension

$$
\operatorname{dim} M+2 c_{1}(T M) \cdot A=2 n+4
$$

In the present case, since A is a generator of $H_{2}(M, \mathbb{Z})=\mathbb{Z}$, there are no spherical classes B such that $0<\omega(B)<\omega(A)$, so that by Theorem $1.8, \mathcal{M}(A, J)=\mathcal{M}^{*}(A, J)$, and the quotient space $\widetilde{\mathcal{M}}(A, J)$ is compact, which is an oriented smooth manifold of dimension

$$
\operatorname{dim} \widetilde{\mathcal{M}}(A, J)=\operatorname{dim} \mathcal{M}^{*}(A, J)-\operatorname{dim} \operatorname{PSL}(2, \mathbb{C})=2 n+4-6=2 n-2
$$

Denote $\operatorname{PSL}(2, \mathbb{C})$ by G, and set $\mathcal{M}(A, J) \times{ }_{G} \mathbb{S}^{2} \equiv\left(\mathcal{M}(A, J) \times \mathbb{S}^{2}\right) / G$ where G acts on $\mathcal{M}(A, J) \times \mathbb{S}^{2}$ via $\phi \cdot(u, z)=\left(u \circ \phi^{-1}, \phi(z)\right)$. Then $\mathcal{M}(A, J) \times{ }_{G} \mathbb{S}^{2}$ is a compact, oriented smooth manifold of dimension $2 n$, which is a \mathbb{S}^{2}-bundle over $\widetilde{\mathcal{M}}(A, J)$. The evaluation map

$$
e v: \mathcal{M}(A, J) \times_{G} \mathbb{S}^{2} \rightarrow M, \quad[(u, z)] \mapsto u(z)
$$

is a smooth map between two compact, oriented smooth manifolds of the same dimension. The degree of $e v$, which is the image of the fundamental class of $\mathcal{M}(A, J) \times{ }_{G} \mathbb{S}^{2}$ under $e v_{*}: H_{2 n}\left(\mathcal{M}(A, J) \times_{G} \mathbb{S}^{2} ; \mathbb{Z}\right) \rightarrow H_{2 n}(M ; \mathbb{Z})=\mathbb{Z}$, can be geometrically interpreted as a count with signs of the points in the pre-image $e v^{-1}(p)$ for any generic point $p \in M$. On the other hand, $\mathcal{M}(A, J) \times{ }_{G} \mathbb{S}^{2}$ as a \mathbb{S}^{2}-bundle over $\widetilde{\mathcal{M}}(A, J)$ may be regarded as the space of rational J-holomorphic curves $C \in \widetilde{\mathcal{M}}(A, J)$ with a marked point $z \in \mathbb{S}^{2}$ in the de-singularization of C. Thus the degree of $e v$ is a count with signs of the number of rational J-holomorphic curves with a marked point, which carry the homology class A and pass through a given generic point $p \in M$ at the marked point. The Gromov invariant involved in the current problem is defined to be the degree of the evaluation map $e v: \mathcal{M}(A, J) \times_{G} \mathbb{S}^{2} \rightarrow M$. Note that the Gromov invariant is independent of the choice of $J \in \mathcal{J}_{\text {reg }}(A)$. This is because by Theorem 1.10, for any $J_{1}, J_{2} \in \mathcal{J}_{\text {reg }}(A)$, there exists a path $J_{t} \in \mathcal{J}(M, \omega)$ connecting J_{1}, J_{2} such that $\cup_{t} \mathcal{M}\left(A, J_{t}\right)$ is an oriented smooth manifold with boundary which is the disjoint union of $\mathcal{M}\left(A, J_{1}\right)$ and $\mathcal{M}\left(A, J_{2}\right)$. It follows that $\cup_{t} \mathcal{M}\left(A, J_{t}\right) \times_{G} \mathbb{S}^{2}$ is a cobordism between $\mathcal{M}\left(A, J_{1}\right) \times_{G} \mathbb{S}^{2}$ and $\mathcal{M}\left(A, J_{2}\right) \times{ }_{G} \mathbb{S}^{2}$, hence the degree of $e v$ is the same for J_{1}, J_{2}. This shows that the Gromov invariant is independent of the choice of $J \in \mathcal{J}_{\text {reg }}(A)$.

