LECTURE 2: SYMPLECTIC VECTOR BUNDLES

WEIMIN CHEN, UMASS, SPRING 07

1. Symplectic Vector Spaces

Definition 1.1. A symplectic vector space is a pair (V, ω) where V is a finite dimensional vector space (over \mathbb{R}) and ω is a bilinear form which satisfies

• Skew-symmetry: for any $u, v \in V$,

$$\omega(u, v) = -\omega(v, u).$$

• Nondegeneracy: for any $u \in V$,

$$\omega(u, v) = 0 \quad \forall v \in V \text{ implies } u = 0.$$

A linear symplectomorphism of a symplectic vector space (V, ω) is a vector space isomorphism $\psi: V \to V$ such that

$$\omega(\psi u, \psi v) = \omega(u, v) \quad \forall u, v \in V.$$

The group of linear symplectomorphisms of (V, ω) is denoted by $\operatorname{Sp}(V, \omega)$.

Example 1.2. The Euclidean space \mathbb{R}^{2n} carries a standard skew-symmetric, nondegenerate bilinear form ω_0 defined as follows. For $u = (x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n)^T$, $u' = (x'_1, x'_2, \cdots, x'_n, y'_1, y'_2, \cdots, y'_n)^T$,

$$\omega_0(u, u') = \sum_{i=1}^n (x_i y'_i - x'_i y_i) = -u^T J_0 u',$$

where $J_0 = \begin{pmatrix} 0, -I \\ I, 0 \end{pmatrix}$. (Here *I* is the $n \times n$ identity matrix.)

The group of linear symplectomorphisms of $(\mathbb{R}^{2n}, \omega_0)$, which is denoted by Sp(2n), can be identified with the group of $2n \times 2n$ symplectic matrices. Recall a symplectic matrix Ψ is one which satisfies $\Psi^T J_0 \Psi = J_0$. For the case of n = 1, a symplectic matrix is simply a matrix Ψ with det $\Psi = 1$.

Let (V, ω) be any symplectic vector space, and let $W \subset V$ be any linear subspace. The **symplectic complement** of W in V is defined and denoted by

$$W^{\omega} = \{ v \in V | \omega(v, w) = 0, \ \forall w \in W \}.$$

Lemma 1.3. (1) dim W + dim W^{ω} = dim V, (2) $(W^{\omega})^{\omega} = W$.

Proof. Define $\iota_{\omega} : V \to V^*$ by $\iota_{\omega}(v) : w \mapsto \omega(v, w), \forall v, w \in V$, where V^* is the dual space of V. Since ω is nondegenerate, ι_{ω} is an isomorphism. Now observe that $\iota_{\omega}(W^{\omega}) = W^{\perp}$ where $W^{\perp} \subset V^*$ is the annihilator of W, i.e.,

$$W^{\perp} \equiv \{ v^* \in V^* | v^*(w) = 0 \ \forall w \in W \}.$$

Part (1) follows immediately from the fact that

$$\dim W + \dim W^{\perp} = \dim V_{\cdot}$$

Part (2) follows easily from $W \subset (W^{\omega})^{\omega}$ and the equations

$$\dim W = \dim V - \dim W^{\omega} = \dim (W^{\omega})^{\omega}$$

which are derived from (1).

Theorem 1.4. For any symplectic vector space (V, ω) , there exists a basis of V $u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n$ such that

$$\omega(u_i, u_k) = \omega(v_i, v_k) = 0, \ \omega(u_i, v_k) = \delta_{ik}.$$

(Such a basis is called a symplectic basis.) In particular, $\dim V = 2n$ is even.

Proof. We prove by induction on dim V. Note that dim $V \ge 2$.

When dim V = 2, the nondegeneracy condition of ω implies that there exist $u, v \in V$ such that $\omega(u, v) \neq 0$. Clearly u, v are linearly independent so that they form a basis of V since dim V = 2. We can replace v by an appropriate nonzero multiple so that the condition $\omega(u, v) = 1$ is satisfied. Hence the theorem is true for the case of dim V = 2.

