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1. Basic elements of J-holomorphic curve theory

Let (M,ω) be a symplectic manifold of dimension 2n, and let J ∈ J (M,ω) be an
ω-compatible almost complex structure. Let gJ(·, ·) ≡ ω(·, J ·) be the corresponding
hermitian metric (i.e. J-invariant Riemannian metric) on M .

Let (Σ, j) be a Riemann surface (not necessarily compact) with complex structure
j. A smooth map u : Σ → M is called a (J, j)-holomorphic map (or simply a
J-holomorphic map) if du ◦ j = J ◦ du, or equivalently,

∂̄J(u) ≡
1
2
(du+ J ◦ du ◦ j) = 0.

The equation ∂̄J(u) = 0 is a first order, non-linear equation of Cauchy-Riemann
type. We give a description of it in a local coordinate system. Let z0 ∈ Σ be any
point and let p = u(z0) ∈ M be its image in M under u. Supppose s + it is a local
holomorphic coordinate centered at z0 and φ : U → R2n is a local chart centered at
p ∈M . Set φ ◦ u = (u1, · · · , u2n)T . Then

∂̄J(u) =
1
2
((∂suj) + J(u1, · · · , u2n)(∂tuj))ds+

1
2
((∂tuj)− J(u1, · · · , u2n)(∂suj))dt,

and ∂̄J(u) = 0 is equivalent to

(∂suj) + J(u1, · · · , u2n)(∂tuj) = 0.

If J is integrable and (u1, · · · , u2n) is coming from a local holomorphic coordinate
system (z1, · · · , zn) with zj = uj+iuj+n, j = 1, · · · , n, then J(u1, · · · , u2n) is constant
in u1, · · · , u2n and equals the matrix

J0 =
(

0 −I
I 0

)
where I denotes the n × n identity matrix. In this case, ∂̄J(u) = 0 becomes the
Cauchy-Riemann equations

∂su
j − ∂tu

j+n = 0, ∂su
j+n + ∂su

j = 0, j = 1, · · · , n.

Hence when J is integrable, J-holomorphic maps are simply the usual holomorphic
maps. On the other hand, it is easy to see that for a general J , the linearization of the
non-linear equation ∂̄J(u) = 0 is a zero-th order perturbation of the Cauchy-Riemann
equations.

Local properties. We shall next list several relevant local analytical properties of
J-holomorphic maps.
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Let u, v : Σ → M be two smooth maps and let z0 ∈ Σ be a point. We say that
u, v agree to the infinite order at z0 if u(z0) = v(z0) = p0, and there is a local chart
centered at p0, φ : U → R2n, such that all partial derivatives of the R2n-valued function
φ ◦ u− φ ◦ v vanish at z0.

Proposition 1.1. (Unique continuation). If u, v : Σ → M are two J-holomorphic
maps which agree to the infinite order at a point z0 ∈ Σ, then u ≡ v in the connetced
component of Σ which contains z0.

Let u : Σ →M be a J-holomorphic map. A point z ∈ Σ is called a critical point
if du(z) = 0. Correspondingly the image u(z) ∈ M is called a critical value. We
remark that u is locally an embedding at any point which is not a critical point. To
see this, we suppose du(z) 6= 0 for some z ∈ Σ. Let u(z) = p and let s+ it be a local
holomorphic coordinate centered at z. Then du(z) 6= 0 means that either ∂su(z) ∈
TpM or ∂tu(z) ∈ TpM is non-zero. But u is J-holomorphic so that ∂su+J(u)∂tu = 0,
which implies that both ∂su(z), ∂tu(z) ∈ TpM are non-zero. Hence u is locally an
embedding near z.

Lemma 1.2. A critical point of a non-constant J-holomorphic map is isolated. In
particular, a non-constant J-holomorphic map from a compact Riemann surface has
only finitely many critical points.

Lemma 1.3. Let Ω ⊂ C be an open neighborhood of 0 ∈ C and let u, v : Ω → M be
J-holomorphic maps such that

u(0) = v(0), du(0) 6= 0.