In order to show that the Gromov invariant is non-zero, we consider a special $J \in \mathcal{J}_{\text {reg }}(A)$. Let j, J_{0} be the complex structure on \mathbb{S}^{2} and $T^{2 n-2}$ respectively, and let $J=j \times J_{0}$ be the product which lies in $\mathcal{J}(M, \omega)$.

For any $u \in \mathcal{M}(A, J)$, since $J=j \times J_{0}$, the map $p r \circ u: \mathbb{S}^{2} \rightarrow T^{2 n-2}$, where $p r: M \rightarrow T^{2 n-2}$ is the projection, is J_{0}-holomorphic. But $p r \circ u$ carries a trivial homology class, hence by Proposition 1.5, $p r \circ u$ is a constant map. This shows that any $u \in \mathcal{M}(A, J)$ has the form $u: z \mapsto(\phi(z), x)$ for some $\phi \in G=\operatorname{PSL}(2, \mathbb{C})$ and $x \in T^{2 n-2}$.

There are two consequences of this fact: (1) For any $u \in \mathcal{M}(A, J), u^{*} T M$ is isomorphic as a holomorphic vector bundle to $T \mathbb{S}^{2} \oplus E$ where E is a trivial bundle of rank $n-1$. By Lemma 1.9, D_{u} is onto for any $u \in \mathcal{M}(A, J)$, so that $J \in \mathcal{J}_{\text {reg }}(A)$. (2) The correspondence $u \mapsto(\phi, x)$ gives an identification of $\mathcal{M}(A, J)$ with $G \times T^{2 n-2}$, and hence $\widetilde{\mathcal{M}}(A, J)$ with $T^{2 n-2}$ and $\mathcal{M}(A, J) \times{ }_{G} \mathbb{S}^{2}$ with $\mathbb{S}^{2} \times T^{2 n-2}=M$. It follows that the evaluation map ev: $\mathcal{M}(A, J) \times{ }_{G} \mathbb{S}^{2} \rightarrow M$ is a diffeomorphism, and the degree of $e v$ is ± 1. This proves that the Gromov invariant is non-zero.

Proof of Lemma 2.2.
Note that the non-vanishing of Gromov invariant only implies immediately that for any $J \in \mathcal{J}_{\text {reg }}(A)$, and for any generic point $p \in M$, there exists a J-holomorphic curve $C \in \widetilde{\mathcal{M}}(A, J)$ such that $p \in C$. This is different from the claim in Lemma 2.2 that in fact such a J-holomorphic curve exists for any $J \in \mathcal{J}(M, \omega)$ and any point $p \in M$ (in particular, $p_{0} \in M$).

To get around of this, we use the Gromov Compactness Theorem, Theorem 1.8. We pick a sequence of $J_{n} \in \mathcal{J}_{\text {reg }}(A)$, since $\mathcal{J}_{\text {reg }}(A)$ is dense in $\mathcal{J}(M, \omega)$, which converges to $J \in \mathcal{J}(M, \omega)$ in C^{∞}-topology, and we pick a sequence of generic points p_{n} converging to $p_{0} \in M$, such that for each n, there exists a J_{n}-holomorphic curve C_{n} such that $p_{n} \in C_{n}$. By Theorem 1.8, a subsequence of $\left\{C_{n}\right\}$ converges to a $C \in \widetilde{\mathcal{M}}(A, J)$ such that $p_{0}=\lim _{n \rightarrow \infty} p_{n} \in C$. This proves Lemma 2.2.

3. J-Holomorphic curves in dimension 4

The J-holomorphic curve theory in dimension 4 is particularly more powerful because there are additional tools which allow one to analyse the singularies of a J holomorphic curve. On the other hand, the existence of certain types of J-holomorphic curves actually can be derived from the underlying differential topology of the symplectic 4-manifold, due to the deep analytical work of Cliff Taubes.