Now suppose the theorem is true when $\dim V \leq m-1$. We shall prove that it is also true when $\dim V = m$. Again the nondegeneracy condition of ω implies that there exist $u_1, v_1 \in V$ such that u_1, v_1 are linearly independent and $\omega(u_1, v_1) = 1$. Set $W \equiv \operatorname{span}(u_1, v_1)$. Then we claim that $(W^{\omega}, \omega|_{W^{\omega}})$ is a symplectic vector space. It suffices to show that $\omega|_{W^{\omega}}$ is nondegenerate. To see this, suppose $w \in W^{\omega}$ such that $\omega(w, z) = 0$ for all $z \in W^{\omega}$. We need to show that w must be zero. To this end, note that $W \cap W^{\omega} = \{0\}$, so that $V = W \oplus W^{\omega}$ by (1) of the previous lemma. Now for any $z \in V$, write $z = z_1 + z_2$ where $z_1 \in W$ and $z_2 \in W^{\omega}$. Then $\omega(w, z_1) = 0$ because $w \in W^{\omega}$ and $\omega(w, z_2) = 0$ by $z_2 \in W^{\omega}$ and the assumption on w. Hence $\omega(w, z) = 0$, and therefore w = 0 by the nondegeneracy condition of ω on V.

Note that dim $W^{\omega} = \dim V - 2 \leq m - 1$, so that by the induction hypothesis, there is a symplectic basis $u_2, \dots, u_n, v_2, \dots, v_n$ of $(W^{\omega}, \omega|_{W^{\omega}})$. It is clear that $u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n$ is a symplectic basis of (V, ω) , and the theorem is proved.

Corollary 1.5. Let ω be any skew-symmetric bilinear form on V. Then ω is nondegenerate if and only if dim V = 2n is even and

$$\omega^n = \omega \wedge \dots \wedge \omega \neq 0.$$

Proof. Suppose ω is nondegenerate, then by the previous theorem, dim V = 2n is even, and there exists a symplectic basis $u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n$. Clearly

$$\omega^n(u_1, u_2, \cdots, u_n, v_1, v_2, \cdots, v_n) \neq 0,$$

hence $\omega^n \neq 0$.

Suppose dim V = 2n is even and $\omega^n \neq 0$. Then ω must be nondegenerate, because if otherwise, there exists a $u \in V$ such that $\omega(u, v) = 0$ for all $v \in V$. We complete uinto a basis $u, v_1, v_2, \dots, v_{2n-1}$ of V. One can easily check that

$$\omega^n(u, v_1, v_2, \cdots, v_{2n-1}) = 0,$$

which contradicts the assumption that $\omega^n \neq 0$.

Corollary 1.6. Let (V, ω) be any symplectic vector space. Then there exists an n > 0and a vector space isomorphism $\phi : \mathbb{R}^{2n} \to V$ such that

$$\omega_0(z, z') = \omega(\phi z, \phi z'), \quad \forall z, z' \in \mathbb{R}^{2n}.$$

Consequently, $Sp(V, \omega)$ is isomorphic to Sp(2n).

Proof. Let $u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n$ be a symplectic basis of (V, ω) . The corollary follows by defining

$$\phi: (x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n) \mapsto \sum_{i=1}^n (x_i u_i + y_i v_i).$$

Definition 1.7. A complex structure on a real vector space V is an automorphism $J: V \to V$ such that $J^2 = -id$. A **Hermitian structure** on (V, J) is an inner product g on V which is J-invariant, i.e., g(Jv, Jw) = g(v, w), for all $v, w \in V$.

Let J be a complex structure on V. Then V becomes a complex vector space by defining the complex multiplication by

$$\mathbb{C} \times V \to V : (x + iy, v) \mapsto xv + yJv$$

If g is a Hermitian structure on (V, J), then there is an associated Hermitian inner product

$$h(v,w) \equiv g(v,w) + ig(v,Jw), \ \forall v,w \in V,$$

i.e., $h: V \times V \to \mathbb{C}$ satisfies (1) h is complex linear in the first V and anti-complex linear in the second V, and (2) h(v, v) > 0 for any $0 \neq v \in V$.