Moreover, assume that there exist sequences zn, wn ∈ Ω such that

u(zn) = v(wn), lim
n→∞

zn = lim
n→∞

wn = 0, wn 6= 0.

Then there exists a holomorphic function φ : Bε(0) → Ω defined in some neighborhood
of 0 ∈ C such that φ(0) = 0 and

v = u ◦ φ.

Lemmas 1.2 and 1.3 have the following consequence.

Corollary 1.4. Let u : Σ →M be a non-constant J-holomorphic map from a compact
Riemann surface. Then there exists a compact Riemann surface Σ′ and a non-constant
J-holomorphic map v : Σ′ →M such that in the complement of finitely many points, v
is an embedding onto its image. Moreover, there exists a biholomorphism or branched
covering map φ : Σ → Σ′ such that

u = v ◦ φ.

The map v in the above corollary is called simple and the map u is called multiply
covered if deg(φ) > 1. The image C ≡ Im v is called a J-holomorphic curve in M ,
and the map v : Σ′ → M is called a parametrization of C. We call C a rational
J-holomorphic curve if Σ′ = S2.

Let u : Σ → M be a smooth map, where Σ is given a complex structure j, M is
given a J ∈ J (M,ω). We denote by gJ the associated hermitian metric on M . In
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order to define the energy of the map u, we fix a Kähler metric h on Σ, and with h
and gJ , the norm |du| is well-defined. We define the energy of u to be

E(u) ≡
∫

Σ
|du|2dvolΣ.

An important fact about E(u) is that even though the energy density |du|2 may
depend on the choice of the Kähler metric h on Σ, the energy E(u) depends only on
the complex structure j, i.e., E(u) is invariant under comformal transformations on
the domain of u.

The following energy identity can be easily derived

E(u) =
∫

Σ
|∂̄J(u)|2dvolΣ +

∫
Σ
u∗ω,

which has the following important consequence. (This is where the closedness of ω
plays a real role.)

Proposition 1.5. J-holomorphic maps are the absolute minima of the energy func-
tional E(u) amongst the smooth maps u which carry a fixed homology class in M . In
particular, J-holomorphic maps are harmonic maps, and the energy of a J-holomorphic
map depends only on the homology class it carries, and a J-holomorphic map must be
constant if it carries a trivial homology class.

Finally, we give the following important local analytical property of J-holomorphic
maps.

Theorem 1.6. (Removal of singularities) Let D ⊂ C be the unit disc containing 0
and let u : D \ {0} → M be a J-holomorphic map such that E(u) <∞. Then u may
be extended to a J-holomorphic map û : D →M with û|D\{0} = u.

Next we consider the moduli space of J-holomorphic maps. For simplicity, we shall
assume Σ = S2. In this case, the complex structure j is unique, and the group of
biholomorphisms of Σ is the group of Möbius trnsformations G = PSL(2,C):

z 7→ az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1.

Fix a non-zero homology class 0 6= A ∈ H2(M ; Z). We consider the space of J-
holomorphic maps

M(A, J) = {u : S2 →M |u is J-holomorphic and u∗[S2] = A},
and the subspace of M(A, J) consisting of simple J-holomorphic maps

M∗(A, J) = {u : S2 →M |u is J-holomorphic and simple, and u∗[S2] = A}.
Note that the group G = PSL(2,C) acts on M(A, J) via reparametrization

φ · u = u ◦ φ−1, ∀φ ∈ G, u ∈M(A, J),

which is free when restricted on the subspace M∗(A, J). We denote the quotient space
by M̃(A, J) and M̃∗(A, J) respectively. Note that M̃∗(A, J) is exactly the space of
J-holomorphic curves C such that the homology class of C is A. We remark that
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when A is a primitive class, i.e., A is not an integral multiple of another integral class,
M(A, J) = M∗(A, J).