Let (M, J) be an almost complex 4-manifold, and let $C \subset M$ be a J-holomorphic curve parametrized by a simple J-holomorphic map $u: \Sigma \rightarrow M$. The following theorem gives a criterion, amongst other things, for the embeddedness of C.

Theorem 3.1. (Adjunction Inequality). Let g_{Σ} be the genus of Σ. Then the inequality

$$
\frac{1}{2}\left(C^{2}-c_{1}(T M) \cdot C\right)+1 \geq g_{\Sigma}
$$

holds with equality if and only if C is embedded.
In particular, a rational J-holomorphic curve must be embedded if it is homologous to an embedded rational J-holomorphic curve. This explains why the singular curve C_{0} in Example 1.7 can not be the image of a holomorphic map $u: \mathbb{S}^{2} \rightarrow \mathbb{C P}^{2}$.

Example 3.2. (Algebraic curves in $\mathbb{C P}^{2}$). For notations we denote by $\left[\mathbb{C P}^{1}\right]$ the generator of $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$ which is the class of a line. Using Poincaré duality, we identify $H^{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$ with $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$.

We first consider non-singular algebraic curves in $\mathbb{C P}^{2}$. Let C be a line in $\mathbb{C P}^{2}$. Then $C^{2}=1$, and

$$
\frac{1}{2}\left(C^{2}-c_{1}\left(T \mathbb{C P}^{2}\right) \cdot C\right)+1=0
$$

which implies that $c_{1}\left(T \mathbb{C P}^{2}\right)=3 \cdot\left[\mathbb{C P}^{1}\right]$.
Now let C_{d} be any non-singular algebraic curve of degree d. Then $C_{d}^{2}=d^{2}$ and $c_{1}\left(T \mathbb{C P}^{2}\right) \cdot C_{d}=3 d$. This gives rise to the following genus formula for C_{d} :

$$
\text { genus }\left(C_{d}\right)=\frac{1}{2}\left(C_{d}^{2}-c_{1}\left(T \mathbb{C P}^{2}\right) \cdot C_{d}\right)+1=\frac{1}{2}(d-1)(d-2) .
$$

Next we consider a singular algebraic curve, the cusp curve

$$
C_{0}=\left\{\left[z_{0}, z_{1}, z_{2}\right] \in \mathbb{C P}^{2} \mid z_{1}^{3}=z_{0} z_{2}^{2}\right\} .
$$

C_{0} is of degree 3 and has a cusp singularity at $[1,0,0]$. The left-hand side of the adjunction inequality for C_{0} is

$$
\frac{1}{2}\left(C_{0}^{2}-c_{1}\left(T \mathbb{C P}^{2}\right) \cdot C_{0}\right)+1=\frac{1}{2}\left(3^{2}-3 \cdot 3\right)+1=1
$$

Since C_{0} is singular, C_{0} can only be parametrized by a holomorphic map from a genus zero Riemann surface, i.e., \mathbb{S}^{2}, so C_{0} belongs to $\widetilde{\mathcal{M}}^{*}\left(3\left[\mathbb{C P}^{1}\right], J_{0}\right)$. On the other hand, C_{0} is the limit of a family of non-singular cubic curves $(\lambda \neq 0)$

$$
C_{\lambda}=\left\{\left[z_{0}, z_{1}, z_{2}\right] \in \mathbb{C P}^{2} \mid z_{1}^{3}=z_{0} z_{2}^{2}+\lambda z_{0}^{3}\right\}
$$

as $\lambda \rightarrow 0$. We remark that this also represents a certain kind of non-compactness phenomenon in the Gromov Compactness Theorem.

As an application of Theorem 3.1, we prove the following non-existence result.
Proposition 3.3. For a generic almost complex structure J, there exist no rational J-holomorphic curves C such that $C^{2} \leq-2$, and there exist at most embedded rational J-holomorphic curves C with $C^{2}=-1$.