Note that there always exists a Hermitian structure on (V, J), by simply taking the average $\frac{1}{2}(g(v, w) + g(Jv, Jw))$ of any inner product g on V.

Definition 1.8. Let (V, ω) be a symplectic vector space. A complex structure J on V is called ω -compatible if

- $\omega(Jv, Jw) = \omega(v, w)$ for all $v, w \in V$,
- $\omega(v, Jv) > 0$ for any $0 \neq v \in V$.

We denote the set of ω -compatible complex structures by $\mathcal{J}(V,\omega)$. Note that $\mathcal{J}(V,\omega)$ is nonempty: let $u_1, u_2, \cdots, u_n, v_1, v_2, \cdots, v_n$ be a symplectic basis of (V,ω) , then $J: V \to V$ defined by $Ju_i = v_i, Jv_i = -u_i$ is a ω -compatible complex structure. Finally, for any $J \in \mathcal{J}(V,\omega), g_J(v,w) \equiv \omega(v, Jw), \forall v, w \in V$, is a (canonically associated) Hermitian structure on (V, J).

Example 1.9. J_0 is a complex structure on \mathbb{R}^{2n} which is ω_0 -compatible. The associated Hermitian structure $g_0(\cdot, \cdot) \equiv \omega_0(\cdot, J_0 \cdot)$ is the usual inner product on \mathbb{R}^{2n} . J_0 makes \mathbb{R}^{2n} into a complex vector space by

$$\mathbb{C} \times \mathbb{R}^{2n} \to \mathbb{R}^{2n} : (x + iy, v) \mapsto xv + yJ_0v,$$

which coincides with the identification of \mathbb{R}^{2n} with \mathbb{C}^n by

$$(x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n)^T \mapsto (z_1, z_2, \cdots, z_n)^T$$

where $z_j = x_j + iy_j$ with $i = \sqrt{-1}$. With this understood, the associated Hermitian inner product $h_0 \equiv g_0 - i\omega_0$ on (\mathbb{R}^{2n}, J_0) is the usual one on \mathbb{C}^n : $h_0(z, w) = \bar{w}^T z$.

We would like to understand the set $\mathcal{J}(V,\omega)$.

Lemma 1.10. Suppose dim V = 2n. Then for any $J \in \mathcal{J}(V, \omega)$, there is a vector space isomorphism $\phi_J : \mathbb{R}^{2n} \to V$ such that

$$\phi_J^*\omega = \omega_0, \quad \phi_J^*J \equiv \phi_J^{-1} \circ J \circ \phi_J = J_0,$$

Moreover, $\phi_J^*: J' \mapsto \phi_J^{-1} \circ J' \circ \phi_J$ identifies $\mathcal{J}(V, \omega)$ with $\mathcal{J}(\mathbb{R}^{2n}, \omega_0)$.

Proof. Let u_1, u_2, \dots, u_n be a unitary basis of (V, h_J) , where h_J is the Hermitian inner product on V associated to the canonical Hermitian structure $g_J(\cdot, \cdot) \equiv \omega(\cdot, J \cdot)$. Then one can easily check that $u_1, u_2, \dots, u_n, Ju_1, Ju_2, \dots, Ju_n$ form a symplectic basis of (V, ω) . If we define

$$\phi_J: (x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n) \mapsto \sum_{i=1}^n (x_i u_i + y_i J u_i),$$

then it is obvious that $\phi_J^* \omega = \omega_0$ and $\phi_J^* J = J_0$. Moreover, the verification that $\phi_J^* : J' \mapsto \phi_J^{-1} \circ J' \circ \phi_J$ identifies $\mathcal{J}(V, \omega)$ with $\mathcal{J}(\mathbb{R}^{2n}, \omega_0)$ is straightforward.