Compactness. One of the fundamental issues concerning the moduli spaces is com-
pactness. Note that the group G = PSL(2,C) acts freely on M∗(A, J) and G is
not a compact group. Hence the moduli space of J-holomorphic maps M(A, J) and
M∗(A, J) can not be compact, and one could best hope that the quotient spaces
M̃(A, J) and M̃∗(A, J) are compact. However, this is also not true in general, as
illustrated in the following example.

Example 1.7. Consider a family of holomorphic curves of degree 2 in CP2 parametrized
by 0 6= λ ∈ C

Cλ = {[z0, z1, z2]|λz2
0 = z1z2} ∈ M̃∗(2[CP1], J0).

Here [CP1] ∈ H2(CP2; Z) is the class of a line, and J0 is the complex structure of CP2.
As λ→ 0, Cλ converges to a union of two lines

C0 = {[z0, z1, z2]|z1z2 = 0} = {[z0, 0, z2]} ∪ {[z0, z1, 0]}
which intersect transversely at [1, 0, 0]. It is known that C0 can not be the image of a
holomorphic map u : S2 → CP2, hence C0 does not lie in M̃(2[CP1], J0). This shows
that both M̃(2[CP1], J0) and M̃∗(2[CP1], J0) are non-compact.

The phenomenon illustrated in the above example is called bubbling, i.e., during
the limiting process as λ→ 0, the holomorphic curves Cλ split off a (non-constant) J-
holomorphic 2-sphere which carries strictly less energy than the original curves. The
bubbling phenomenon is the primary cause of non-compactness of moduli space of
J-holomorphic curves, and when Σ = S2 as what we currently consider, it is the only
cause. In other words, if there is no bubbling, the space M̃(A, J) is compact.

Next we give a simple criterion which ensures compactness. Recall that a homology
class B ∈ H2(M ; Z) is called spherical if it may be represented by a map from S2

into M . Suppose the symplectic manifold (M,ω) contains no spherical classes B such
that

0 < ω(B) < ω(A).
Such a condition has two consequences: (1) every element u ∈ M(A, J) is sim-
ple because otherwise the image of u represents a spherical class B satisfying 0 <
ω(B) < ω(A), this gives M∗(A, J) = M(A, J), (2) there is no bubbling for elements
in M̃(A, J) because a split-off J-holomorphic 2-sphere would represent a spherical
class B satisfying 0 < ω(B) < ω(A). This gives rise to the following simple version of
the Gromov Compactness Theorem.

Theorem 1.8. (Gromov). Suppose there are no spherical classes B such that

0 < ω(B) < ω(A).

Then for any compact subset W ∈ J (M,ω) (given with C∞-topology), ∪J∈WM̃(A, J)
is compact with respect to the C∞-topology.

The full version of the Gromov Compactness Theorem states that the moduli space
of J-holomorphic curves carrying a fixed homology class can be suitably compactified.
This is where the closedness of ω plays a real role, cf. Proposition 1.5.
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Fredholm theory. Finally, we discuss the Fredholm theory of J-holomorphic maps,
which allows us to analyze the topological structure of the moduli spaces.

Fix a sufficiently large integer l > 0, we consider the Banach manifold

B ≡ {u : S2 →M |u is a C l-map and u∗[S2] = A}

and the Banach bundle E → B, where the fiber over u ∈ B is

Eu ≡ {v|v is a C l−1-section of Hom(TS2, u∗TM) → S2 such that v ◦ j = −J ◦ v}.

The Banach bundle E → B has a natural smooth section s : B → E defined by

s : u 7→ (u, ∂̄J(u)).

By the elliptic regularity of the equation ∂̄J(u) = 0, any C l-solution is automatically a
smooth solution, so that the moduli space of J-holomorphic maps M(A, J) is simply
the zero loci of s, i.e.,

s−1(zero-section) = M(A, J).

A crucial fact is that s : B → E is a Fredholm section, which means that the
linearization of ∂̄J(u) for each u ∈ B, Du : TuB → Eu, is a Fredholm operator
between the Banach spaces. This has the following implication on the topological
structure of the moduli space M(A, J).