Proof. Suppose C is a rational J-holomorphic curve such that $C^{2} \leq-2$. Then the adjunction inequality implies that

$$
c_{1}(T M) \cdot C \leq C^{2}+2 \leq-2+2=0 .
$$

On the other hand, for a generic almost complex structure J (cf. Theorem 1.10), the space $\mathcal{M}^{*}([C], J)$ is a smooth manifold of dimension $4+2 c_{1}(T M) \cdot C \leq 4$. Since $G=\operatorname{PSL}(2, \mathbb{C})$ is 6 -dimensional and acts on $\mathcal{M}^{*}([C], J)$ freely if it is non-empty, we see that $\mathcal{M}^{*}([C], J)$ must be at least 6 -dimensional. This proves that for a generic almost complex structure, there exist no rational curves C with $C^{2} \leq-2$. The proof for the case of $C^{2}=-1$ is similar and we leave the details to the reader.

The above proposition shows that in a symplectic 4-manifold, the only interesting rational J-holomorphic curves are those with non-negative self-intersection. Because if J is taken generic, the only rational J-holomorphic curves with negative self-intersection are the embedded ones with self-intersection -1 . By the symplectic neighborhood theorem, the symplectic 4-manifold can be symplectically blown down along these (-1)-curves, and the resulting symplectic 4 -manifold does not have any rational J-holomorphic curves with negative self-intersection for a generic J. A symplectic 4-manifold is called minimal if it contains no embedded symplectic 2 -spheres with self-intersection -1 (i.e., it can not be symplectically blown down).

The following theorem is useful in analysing the intersection of two distinct J holomorphic curves.

Theorem 3.4. (Positivity of Intersection) Let C, C^{\prime} be two distinct J-holomorphic curves in a compact almost complex 4-manifold. Then the intersection of C, C^{\prime} consists of at most finitely many points. Moreover, the intersection product

$$
C \cdot C^{\prime}=\sum_{p \in C \cap C^{\prime}} k_{p}
$$

where $k_{p} \in \mathbb{Z}^{+}$, and $k_{p}=1$ if and only if both C, C^{\prime} are embedded near p and the intersection at p is transverse.

In particular, $C \cdot C^{\prime} \geq 0$, and if $C \cdot C^{\prime}=0$, then C, C^{\prime} are disjoint. If $C \cdot C^{\prime}=1$, then C, C^{\prime} intersect at exactly one point and the intersection must be transverse.

Suppose C is an embedded rational J-holomorphic curve with $C^{2}=0$, and suppose C^{\prime} is another rational J-holomorphic curve which is homologous to C. Then on the one hand, the adjunction inequality implies C^{\prime} must also be embedded, and on the other hand, the positivity of intersection implies that C, C^{\prime} must be disjoint. Thus if the moduli space of such rational curves has a positive dimension, they may be used to fill up the whole manifold. In order to do this, we need the following regularity criterion for J.

Lemma 3.5. Suppose C is an immersed rational J-holomorphic curve in an almost complex 4-manifold (M, J) such that $c_{1}(T M) \cdot C>0$. Then for any simple J-holomorphic map $u: \mathbb{S}^{2} \rightarrow M$ parametrizing C, the linearization D_{u} of $\bar{\partial}_{J}(u)=0$ is onto.

We combine these tools to give a proof of the following structural theorem of symplectic 4-manifolds which contain an embedded rational curve of self-intersection 0 .

Theorem 3.6. Let (M, ω) be a symplectic 4-manifold which contains an embedded symplectic 2 -sphere C with $C^{2}=0$. Suppose that M contains no spherical classes B such that $0<\omega(B)<\omega(C)$. Then M must be diffeomorphic to a \mathbb{S}^{2}-bundle over a surface.