We remark that in the proof the definition of ϕ_J may depend on the choice of the unitary basis u_1, u_2, \dots, u_n , but the identification $\phi_J^* : \mathcal{J}(V, \omega) \to \mathcal{J}(\mathbb{R}^{2n}, \omega_0)$ does not, it is completely determined by J.

In order to understand $\mathcal{J}(\mathbb{R}^{2n}, \omega_0)$, we need to go over some basic facts about the Lie group $\operatorname{Sp}(2n)$. To this end, recall that \mathbb{R}^{2n} is identified with \mathbb{C}^n by

$$(x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n)^T \mapsto (z_1, z_2, \cdots, z_n)^T$$
, where $z_j = x_j + iy_j$.

Under this identification, $GL(n, \mathbb{C})$ is regarded as a subgroup of $GL(2n, \mathbb{R})$ via

$$Z = X + iY \mapsto \left(\begin{array}{cc} X & -Y \\ Y & X \end{array}\right).$$

Note that $\psi \in GL(2n, \mathbb{R})$ belongs to $GL(n, \mathbb{C})$ iff $\psi J_0 = J_0 \psi$.

Lemma 1.11.

$$U(n) = Sp(2n) \cap O(2n) = Sp(2n) \cap GL(n, \mathbb{C}) = O(2n) \cap GL(n, \mathbb{C}).$$

Proof. Let $\psi \in GL(2n, \mathbb{R})$, then

- $\psi \in GL(n, \mathbb{C})$ iff $\psi J_0 = J_0 \psi$,
- $\psi \in \operatorname{Sp}(2n)$ iff $\psi^T J_0 \psi = J_0$,
- $\psi \in O(2n)$ iff $\psi^T \psi = I$.

The last two identities in the lemma follows immediately.

It remains to show that a $\psi = \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix} \in GL(n, \mathbb{C})$ lies in Sp(2n) iff $\psi = X + iY$ lies in U(n). But one can check easily that both conditions are equivalent to the following set of equations

$$X^T Y = Y^T X, \quad X^T X + Y^T Y = I.$$

The lemma follows immediately.

The previous lemma in particular says that U(n) is a subgroup of Sp(2n). The space of right orbits

$$\operatorname{Sp}(2n)/U(n) \equiv \{\psi \cdot U(n) | \psi \in \operatorname{Sp}(2n)\}$$

is known to be naturally a smooth manifold. We denote by * the orbit of identity $I \in \text{Sp}(2n)$ in Sp(2n)/U(n).

Theorem 1.12. There exists a canonically defined smooth map

 $H: Sp(2n)/U(n) \times [0,1] \to Sp(2n)/U(n)$

such that $H(\cdot, 0) = id$, $H(\cdot, 1)(x) = \{*\}$ for any $x \in Sp(2n)/U(n)$, and H(*, t) = * for any $t \in [0, 1]$. In particular, Sp(2n)/U(n) is contractible.

Proof. First of all, for any $\psi \in \text{Sp}(2n)$, ψ^T is also in Sp(2n), so that $\psi\psi^T$ is a symmetric, positive definite symplectic matrix. We will show that $(\psi\psi^T)^{\alpha}$ is also a symplectic matrix for any real number α .

To this end, we decompose $\mathbb{R}^{2n} = \bigoplus_{\lambda} V_{\lambda}$ where V_{λ} is the λ -eigenspace of $\psi \psi^{T}$, and $\lambda > 0$. Then note that for any $z \in V_{\lambda}$, $z' \in V_{\lambda'}$, $\omega_0(z, z') = 0$ if $\lambda \lambda' \neq 1$. Our claim that $(\psi \psi^{T})^{\alpha}$ is a symplectic matrix for any real number α follows easily from this observation.