• For any open subset U ⊂ M(A, J), if Du : TuB → Eu is onto for any u ∈ U ,
then U is a canonically oriented, finite dimensional smooth manifold whose
dimension is given by the index of Du, which can be computed via the Atiyah-
Singer index theorem in the following formula

Index Du = 2n(1− gS2) + 2c1(TM) ·A.

Here 2n = dimM and gS2 = 0 is the genus of S2. Such a J is called regular
(with respect to U). (We remark that the same holds true if one allows J to
vary in an oriented finite dimensional space.)

When J is integrable, the operator Du : TuB → Eu is simply the ∂̄-operator ∂̄ :
Ω0(CP1, V ) → Ω0,1(CP1, V ) where V = u∗TM is a holomorphic vector bundle over
CP1. The cokernel of Du is simply the Dolbeault cohomology group H0,1

∂̄
(CP1, V ),

which by Kodaira-Serre duality is isomorphic to the space of holomorphic sections of
V ∗⊗K. Here V ∗ is the dual of V and K is the canonical bundle of CP1. The following
lemma follows immediately from vanishing theorems of holomorphic vector bundles.

Lemma 1.9. Suppose J is integrable and V = u∗TM → CP1 is a holomorphic vector
bundle of non-negative curvature tensor. Then Du is onto.

In general, using the Sard-Smale theorem one has

Theorem 1.10. There exists an open, dense subset Jreg(A) ⊂ J (M,ω) of second
Bair category such that for any J ∈ Jreg(A), J is regular with respect to M∗(A, J),
so that M∗(A, J) is a smooth manifold of dimension

dimM + 2c1(TM) ·A.
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Moreover, for any J1, J2 ∈ Jreg(A), there exists a path Jt ∈ J (M,ω) connecting J1, J2

such that
∪tM∗(A, Jt)

is an oriented smooth manifold with boundary which is the disjoint union of M∗(A, J1)
and M∗(A, J2).

2. The non-squeezing theorem and Gromov invariant

As one of the first applications of J-holomorphic curve theory, we describe the proof
of the following non-squeezing theorem, where B2n(R) denotes the closed ball of radius
R in R2n which is equipped with the standard symplectic structure ω0.

Theorem 2.1. (Gromov, 1985). There exist no symplectic embeddings B2n(1) →
B2(r)× R2n−2 if r < 1.

Proof. Suppose to the contrary, there exists an symplectic embedding ψ : B2n(1) →
B2(r) × R2n−2 for some r < 1. Fix any ε > 0, we consider B2(r) as a subset of S2

which is given a symplectic form σ with total area πr2 + ε. On the other hand, since
ψ(B2n(1)) is compact, its projection into the R2n−2 factor is contained in an open ball
of radius λ centered at the origin. Let T 2n−2 be the torus which is R2n−2 modulo the
lattice {(x1, · · · , x2n) ·λ|xj ∈ Z}, which inherits a natural symplectic form ω0. We set
M = S2×T 2n−2, which is given with the product symplectic structure ω = σ⊕ω0. With
this understood, note that there is a symplectic embedding ψ : (B2n(1), ω0) → (M,ω).
We set p0 = ψ(0) where 0 ∈ B2n(1) is the origin.

Lemma 2.2. For any J ∈ J (M,ω), there exists a ratinal J-holomorphic curve C
which contains p0 and carries the homology class [S2 × {pt}].

Assuming Lemma 2.2 momentarily, the proof of Theorem 2.1 goes as follows. Note
that there is a J ∈ J (M,ω) such that the pull-back almost complex structure ψ∗J is
the standard complex structure J0 on B2n(1). Let C be the rational J-holomorphic
curve which contains p0 and carries the homology class [S2 × {pt}]. We set C ′ ≡
ψ−1(C) ⊂ B2n(1). Then C ′ is a holomorphic curve in B2n(1) containing the origin.
Particularly, C ′ is a minimal surface, and by the theory of minimal surfaces, the area
of C ′ is at least the area of the flat plane contained in B2n(1), which equals π. This
gives rise to the following inequalities

π ≤ Area(C ′) =
∫
C′
ω0 =

∫
ψ(C′)

ω ≤
∫
C
ω =

∫
S2

σ = πr2 + ε.

