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1. Symplectic Vector Spaces

Definition 1.1. A symplectic vector space is a pair (V, ω) where V is a finite
dimensional vector space (over R) and ω is a bilinear form which satisfies

• Skew-symmetry: for any u, v ∈ V ,

ω(u, v) = −ω(v, u).

• Nondegeneracy: for any u ∈ V ,

ω(u, v) = 0 ∀v ∈ V implies u = 0.

A linear symplectomorphism of a symplectic vector space (V, ω) is a vector
space isomorphism ψ : V → V such that

ω(ψu, ψv) = ω(u, v) ∀u, v ∈ V.
The group of linear symplectomorphisms of (V, ω) is denoted by Sp(V, ω).

Example 1.2. The Euclidean space R2n carries a standard skew-symmetric, nonde-
generate bilinear form ω0 defined as follows. For u = (x1, x2, · · · , xn, y1, y2, · · · , yn)T ,
u′ = (x′1, x

′
2, · · · , x′n, y′1, y′2, · · · , y′n)T ,

ω0(u, u′) =
n∑

i=1

(xiy
′
i − x′iyi) = −uTJ0u

′,

where J0 =
(

0,−I
I, 0

)
. (Here I is the n× n identity matrix.)

The group of linear symplectomorphisms of (R2n, ω0), which is denoted by Sp(2n),
can be identified with the group of 2n× 2n symplectic matrices. Recall a symplectic
matrix Ψ is one which satisfies ΨTJ0Ψ = J0. For the case of n = 1, a symplectic
matrix is simply a matrix Ψ with det Ψ = 1.

Let (V, ω) be any symplectic vector space, and let W ⊂ V be any linear subspace.
The symplectic complement of W in V is defined and denoted by

Wω = {v ∈ V |ω(v, w) = 0, ∀w ∈W}.

Lemma 1.3. (1) dimW + dimWω = dimV , (2) (Wω)ω = W .

Proof. Define ιω : V → V ∗ by ιω(v) : w 7→ ω(v, w), ∀v, w ∈ V , where V ∗ is the
dual space of V . Since ω is nondegenerate, ιω is an isomorphism. Now observe that
ιω(Wω) = W⊥ where W⊥ ⊂ V ∗ is the annihilator of W , i.e.,

W⊥ ≡ {v∗ ∈ V ∗|v∗(w) = 0 ∀w ∈W}.
1
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Part (1) follows immediately from the fact that

dimW + dimW⊥ = dimV.

Part (2) follows easily from W ⊂ (Wω)ω and the equations

dimW = dimV − dimWω = dim(Wω)ω

which are derived from (1). �

Theorem 1.4. For any symplectic vector space (V, ω), there exists a basis of V
u1, u2, · · · , un, v1, v2, · · · , vn such that

ω(uj , uk) = ω(vj , vk) = 0, ω(uj , vk) = δjk.

(Such a basis is called a symplectic basis.) In particular, dimV = 2n is even.

Proof. We prove by induction on dimV . Note that dimV ≥ 2.
When dimV = 2, the nondegeneracy condition of ω implies that there exist u, v ∈ V

such that ω(u, v) 6= 0. Clearly u, v are linearly independent so that they form a basis
of V since dimV = 2. We can replace v by an appropriate nonzero multiple so that the
condition ω(u, v) = 1 is satisfied. Hence the theorem is true for the case of dimV = 2.

Now suppose the theorem is true when dimV ≤ m − 1. We shall prove that it
is also true when dimV = m. Again the nondegeneracy condition of ω implies that
there exist u1, v1 ∈ V such that u1, v1 are linearly independent and ω(u1, v1) = 1. Set
W ≡ span(u1, v1). Then we claim that (Wω, ω|W ω) is a symplectic vector space. It
suffices to show that ω|W ω is nondegenerate. To see this, suppose w ∈ Wω such that
ω(w, z) = 0 for all z ∈ Wω. We need to show that w must be zero. To this end, note
that W ∩Wω = {0}, so that V = W ⊕Wω by (1) of the previous lemma. Now for
any z ∈ V , write z = z1 + z2 where z1 ∈W and z2 ∈Wω. Then ω(w, z1) = 0 because
w ∈ Wω and ω(w, z2) = 0 by z2 ∈ Wω and the assumption on w. Hence ω(w, z) = 0,
and therefore w = 0 by the nondegeneracy condition of ω on V .