Now for any $\psi \in \operatorname{Sp}(2n)$, we decompose $\psi = PQ$ where $P = (\psi\psi^T)^{1/2}$ is symmetric and $Q \in O(2n)$. Note that $Q = \psi P^{-1} \in \operatorname{Sp}(2n) \cap O(2n) = U(n)$, which shows that ψ and $P = (\psi\psi^T)^{1/2}$ are in the same orbit in $\operatorname{Sp}(2n)/U(n)$. With this understood, we define

$$H: (\psi \cdot U(n), t) \mapsto (\psi \psi^T)^{(1-t)/2} \cdot U(n), \ \psi \in \text{Sp}(2n), \ t \in [0, 1].$$

Lemma 1.13. $\mathcal{J}(\mathbb{R}^{2n}, \omega_0)$ is canonically identified with Sp(2n)/U(n), under which J_0 is sent to *.

Proof. By Lemma 1.11, for any $J \in \mathcal{J}(\mathbb{R}^{2n}, \omega_0)$, there exists a $\phi_J \in \operatorname{Sp}(2n)$ such that $\phi_J^* J \equiv \phi_J^{-1} \cdot J \cdot \phi_J = J_0$, or equivalently, $J = \phi_J \cdot J_0 \cdot \phi_J^{-1}$. The correspondence $J \mapsto \phi_J$ induces a map from $\mathcal{J}(\mathbb{R}^{2n}, \omega_0)$ to $\operatorname{Sp}(2n)/U(n)$, which is clearly one to one and onto. Note that under the correspondence, J_0 is sent to *.

The set of ω -compatible complex structures $\mathcal{J}(V, \omega)$ can be given a natural topology so that it becomes a smooth manifold. Lemma 1.10, Theorem 1.12 and Lemma 1.13 give rise to the following

Corollary 1.14. Given any $J \in \mathcal{J}(V, \omega)$, there exists a canonically defined smooth map

$$H_J: \mathcal{J}(V,\omega) \times [0,1] \to \mathcal{J}(V,\omega)$$

depending smoothly on J, such that $H_J(\cdot, 0) = id$, $H_J(\cdot, 1)(J') = \{J\}$ for any $J' \in \mathcal{J}(V, \omega)$, and H(J, t) = J for any $t \in [0, 1]$.

Recall that for any $J \in \mathcal{J}(V, \omega)$, there is a canonically associated Hermitian structure (i.e. a *J*-invariant inner product) $g_J(\cdot, \cdot) \equiv \omega(\cdot, J \cdot)$. The next theorem shows that one can construct ω -compatible complex structures from inner products on *V*. Let Met(*V*) denote the space of inner products on *V*.

Theorem 1.15. There exists a canonically defined map $r : Met(V) \to \mathcal{J}(V, \omega)$ such that

$$r(g_J) = J, \ r(\psi^* g) = \psi^* r(g)$$

for all $J \in \mathcal{J}(V, \omega)$, $g \in Met(V)$, and $\psi \in Sp(V, \omega)$.

Proof. For any given $g \in Met(V)$, we define $A: V \to V$ by

$$\omega(v,w) = g(Av,w), \quad \forall v,w \in V.$$

Then the skew-symmetry of ω implies that A is g-skew-adjoint. It follows that $P \equiv -A^2$ is g-self-adjoint and g-positive definite. Set $Q \equiv P^{1/2}$, which is also g-self-adjoint and g-positive definite.

We define the map r by $g \mapsto J_g \equiv Q^{-1}A$. Then $J_g^2 = Q^{-1}AQ^{-1}A = Q^{-2}A^2 = -I$ is a complex structure. To check that J_g is ω -compatible, note that

$$\begin{split} \omega(Q^{-1}Av, Q^{-1}Aw) &= g(AQ^{-1}Av, Q^{-1}Aw) = -g(v, Aw) = \omega(v, w), \ \forall v, w \in V, \\ \omega(v, Q^{-1}Av) &= g(Av, Q^{-1}Av) > 0 \ \forall 0 \neq v \in V \end{split}$$

because Q^{-1} is g-self-adjoint and g-positive definite.