Let ε → 0, we obtain π ≤ πr2, which contradicts the assumption r < 1. This proves
the non-squeezing theorem.

�

The basic idea behind the proof of Lemma 2.2 is the so-called Gromov invariant,
which is the “number” of rational J-holomorphic curves (counted with signs) for a
given J , that carries a given homology class and satisfies a certain topological con-
straint. (Such a count of J-holomorphic curves is supposed to be independent of the
choice of J .) Lemma 2.2 basically says that the Gromov invariant which counts the
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number of rational curves carrying a homology class [S2 × {pt}] and passing through
a given point in M is non-zero.

We shall next explain how to define such a Gromov invarint in the current context,
and explain why the Gromov invariant is non-zero.

To this end, we set A = [S2 × {pt}] ∈ H2(M ; Z). Since ω = σ ⊕ ω0 is a product
symplectic structure, c1(TM) = c1(TS2) + c1(T 2n−2), so that

c1(TM) ·A = c1(TS2) ·A = 2.

By Theorem 1.10, there is an open, dense subset of second Bair category Jreg(A) ⊂
J (M,ω), such that for any J ∈ Jreg(A), the space M∗(A, J) is an oriented smooth
manifold of dimension

dimM + 2c1(TM) ·A = 2n+ 4.

In the present case, since A is a generator of H2(M,Z) = Z, there are no spherical
classes B such that 0 < ω(B) < ω(A), so that by Theorem 1.8, M(A, J) = M∗(A, J),
and the quotient space M̃(A, J) is compact, which is an oriented smooth manifold of
dimension

dimM̃(A, J) = dimM∗(A, J)− dim PSL(2,C) = 2n+ 4− 6 = 2n− 2.

Denote PSL(2,C) by G, and set M(A, J)×G S2 ≡ (M(A, J)× S2)/G where G acts
on M(A, J) × S2 via φ · (u, z) = (u ◦ φ−1, φ(z)). Then M(A, J) ×G S2 is a compact,
oriented smooth manifold of dimension 2n, which is a S2-bundle over M̃(A, J). The
evaluation map

ev : M(A, J)×G S2 →M, [(u, z)] 7→ u(z)

is a smooth map between two compact, oriented smooth manifolds of the same dimen-
sion. The degree of ev, which is the image of the fundamental class of M(A, J)×G S2

under ev∗ : H2n(M(A, J) ×G S2; Z) → H2n(M ; Z) = Z, can be geometrically inter-
preted as a count with signs of the points in the pre-image ev−1(p) for any generic
point p ∈M . On the other hand, M(A, J)×GS2 as a S2-bundle over M̃(A, J) may be
regarded as the space of rational J-holomorphic curves C ∈ M̃(A, J) with a marked
point z ∈ S2 in the de-singularization of C. Thus the degree of ev is a count with signs
of the number of rational J-holomorphic curves with a marked point, which carry the
homology class A and pass through a given generic point p ∈M at the marked point.
The Gromov invariant involved in the current problem is defined to be the degree
of the evaluation map ev : M(A, J) ×G S2 → M . Note that the Gromov invariant
is independent of the choice of J ∈ Jreg(A). This is because by Theorem 1.10, for
any J1, J2 ∈ Jreg(A), there exists a path Jt ∈ J (M,ω) connecting J1, J2 such that
∪tM(A, Jt) is an oriented smooth manifold with boundary which is the disjoint union
of M(A, J1) and M(A, J2). It follows that ∪tM(A, Jt)×G S2 is a cobordism between
M(A, J1) ×G S2 and M(A, J2) ×G S2, hence the degree of ev is the same for J1, J2.
This shows that the Gromov invariant is independent of the choice of J ∈ Jreg(A).