Proof. Pick a $J \in \mathcal{J}(M, \omega)$ such that C is J-holomorphic. Then by the adjunction inequality every element in $\widetilde{\mathcal{M}}^{*}([C], J)$ is embedded, and since

$$
c_{1}(T M) \cdot C=C^{2}+2=2>0
$$

by Lemma 3.5, the space $\mathcal{M}^{*}([C], J)$ is an oriented smooth manifold of dimension

$$
\operatorname{dim} M+2 c_{1}(T M) \cdot C=4+2 \cdot 2=8
$$

Consequently, $\widetilde{\mathcal{M}}^{*}([C], J)$ is an oriented surface, which is compact by Theorem 1.8. With this understood, M is diffeomorphic to the \mathbb{S}^{2}-bundle over $\widetilde{\mathcal{M}}^{*}([C], J)$ via

$$
e v: \mathcal{M}^{*}([C], J) \times{ }_{G} \mathbb{S}^{2} \rightarrow M, \quad[(u, z)] \mapsto u(z),
$$

where $G=\operatorname{PSL}(2, \mathbb{C})$.

Suppose in the above theorem, M contains another embedded symplectic 2-sphere C^{\prime} such that $C^{\prime} \cdot C^{\prime}=0$, which intersects with C transversely and positively at a single point. Then one can arrange $J \in \mathcal{J}(M, \omega)$ such that both C, C^{\prime} are J holomorphic. Suppose furthermore that there are also no spherical classes B such that $0<\omega(B)<\omega\left(C^{\prime}\right)$, then $\widetilde{\mathcal{M}}^{*}\left(\left[C^{\prime}\right], J\right)$ is precisely the space of J-holomorphic sections of $\mathcal{M}^{*}([C], J) \times{ }_{G} \mathbb{S}^{2}$ under $e v$. It is easily seen that in this case there is a diffeomorphism $\psi: \mathbb{S}^{2} \times \mathbb{S}^{2} \rightarrow M$ such that the 2 -spheres $\psi\left(\mathbb{S}^{2} \times\{p t\}\right)$ and $\psi\left(\{p t\} \times \mathbb{S}^{2}\right)$ are symplectic in M. This fact was exploited in the proof of the following theorem.
Theorem 3.7. (Gromov-Taubes). For any symplectic structure ω on $\mathbb{C P}^{2}$, there is a diffeomorphism $\psi: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ such that $\psi^{*} \omega$ is a multiple of the standard FubiniStudy form ω_{0}.

The proof of Theorem 3.7 consists of two steps. Step 1, which is due to Taubes and uses his deep work on Seiberg-Witten theory of symplectic 4-manifolds, asserts that there exists an embedded symplectic 2 -sphere C with $C^{2}=1$. The complement $\mathbb{C P}^{2} \backslash \nu(C)$ of a regular neighborhood of C is a homotopy 4-ball W with $\partial W=\mathbb{S}^{3}$ (Van-Kampen plus Mayer-Vietoris). By the symplectic neighborhood theorem, the symplectic form ω equals the standard symplectic form on \mathbb{R}^{4} in a regular neighborhood of ∂W, which is identified with $\left\{x \in \mathbb{R}^{4} \mid \delta_{0}-\epsilon<\|x\|^{2} \leq \delta_{0}\right\}$ for some δ_{0} and $\epsilon>0$.

Step 2: (Gromov). There exists a symplectomorphism $B^{4}\left(\delta_{0}\right) \rightarrow W$ which is identity near the boundaries.

The proof of Step 2 goes as follows. Pick a large enough polydisc $D^{2} \times D^{2} \subset \mathbb{R}^{4}$ which contains $B^{4}\left(\delta_{0}\right)$, and embedded $D^{2} \times D^{2}$ into $\mathbb{S}^{2} \times \mathbb{S}^{2}$ via some embedding $D^{2} \subset \mathbb{S}^{2}$. Then one removes $B^{4}\left(\delta_{0}\right)$ from $\mathbb{S}^{2} \times \mathbb{S}^{2}$ and then glues back W. Call the resulting symplectic 4 -manifold M. Apply the remarks following Theorem 3.6 to M (for details see [1], pages 314-319).

References

[1] D. McDuff and D. Salamon, J-Holomorphic Curves and Symplectic Topology, Colloquium Publications 52, AMS, 2004.