Note that dimWω = dimV − 2 ≤ m − 1, so that by the induction hypothe-
sis, there is a symplectic basis u2, · · · , un, v2, · · · , vn of (Wω, ω|W ω). It is clear that
u1, u2, · · · , un, v1, v2, · · · , vn is a symplectic basis of (V, ω), and the theorem is proved.

�

Corollary 1.5. Let ω be any skew-symmetric bilinear form on V . Then ω is nonde-
generate if and only if dimV = 2n is even and

ωn = ω ∧ · · · ∧ ω 6= 0.

Proof. Suppose ω is nondegenerate, then by the previous theorem, dimV = 2n is even,
and there exists a symplectic basis u1, u2, · · · , un, v1, v2, · · · , vn. Clearly

ωn(u1, u2, · · · , un, v1, v2, · · · , vn) 6= 0,

hence ωn 6= 0.
Suppose dimV = 2n is even and ωn 6= 0. Then ω must be nondegenerate, because

if otherwise, there exists a u ∈ V such that ω(u, v) = 0 for all v ∈ V . We complete u
into a basis u, v1, v2, · · · , v2n−1 of V . One can easily check that

ωn(u, v1, v2, · · · , v2n−1) = 0,
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which contradicts the assumption that ωn 6= 0.
�

Corollary 1.6. Let (V, ω) be any symplectic vector space. Then there exists an n > 0
and a vector space isomorphism φ : R2n → V such that

ω0(z, z′) = ω(φz, φz′), ∀z, z′ ∈ R2n.

Consequently, Sp(V, ω) is isomorphic to Sp(2n).

Proof. Let u1, u2, · · · , un, v1, v2, · · · , vn be a symplectic basis of (V, ω). The corollary
follows by defining

φ : (x1, x2, · · · , xn, y1, y2, · · · , yn) 7→
n∑

i=1

(xiui + yivi).

�

Definition 1.7. A complex structure on a real vector space V is an automorphism
J : V → V such that J2 = −id. A Hermitian structure on (V, J) is an inner
product g on V which is J-invariant, i.e., g(Jv, Jw) = g(v, w), for all v, w ∈ V .

Let J be a complex structure on V . Then V becomes a complex vector space by
defining the complex multiplication by

C× V → V : (x+ iy, v) 7→ xv + yJv.

If g is a Hermitian structure on (V, J), then there is an associated Hermitian inner
product

h(v, w) ≡ g(v, w) + ig(v, Jw), ∀v, w ∈ V,
i.e., h : V × V → C satisfies (1) h is complex linear in the first V and anti-complex
linear in the second V , and (2) h(v, v) > 0 for any 0 6= v ∈ V .

Note that there always exists a Hermitian structure on (V, J), by simply taking the
average 1

2(g(v, w) + g(Jv, Jw)) of any inner product g on V .

Definition 1.8. Let (V, ω) be a symplectic vector space. A complex structure J on
V is called ω-compatible if

• ω(Jv, Jw) = ω(v, w) for all v, w ∈ V ,
• ω(v, Jv) > 0 for any 0 6= v ∈ V .

We denote the set of ω-compatible complex structures by J (V, ω). Note that
J (V, ω) is nonempty: let u1, u2, · · · , un, v1, v2, · · · , vn be a symplectic basis of (V, ω),
then J : V → V defined by Jui = vi, Jvi = −ui is a ω-compatible complex struc-
ture. Finally, for any J ∈ J (V, ω), gJ(v, w) ≡ ω(v, Jw), ∀v, w ∈ V , is a (canonically
associated) Hermitian structure on (V, J).

Example 1.9. J0 is a complex structure on R2n which is ω0-compatible. The asso-
ciated Hermitian structure g0(·, ·) ≡ ω0(·, J0·) is the usual inner product on R2n. J0

makes R2n into a complex vector space by

C× R2n → R2n : (x+ iy, v) 7→ xv + yJ0v,
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which coincides with the identification of R2n with Cn by

(x1, x2, · · · , xn, y1, y2, · · · , yn)T 7→ (z1, z2, · · · , zn)T

where zj = xj + iyj with i =
√
−1. With this understood, the associated Hermitian

inner product h0 ≡ g0 − iω0 on (R2n, J0) is the usual one on Cn: h0(z, w) = w̄T z.

We would like to understand the set J (V, ω).

Lemma 1.10. Suppose dimV = 2n. Then for any J ∈ J (V, ω), there is a vector
space isomorphism φJ : R2n → V such that

φ∗Jω = ω0, φ∗JJ ≡ φ−1
J ◦ J ◦ φJ = J0.