In order to show that the Gromov invariant is non-zero, we consider a special
J ∈ Jreg(A). Let j, J0 be the complex structure on S2 and T 2n−2 respectively, and
let J = j × J0 be the product which lies in J (M,ω).



8 WEIMIN CHEN, UMASS, SPRING 07

For any u ∈ M(A, J), since J = j × J0, the map pr ◦ u : S2 → T 2n−2, where
pr : M → T 2n−2 is the projection, is J0-holomorphic. But pr ◦ u carries a trivial
homology class, hence by Proposition 1.5, pr ◦ u is a constant map. This shows that
any u ∈ M(A, J) has the form u : z 7→ (φ(z), x) for some φ ∈ G = PSL(2,C) and
x ∈ T 2n−2.

There are two consequences of this fact: (1) For any u ∈M(A, J), u∗TM is isomor-
phic as a holomorphic vector bundle to TS2 ⊕ E where E is a trivial bundle of rank
n− 1. By Lemma 1.9, Du is onto for any u ∈M(A, J), so that J ∈ Jreg(A). (2) The
correspondence u 7→ (φ, x) gives an identification of M(A, J) with G × T 2n−2, and
hence M̃(A, J) with T 2n−2 and M(A, J)×G S2 with S2× T 2n−2 = M . It follows that
the evaluation map ev : M(A, J)×G S2 → M is a diffeomorphism, and the degree of
ev is ±1. This proves that the Gromov invariant is non-zero.

Proof of Lemma 2.2.

Note that the non-vanishing of Gromov invariant only implies immediately that for
any J ∈ Jreg(A), and for any generic point p ∈M , there exists a J-holomorphic curve
C ∈ M̃(A, J) such that p ∈ C. This is different from the claim in Lemma 2.2 that in
fact such a J-holomorphic curve exists for any J ∈ J (M,ω) and any point p ∈M (in
particular, p0 ∈M).

To get around of this, we use the Gromov Compactness Theorem, Theorem 1.8. We
pick a sequence of Jn ∈ Jreg(A), since Jreg(A) is dense in J (M,ω), which converges to
J ∈ J (M,ω) in C∞-topology, and we pick a sequence of generic points pn converging
to p0 ∈ M , such that for each n, there exists a Jn-holomorphic curve Cn such that
pn ∈ Cn. By Theorem 1.8, a subsequence of {Cn} converges to a C ∈ M̃(A, J) such
that p0 = limn→∞ pn ∈ C. This proves Lemma 2.2.

2

3. J-holomorphic curves in dimension 4

The J-holomorphic curve theory in dimension 4 is particularly more powerful be-
cause there are additional tools which allow one to analyse the singularies of a J-
holomorphic curve. On the other hand, the existence of certain types of J-holomorphic
curves actually can be derived from the underlying differential topology of the sym-
plectic 4-manifold, due to the deep analytical work of Cliff Taubes.

Let (M,J) be an almost complex 4-manifold, and let C ⊂ M be a J-holomorphic
curve parametrized by a simple J-holomorphic map u : Σ → M . The following
theorem gives a criterion, amongst other things, for the embeddedness of C.

Theorem 3.1. (Adjunction Inequality). Let gΣ be the genus of Σ. Then the inequality
1
2
(C2 − c1(TM) · C) + 1 ≥ gΣ

holds with equality if and only if C is embedded.

In particular, a rational J-holomorphic curve must be embedded if it is homologous
to an embedded rational J-holomorphic curve. This explains why the singular curve
C0 in Example 1.7 can not be the image of a holomorphic map u : S2 → CP2.
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Example 3.2. (Algebraic curves in CP2). For notations we denote by [CP1] the
generator of H2(CP2; Z) which is the class of a line. Using Poincaré duality, we identify
H2(CP2; Z) with H2(CP2; Z).