Finally, for any $\psi \in \text{Sp}(V, \omega)$, replacing g with $\psi^* g$ changes A to $\psi^{-1}A\psi$, and therefore changes Q to $\psi^{-1}Q\psi$. This implies $r(\psi^* g) = \psi^* r(g)$. If $g = g_J$, then A = Jand Q = I, so that $r(g_J) = J$.

2. Symplectic Vector Bundles

Definition 2.1. A symplectic vector bundle over a smooth manifold M is a pair (E, ω) , where $E \to M$ is a real vector bundle and ω is a smooth section of $E^* \wedge E^*$ such that for each $p \in M$, (E_p, ω_p) is a symplectic vector space. (Here E^* is the dual of E.) The section ω is called a **symplectic bilinear form** on E. Two symplectic vector bundles (E_1, ω_1) , (E_2, ω_2) are said to be **isomorphic** if there exists an isomorphism $\phi: E_1 \to E_2$ (which is identity over M) such that $\phi^* \omega_2 = \omega_1$.

The standard constructions in bundle theory carry over to the case of symplectic vector bundles. For example, for any smooth map $f : N \to M$ and symplectic vector bundle (E, ω) over M, the pull-back $(f^*E, f^*\omega)$ is a symplectic vector bundle over N. In particular, for any submanifold $Q \subset M$, the restriction $(E|_Q, \omega|_Q)$ is a symplectic vector bundle over Q. Let F be a sub-bundle of E such that for each $p \in M$, $(F_p, \omega_p|_{F_p})$ is a symplectic vector space. Then $(F, \omega|_F)$ is naturally a symplectic vector bundle. We call F (or $(F, \omega|_F)$) a **symplectic sub-bundle** of (E, ω) . The **symplectic complement** of F is the sub-bundle

$$F^{\omega} \equiv \bigcup_{p \in M} F_p^{\omega_p} = \bigcup_{p \in M} \{ v \in E_p | \omega_p(v, w) = 0, \ \forall w \in F_p \},$$

which is naturally a symplectic sub-bundle of (E, ω) . Note that as a real vector bundle, F^{ω} is isomorphic to the quotient bundle E/F.

Given any symplectic vector bundles (E_1, ω_1) , (E_2, ω_2) , the symplectic direct sum $(E_1 \oplus E_2, \omega_1 \oplus \omega_2)$ is naturally a symplectic vector bundle. With this understood, note that for any symplectic sub-bundle F of (E, ω) , one has

$$(E,\omega) = (F,\omega|_F) \oplus (F^{\omega},\omega|_{F^{\omega}})$$

Example 2.2. Let (M, ω) be a symplectic manifold. Note that ω as a 2-form on M is a smooth section of $\Omega^2(M) \equiv T^*M \wedge T^*M$. The nondegeneracy condition on ω implies that (TM, ω) is a symplectic vector bundle. Note that the closedness of ω is irrelevant here.

Suppose Q is a symplectic submanifold of (M, ω) . Then TQ is a symplectic subbundle of $(TM|_Q, \omega|_Q)$. The normal bundle $\nu_Q \equiv TM|_Q/TQ$ of Q in M is also naturally a symplectic sub-bundle of $(TM|_Q, \omega|_Q)$ by identifying ν_Q with the symplectic complement TQ^{ω} of TQ. Notice the symplectic direct sum

$$TM|_Q = TQ \oplus \nu_Q.$$

Definition 2.3. Let (E, ω) be a symplectic vector bundle over M. A **complex** structure J of E, i.e., a smooth section J of $\operatorname{Aut}(E) \to M$ such that $J^2 = -I$, is said to be ω -compatible if for each $p \in M$, J_p is ω_p -compatible, i.e., $J_p \in \mathcal{J}(E_p, \omega_p)$. The space of all ω -compatible complex structures of E is denoted by $\mathcal{J}(E, \omega)$.

Example 2.4. Let (M, ω) be a symplectic manifold. Then a complex structure of TM is simply what we call an almost complex structure on M. An almost complex structure J on M is said to be ω -compatible if $J \in \mathcal{J}(TM, \omega)$. In this context, we denote $\mathcal{J}(TM, \omega)$, the set of ω -compatible almost complex structures on M, by $\mathcal{J}(M, \omega)$. Notice that the closedness of ω is irrelevant here.