Moreover, φ∗J : J ′ 7→ φ−1
J ◦ J ′ ◦ φJ identifies J (V, ω) with J (R2n, ω0).

Proof. Let u1, u2, · · · , un be a unitary basis of (V, hJ), where hJ is the Hermitian inner
product on V associated to the canonical Hermitian structure gJ(·, ·) ≡ ω(·, J ·). Then
one can easily check that u1, u2, · · · , un, Ju1, Ju2, · · · , Jun form a symplectic basis of
(V, ω). If we define

φJ : (x1, x2, · · · , xn, y1, y2, · · · , yn) 7→
n∑

i=1

(xiui + yiJui),

then it is obvious that φ∗Jω = ω0 and φ∗JJ = J0. Moreover, the verification that
φ∗J : J ′ 7→ φ−1

J ◦ J ′ ◦ φJ identifies J (V, ω) with J (R2n, ω0) is straightforward.
�

We remark that in the proof the definition of φJ may depend on the choice of the
unitary basis u1, u2, · · · , un, but the identification φ∗J : J (V, ω) → J (R2n, ω0) does
not, it is completely determined by J .

In order to understand J (R2n, ω0), we need to go over some basic facts about the
Lie group Sp(2n). To this end, recall that R2n is identified with Cn by

(x1, x2, · · · , xn, y1, y2, · · · , yn)T 7→ (z1, z2, · · · , zn)T , where zj = xj + iyj .

Under this identification, GL(n,C) is regarded as a subgroup of GL(2n,R) via

Z = X + iY 7→
(
X −Y
Y X

)
.

Note that ψ ∈ GL(2n,R) belongs to GL(n,C) iff ψJ0 = J0ψ.

Lemma 1.11.

U(n) = Sp(2n) ∩O(2n) = Sp(2n) ∩GL(n,C) = O(2n) ∩GL(n,C).

Proof. Let ψ ∈ GL(2n,R), then
• ψ ∈ GL(n,C) iff ψJ0 = J0ψ,
• ψ ∈ Sp(2n) iff ψTJ0ψ = J0,
• ψ ∈ O(2n) iff ψTψ = I.
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The last two identities in the lemma follows immediately.

It remains to show that a ψ =
(
X −Y
Y X

)
∈ GL(n,C) lies in Sp(2n) iff ψ = X+iY

lies in U(n). But one can check easily that both conditions are equivalent to the
following set of equations

XTY = Y TX, XTX + Y TY = I.

The lemma follows immediately.
�

The previous lemma in particular says that U(n) is a subgroup of Sp(2n). The
space of right orbits

Sp(2n)/U(n) ≡ {ψ · U(n)|ψ ∈ Sp(2n)}
is known to be naturally a smooth manifold. We denote by ∗ the orbit of identity
I ∈ Sp(2n) in Sp(2n)/U(n).

Theorem 1.12. There exists a canonically defined smooth map

H : Sp(2n)/U(n)× [0, 1] → Sp(2n)/U(n)

such that H(·, 0) = id, H(·, 1)(x) = {∗} for any x ∈ Sp(2n)/U(n), and H(∗, t) = ∗ for
any t ∈ [0, 1]. In particular, Sp(2n)/U(n) is contractible.

Proof. First of all, for any ψ ∈ Sp(2n), ψT is also in Sp(2n), so that ψψT is a symmet-
ric, positive definite symplectic matrix. We will show that (ψψT )α is also a symplectic
matrix for any real number α.

To this end, we decompose R2n = ⊕λVλ where Vλ is the λ-eigenspace of ψψT , and
λ > 0. Then note that for any z ∈ Vλ, z′ ∈ Vλ′ , ω0(z, z′) = 0 if λλ′ 6= 1. Our claim
that (ψψT )α is a symplectic matrix for any real number α follows easily from this
observation.

Now for any ψ ∈ Sp(2n), we decompose ψ = PQ where P = (ψψT )1/2 is symmetric
and Q ∈ O(2n). Note that Q = ψP−1 ∈ Sp(2n) ∩O(2n) = U(n), which shows that ψ
and P = (ψψT )1/2 are in the same orbit in Sp(2n)/U(n). With this understood, we
define

H : (ψ · U(n), t) 7→ (ψψT )(1−t)/2 · U(n), ψ ∈ Sp(2n), t ∈ [0, 1].
�

Lemma 1.13. J (R2n, ω0) is canonically identified with Sp(2n)/U(n), under which J0

is sent to ∗.