We first consider non-singular algebraic curves in CP2. Let C be a line in CP2.
Then C2 = 1, and

1
2
(C2 − c1(TCP2) · C) + 1 = 0,

which implies that c1(TCP2) = 3 · [CP1].
Now let Cd be any non-singular algebraic curve of degree d. Then C2

d = d2 and
c1(TCP2) · Cd = 3d. This gives rise to the following genus formula for Cd:

genus (Cd) =
1
2
(C2

d − c1(TCP2) · Cd) + 1 =
1
2
(d− 1)(d− 2).

Next we consider a singular algebraic curve, the cusp curve

C0 = {[z0, z1, z2] ∈ CP2|z3
1 = z0z

2
2}.

C0 is of degree 3 and has a cusp singularity at [1, 0, 0]. The left-hand side of the
adjunction inequality for C0 is

1
2
(C2

0 − c1(TCP2) · C0) + 1 =
1
2
(32 − 3 · 3) + 1 = 1.

Since C0 is singular, C0 can only be parametrized by a holomorphic map from a genus
zero Riemann surface, i.e., S2, so C0 belongs to M̃∗(3[CP1], J0). On the other hand,
C0 is the limit of a family of non-singular cubic curves (λ 6= 0)

Cλ = {[z0, z1, z2] ∈ CP2|z3
1 = z0z

2
2 + λz3

0}

as λ → 0. We remark that this also represents a certain kind of non-compactness
phenomenon in the Gromov Compactness Theorem.

As an application of Theorem 3.1, we prove the following non-existence result.

Proposition 3.3. For a generic almost complex structure J , there exist no rational
J-holomorphic curves C such that C2 ≤ −2, and there exist at most embedded rational
J-holomorphic curves C with C2 = −1.

Proof. Suppose C is a rational J-holomorphic curve such that C2 ≤ −2. Then the
adjunction inequality implies that

c1(TM) · C ≤ C2 + 2 ≤ −2 + 2 = 0.

On the other hand, for a generic almost complex structure J (cf. Theorem 1.10),
the space M∗([C], J) is a smooth manifold of dimension 4 + 2c1(TM) · C ≤ 4. Since
G = PSL(2,C) is 6-dimensional and acts on M∗([C], J) freely if it is non-empty, we
see that M∗([C], J) must be at least 6-dimensional. This proves that for a generic
almost complex structure, there exist no rational curves C with C2 ≤ −2. The proof
for the case of C2 = −1 is similar and we leave the details to the reader.

�
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The above proposition shows that in a symplectic 4-manifold, the only interest-
ing rational J-holomorphic curves are those with non-negative self-intersection. Be-
cause if J is taken generic, the only rational J-holomorphic curves with negative
self-intersection are the embedded ones with self-intersection −1. By the symplectic
neighborhood theorem, the symplectic 4-manifold can be symplectically blown down
along these (−1)-curves, and the resulting symplectic 4-manifold does not have any
rational J-holomorphic curves with negative self-intersection for a generic J . A sym-
plectic 4-manifold is called minimal if it contains no embedded symplectic 2-spheres
with self-intersection −1 (i.e., it can not be symplectically blown down).

The following theorem is useful in analysing the intersection of two distinct J-
holomorphic curves.

Theorem 3.4. (Positivity of Intersection) Let C,C ′ be two distinct J-holomorphic
curves in a compact almost complex 4-manifold. Then the intersection of C,C ′ consists
of at most finitely many points. Moreover, the intersection product

C · C ′ =
∑

p∈C∩C′

kp

where kp ∈ Z+, and kp = 1 if and only if both C,C ′ are embedded near p and the
intersection at p is transverse.

In particular, C · C ′ ≥ 0, and if C · C ′ = 0, then C,C ′ are disjoint. If C · C ′ = 1,
then C,C ′ intersect at exactly one point and the intersection must be transverse.