In what follows, we will address the issue of classification of symplectic vector bundles up to isomorphisms, and determine the topology of the space $\mathcal{J}(E, \omega)$.

Lemma 2.5. Let (E, ω) be a symplectic vector bundle over M of rank 2n.

(1) There exists an open cover $\{U_i\}$ of M such that for each i, there is a symplectic trivialization $\phi_i : (E|_{U_i}, \omega|_{U_i}) \to (U_i \times \mathbb{R}^{2n}, \omega_0)$. In particular, the transition functions $\phi_{ji}(p) \equiv \phi_j \circ \phi_i^{-1}(p) \in Sp(2n)$ for each $p \in U_i \cap U_j$, and E becomes a Sp(2n)-vector bundle. Conversely, any Sp(2n)-vector bundle is a symplectic vector bundle, and their classification up to isomorphisms is identical.

(2) (E, ω) as a Sp(2n)-vector bundle admits a lifting to a U(n)-vector bundle if and only if there exists a $J \in \mathcal{J}(E, \omega)$.

Proof. For any $p \in M$, one can prove by induction as in Theorem 1.4 (with a parametric version) that there exists a small neighborhood U_p of p and smooth sections

 $u_1, u_2, \cdots, u_n, v_1, v_2, \cdots, v_n$ of E over U_p such that for each $q \in U_p$,

$$u_1(q), u_2(q), \cdots, u_n(q), v_1(q), v_2(q), \cdots, v_n(q)$$

form a symplectic basis of (E_q, ω_q) . Part (1) follows immediately from this by defining $\phi_p : (E|_{U_p}, \omega|_{U_p}) \to (U_p \times \mathbb{R}^{2n}, \omega_0)$ to be the inverse of

$$(q, (x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n)^T) \mapsto \sum_{i=1}^n (x_i u_i(q) + y_i v_i(q)).$$

For part (2), if (E, ω) as a Sp(2n)-vector bundle admits a lifting to a U(n)-vector bundle, then the corresponding complex structure J on E is ω -compatible because the Hermitian structure and J determines ω completely. If there exists a $J \in \mathcal{J}(E, \omega)$, then one can show that there are local smooth sections u_1, u_2, \cdots, u_n which form a unitary basis at each point for (E, J, h_J) . This makes E into a U(n)-vector bundle, which is a lifting of the Sp(2n)-vector bundle because $u_1, u_2, \cdots, u_n, Ju_1, Ju_2, \cdots, Ju_n$ are local smooth sections which form a symplectic basis at each point for (E, ω) .

Lemma 2.6. Any Sp(2n)-vector bundle over a smooth manifold admits a lifting to a U(n)-vector bundle, which is unique up to isomorphisms (as U(n)-vector bundles). Consequently, for any $J_1, J_2 \in \mathcal{J}(E, \omega)$, the complex vector bundles (E, J_1) , (E, J_2) are isomorphic. (In other words, every symplectic vector bundle has a underlying complex vector bundle structure unique up to isomorphisms.)

Proof. By Theorem 1.12, $\operatorname{Sp}(2n)/U(n)$ is contractible. This implies that the classifying spaces $B\operatorname{Sp}(2n)$ and BU(n) are homotopy equivalent via $i_* : BU(n) \to B\operatorname{Sp}(2n)$ induced by $i : U(n) \subset \operatorname{Sp}(2n)$. In particular, any $\operatorname{Sp}(2n)$ -vector bundle over a smooth manifold M, which is classified by a map from M into $B\operatorname{Sp}(2n)$ unique up to homotopy, can be lifted to a U(n)-vector bundle by lifting the classifying map to a map from Minto BU(n), and such a lifting is unique up to isomorphisms.

Theorem 2.7. Let (E_1, ω_1) , (E_2, ω_2) be two symplectic vector bundles. Then they are isomorphic as symplectic vector bundles iff they are isomorphic as complex vector bundles.