Proof. By Lemma 1.11, for any J ∈ J (R2n, ω0), there exists a φJ ∈ Sp(2n) such that
φ∗JJ ≡ φ−1

J ·J ·φJ = J0, or equivalently, J = φJ ·J0 ·φ−1
J . The correspondence J 7→ φJ

induces a map from J (R2n, ω0) to Sp(2n)/U(n), which is clearly one to one and onto.
Note that under the correspondence, J0 is sent to ∗.

�

The set of ω-compatible complex structures J (V, ω) can be given a natural topology
so that it becomes a smooth manifold. Lemma 1.10, Theorem 1.12 and Lemma 1.13
give rise to the following
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Corollary 1.14. Given any J ∈ J (V, ω), there exists a canonically defined smooth
map

HJ : J (V, ω)× [0, 1] → J (V, ω)
depending smoothly on J , such that HJ(·, 0) = id, HJ(·, 1)(J ′) = {J} for any J ′ ∈
J (V, ω), and H(J, t) = J for any t ∈ [0, 1].

Recall that for any J ∈ J (V, ω), there is a canonically associated Hermitian struc-
ture (i.e. a J-invariant inner product) gJ(·, ·) ≡ ω(·, J ·). The next theorem shows that
one can construct ω-compatible complex structures from inner products on V . Let
Met(V ) denote the space of inner products on V .

Theorem 1.15. There exists a canonically defined map r : Met(V ) → J (V, ω) such
that

r(gJ) = J, r(ψ∗g) = ψ∗r(g)
for all J ∈ J (V, ω), g ∈ Met(V ), and ψ ∈ Sp(V, ω).

Proof. For any given g ∈ Met(V ), we define A : V → V by

ω(v, w) = g(Av,w), ∀v, w ∈ V.
Then the skew-symmetry of ω implies that A is g-skew-adjoint. It follows that P ≡
−A2 is g-self-adjoint and g-positive definite. Set Q ≡ P 1/2, which is also g-self-adjoint
and g-positive definite.

We define the map r by g 7→ Jg ≡ Q−1A. Then J2
g = Q−1AQ−1A = Q−2A2 = −I

is a complex structure. To check that Jg is ω-compatible, note that

ω(Q−1Av,Q−1Aw) = g(AQ−1Av,Q−1Aw) = −g(v,Aw) = ω(v, w), ∀v, w ∈ V,

ω(v,Q−1Av) = g(Av,Q−1Av) > 0 ∀0 6= v ∈ V
because Q−1 is g-self-adjoint and g-positive definite.

Finally, for any ψ ∈ Sp(V, ω), replacing g with ψ∗g changes A to ψ−1Aψ, and
therefore changes Q to ψ−1Qψ. This implies r(ψ∗g) = ψ∗r(g). If g = gJ , then A = J
and Q = I, so that r(gJ) = J .

�

2. Symplectic Vector Bundles

Definition 2.1. A symplectic vector bundle over a smooth manifold M is a pair
(E,ω), where E →M is a real vector bundle and ω is a smooth section of E∗∧E∗ such
that for each p ∈M , (Ep, ωp) is a symplectic vector space. (Here E∗ is the dual of E.)
The section ω is called a symplectic bilinear form on E. Two symplectic vector
bundles (E1, ω1), (E2, ω2) are said to be isomorphic if there exists an isomorphism
φ : E1 → E2 (which is identity over M) such that φ∗ω2 = ω1.

The standard constructions in bundle theory carry over to the case of symplec-
tic vector bundles. For example, for any smooth map f : N → M and symplectic
vector bundle (E,ω) over M , the pull-back (f∗E, f∗ω) is a symplectic vector bundle
over N . In particular, for any submanifold Q ⊂ M , the restriction (E|Q, ω|Q) is a
symplectic vector bundle over Q. Let F be a sub-bundle of E such that for each
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p ∈M , (Fp, ωp|Fp) is a symplectic vector space. Then (F, ω|F ) is naturally a symplec-
tic vector bundle. We call F (or (F, ω|F )) a symplectic sub-bundle of (E,ω). The
symplectic complement of F is the sub-bundle

Fω ≡ ∪p∈MF
ωp
p = ∪p∈M{v ∈ Ep|ωp(v, w) = 0, ∀w ∈ Fp},

which is naturally a symplectic sub-bundle of (E,ω). Note that as a real vector bundle,
Fω is isomorphic to the quotient bundle E/F .