Suppose C is an embedded rational J-holomorphic curve with C2 = 0, and suppose
C ′ is another rational J-holomorphic curve which is homologous to C. Then on the
one hand, the adjunction inequality implies C ′ must also be embedded, and on the
other hand, the positivity of intersection implies that C,C ′ must be disjoint. Thus if
the moduli space of such rational curves has a positive dimension, they may be used
to fill up the whole manifold. In order to do this, we need the following regularity
criterion for J .

Lemma 3.5. Suppose C is an immersed rational J-holomorphic curve in an al-
most complex 4-manifold (M,J) such that c1(TM) · C > 0. Then for any simple
J-holomorphic map u : S2 → M parametrizing C, the linearization Du of ∂̄J(u) = 0
is onto.

We combine these tools to give a proof of the following structural theorem of sym-
plectic 4-manifolds which contain an embedded rational curve of self-intersection 0.

Theorem 3.6. Let (M,ω) be a symplectic 4-manifold which contains an embedded
symplectic 2-sphere C with C2 = 0. Suppose that M contains no spherical classes B
such that 0 < ω(B) < ω(C). Then M must be diffeomorphic to a S2-bundle over a
surface.

Proof. Pick a J ∈ J (M,ω) such that C is J-holomorphic. Then by the adjunction
inequality every element in M̃∗([C], J) is embedded, and since

c1(TM) · C = C2 + 2 = 2 > 0,
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by Lemma 3.5, the space M∗([C], J) is an oriented smooth manifold of dimension

dimM + 2c1(TM) · C = 4 + 2 · 2 = 8.

Consequently, M̃∗([C], J) is an oriented surface, which is compact by Theorem 1.8.
With this understood, M is diffeomorphic to the S2-bundle over M̃∗([C], J) via

ev : M∗([C], J)×G S2 →M, [(u, z)] 7→ u(z),

where G = PSL(2,C).
�

Suppose in the above theorem, M contains another embedded symplectic 2-sphere
C ′ such that C ′ · C ′ = 0, which intersects with C transversely and positively at
a single point. Then one can arrange J ∈ J (M,ω) such that both C,C ′ are J-
holomorphic. Suppose furthermore that there are also no spherical classes B such
that 0 < ω(B) < ω(C ′), then M̃∗([C ′], J) is precisely the space of J-holomorphic
sections of M∗([C], J) ×G S2 under ev. It is easily seen that in this case there is a
diffeomorphism ψ : S2×S2 →M such that the 2-spheres ψ(S2×{pt}) and ψ({pt}×S2)
are symplectic in M . This fact was exploited in the proof of the following theorem.

Theorem 3.7. (Gromov-Taubes). For any symplectic structure ω on CP2, there is a
diffeomorphism ψ : CP2 → CP2 such that ψ∗ω is a multiple of the standard Fubini-
Study form ω0.

The proof of Theorem 3.7 consists of two steps. Step 1, which is due to Taubes
and uses his deep work on Seiberg-Witten theory of symplectic 4-manifolds, asserts
that there exists an embedded symplectic 2-sphere C with C2 = 1. The complement
CP2 \ ν(C) of a regular neighborhood of C is a homotopy 4-ball W with ∂W = S3

(Van-Kampen plus Mayer-Vietoris). By the symplectic neighborhood theorem, the
symplectic form ω equals the standard symplectic form on R4 in a regular neighbor-
hood of ∂W , which is identified with {x ∈ R4|δ0 − ε < ||x||2 ≤ δ0} for some δ0 and
ε > 0.

Step 2: (Gromov). There exists a symplectomorphism B4(δ0) →W which is identity
near the boundaries.

The proof of Step 2 goes as follows. Pick a large enough polydisc D2 × D2 ⊂ R4

which contains B4(δ0), and embedded D2 × D2 into S2 × S2 via some embedding
D2 ⊂ S2. Then one removes B4(δ0) from S2 × S2 and then glues back W . Call the
resulting symplectic 4-manifold M . Apply the remarks following Theorem 3.6 to M
(for details see [1], pages 314-319).
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