Given any symplectic vector bundles (E1, ω1), (E2, ω2), the symplectic direct sum
(E1⊕E2, ω1⊕ω2) is naturally a symplectic vector bundle. With this understood, note
that for any symplectic sub-bundle F of (E,ω), one has

(E,ω) = (F, ω|F )⊕ (Fω, ω|F ω).

Example 2.2. Let (M,ω) be a symplectic manifold. Note that ω as a 2-form on M
is a smooth section of Ω2(M) ≡ T ∗M ∧ T ∗M . The nondegeneracy condition on ω
implies that (TM,ω) is a symplectic vector bundle. Note that the closedness of ω is
irrelevant here.

Suppose Q is a symplectic submanifold of (M,ω). Then TQ is a symplectic sub-
bundle of (TM |Q, ω|Q). The normal bundle νQ ≡ TM |Q/TQ of Q in M is also nat-
urally a symplectic sub-bundle of (TM |Q, ω|Q) by identifying νQ with the symplectic
complement TQω of TQ. Notice the symplectic direct sum

TM |Q = TQ⊕ νQ.

Definition 2.3. Let (E,ω) be a symplectic vector bundle over M . A complex
structure J of E, i.e., a smooth section J of Aut(E) → M such that J2 = −I, is
said to be ω-compatible if for each p ∈M , Jp is ωp-compatible, i.e., Jp ∈ J (Ep, ωp).
The space of all ω-compatible complex structures of E is denoted by J (E,ω).

Example 2.4. Let (M,ω) be a symplectic manifold. Then a complex structure of
TM is simply what we call an almost complex structure on M . An almost complex
structure J on M is said to be ω-compatible if J ∈ J (TM,ω). In this context,
we denote J (TM,ω), the set of ω-compatible almost complex structures on M , by
J (M,ω). Notice that the closedness of ω is irrelevant here.

In what follows, we will address the issue of classification of symplectic vector bun-
dles up to isomorphisms, and determine the topology of the space J (E,ω).

Lemma 2.5. Let (E,ω) be a symplectic vector bundle over M of rank 2n.
(1) There exists an open cover {Ui} of M such that for each i, there is a symplectic

trivialization φi : (E|Ui , ω|Ui) → (Ui ×R2n, ω0). In particular, the transition functions
φji(p) ≡ φj ◦ φ−1

i (p) ∈ Sp(2n) for each p ∈ Ui ∩ Uj, and E becomes a Sp(2n)-vector
bundle. Conversely, any Sp(2n)-vector bundle is a symplectic vector bundle, and their
classification up to isomorphisms is identical.

(2) (E,ω) as a Sp(2n)-vector bundle admits a lifting to a U(n)-vector bundle if and
only if there exists a J ∈ J (E,ω).

Proof. For any p ∈ M , one can prove by induction as in Theorem 1.4 (with a para-
metric version) that there exists a small neighborhood Up of p and smooth sections
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u1, u2, · · · , un, v1, v2, · · · , vn of E over Up such that for each q ∈ Up,

u1(q), u2(q), · · · , un(q), v1(q), v2(q), · · · , vn(q)

form a symplectic basis of (Eq, ωq). Part (1) follows immediately from this by defining
φp : (E|Up , ω|Up) → (Up × R2n, ω0) to be the inverse of

(q, (x1, x2, · · · , xn, y1, y2, · · · , yn)T ) 7→
n∑

i=1

(xiui(q) + yivi(q)).

For part (2), if (E,ω) as a Sp(2n)-vector bundle admits a lifting to a U(n)-vector
bundle, then the corresponding complex structure J on E is ω-compatible because the
Hermitian structure and J determines ω completely. If there exists a J ∈ J (E,ω),
then one can show that there are local smooth sections u1, u2, · · · , un which form a
unitary basis at each point for (E, J, hJ). This makes E into a U(n)-vector bundle,
which is a lifting of the Sp(2n)-vector bundle because u1, u2, · · · , un, Ju1, Ju2, · · · , Jun

are local smooth sections which form a symplectic basis at each point for (E,ω).
�

Lemma 2.6. Any Sp(2n)-vector bundle over a smooth manifold admits a lifting to
a U(n)-vector bundle, which is unique up to isomorphisms (as U(n)-vector bundles).
Consequently, for any J1, J2 ∈ J (E,ω), the complex vector bundles (E, J1), (E, J2)
are isomorphic. (In other words, every symplectic vector bundle has a underlying
complex vector bundle structure unique up to isomorphisms.)

Proof. By Theorem 1.12, Sp(2n)/U(n) is contractible. This implies that the classifying
spaces BSp(2n) and BU(n) are homotopy equivalent via i∗ : BU(n) → BSp(2n)
induced by i : U(n) ⊂ Sp(2n). In particular, any Sp(2n)-vector bundle over a smooth
manifoldM , which is classified by a map fromM into BSp(2n) unique up to homotopy,
can be lifted to a U(n)-vector bundle by lifting the classifying map to a map from M
into BU(n), and such a lifting is unique up to isomorphisms.

�

Theorem 2.7. Let (E1, ω1), (E2, ω2) be two symplectic vector bundles. Then they
are isomorphic as symplectic vector bundles iff they are isomorphic as complex vector
bundles.

Proof. Pick J1 ∈ J (E1, ω1), J2 ∈ J (E2, ω2). Then by the previous lemma (E1, ω1),
(E2, ω2) are isomorphic as symplectic vector bundles iff (E1, J1, ω1), (E2, J2, ω2) are
isomorphic as U(n)-vector bundles. But the classification of U(n)-vector bundles up
to isomorphisms is the same as classification of the underlying complex vector bundles
because GL(n,C)/U(n) is contractible. The theorem follows immediately.

�

Theorem 2.8. For any symplectic vector bundle (E,ω), the space of ω-compatible
complex structures J (E,ω) is nonempty and contractible.

Proof. There are actually two proofs of this important fact.
Proof 1: The nonemptiness of J (E,ω) follows from Lemmas 2.5 and 2.6. On the

other hand, for any J ∈ J (E,ω), a parametric version of Corollary 1.14 gives rise to a
deformation retraction of J (E,ω) to {J}, which shows that J (E,ω) is contractible.
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Proof 2: A parametric version of Theorem 1.15 gives rise to a similar map r :
Met(E) → J (E,ω). Contractibility of J (E,ω) follows from convexity of Met(E).

�

Corollary 2.9. For any symplectic manifold (M,ω), the space of ω-compatible almost
complex structures on M is nonempty and contractible.

Proof 2 of Theorem 2.8 is less conceptual than proof 1 but more useful in various
concrete constructions. As an example of illustration, we prove the following

Proposition 2.10. Let Q be a symplectic submanifold of (M,ω). Then for any J ∈
J (Q,ω|Q), there exists a Ĵ ∈ J (M,ω) such that Ĵ |TQ = J . In particular, every
symplectic submanifold of (M,ω) is a pseudo-holomorphic submanifold for some ω-
compatible almost complex structure on M .

Proof. Recall the symplectic direct sum decomposition

(TM |Q, ω|Q) = (TQ, ω|TQ)⊕ (νQ, ω|νQ),

where νQ is the normal bundle of Q in M . For any J ∈ J (Q,ω|Q), we can extend it to
J ′ = (J, Jν) by choosing a Jν ∈ J (νQ, ω|νQ). We then extend the corresponding metric
ω(·, J ′·) on TM |Q over the whole M to a metric g on TM . Let r : Met(M) → J (M,ω)
be the parametric version of the map in Theorem 1.15. Then Ĵ ≡ r(g) satisfies
Ĵ |TQ = J , and in particular, Q is a pseudo-holomorphic submanifold with respect to
the ω-compatible almost complex structure Ĵ on M .

�

We end this section with a brief discussion about integrability of almost complex
structures. Recall that an almost complex structure J on a manifold M is said to be
integrable, if M is the underlying real manifold of a complex manifold and J comes
from the complex structure.

Let (M,J) be an almost complex manifold with almost complex structure J . The
Nijenhuis tensor of J is defined by

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]

for two vector fields X,Y : M → TM . NJ is a bilinear map TpM × TpM → TpM for
each p ∈ M , and has properties NJ(X,X) = 0 and NJ(X, JX) = 0 for any vector
field X. In particular, NJ = 0 if M is 2-dimensional. Moreover, one can also check
easily that NJ = 0 if J is integrable. The converse is given by the following highly
nontrivial theorem of A. Newlander and L. Nirenberg.

Theorem 2.11. (Newlander-Nirenberg). An almost complex structure is integrable if
and only if the Nijenhuis tensor vanishes.

In particular, every symplectic 2-dimensional manifold is Kähler.
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