Proof. Pick $J_1 \in \mathcal{J}(E_1, \omega_1)$, $J_2 \in \mathcal{J}(E_2, \omega_2)$. Then by the previous lemma (E_1, ω_1) , (E_2, ω_2) are isomorphic as symplectic vector bundles iff (E_1, J_1, ω_1) , (E_2, J_2, ω_2) are isomorphic as U(n)-vector bundles. But the classification of U(n)-vector bundles up to isomorphisms is the same as classification of the underlying complex vector bundles because $GL(n, \mathbb{C})/U(n)$ is contractible. The theorem follows immediately.

Theorem 2.8. For any symplectic vector bundle (E, ω) , the space of ω -compatible complex structures $\mathcal{J}(E, \omega)$ is nonempty and contractible.

Proof. There are actually two proofs of this important fact.

Proof 1: The nonemptiness of $\mathcal{J}(E, \omega)$ follows from Lemmas 2.5 and 2.6. On the other hand, for any $J \in \mathcal{J}(E, \omega)$, a parametric version of Corollary 1.14 gives rise to a deformation retraction of $\mathcal{J}(E, \omega)$ to $\{J\}$, which shows that $\mathcal{J}(E, \omega)$ is contractible.

Proof 2: A parametric version of Theorem 1.15 gives rise to a similar map r: $Met(E) \rightarrow \mathcal{J}(E, \omega)$. Contractibility of $\mathcal{J}(E, \omega)$ follows from convexity of Met(E).

Corollary 2.9. For any symplectic manifold (M, ω) , the space of ω -compatible almost complex structures on M is nonempty and contractible.

Proof 2 of Theorem 2.8 is less conceptual than proof 1 but more useful in various concrete constructions. As an example of illustration, we prove the following

Proposition 2.10. Let Q be a symplectic submanifold of (M, ω) . Then for any $J \in \mathcal{J}(Q, \omega|_Q)$, there exists a $\hat{J} \in \mathcal{J}(M, \omega)$ such that $\hat{J}|_{TQ} = J$. In particular, every symplectic submanifold of (M, ω) is a pseudo-holomorphic submanifold for some ω -compatible almost complex structure on M.

Proof. Recall the symplectic direct sum decomposition

$$(TM|_Q, \omega|_Q) = (TQ, \omega|_{TQ}) \oplus (\nu_Q, \omega|_{\nu_Q}),$$

where ν_Q is the normal bundle of Q in M. For any $J \in \mathcal{J}(Q, \omega|_Q)$, we can extend it to $J' = (J, J^{\nu})$ by choosing a $J^{\nu} \in \mathcal{J}(\nu_Q, \omega|_{\nu_Q})$. We then extend the corresponding metric $\omega(\cdot, J' \cdot)$ on $TM|_Q$ over the whole M to a metric g on TM. Let $r : Met(M) \to \mathcal{J}(M, \omega)$ be the parametric version of the map in Theorem 1.15. Then $\hat{J} \equiv r(g)$ satisfies $\hat{J}|_{TQ} = J$, and in particular, Q is a pseudo-holomorphic submanifold with respect to the ω -compatible almost complex structure \hat{J} on M.

We end this section with a brief discussion about integrability of almost complex structures. Recall that an almost complex structure J on a manifold M is said to be **integrable**, if M is the underlying real manifold of a complex manifold and J comes from the complex structure.

Let (M, J) be an almost complex manifold with almost complex structure J. The **Nijenhuis tensor** of J is defined by

$$N_J(X,Y) = [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y]$$

for two vector fields $X, Y : M \to TM$. N_J is a bilinear map $T_pM \times T_pM \to T_pM$ for each $p \in M$, and has properties $N_J(X, X) = 0$ and $N_J(X, JX) = 0$ for any vector field X. In particular, $N_J = 0$ if M is 2-dimensional. Moreover, one can also check easily that $N_J = 0$ if J is integrable. The converse is given by the following highly nontrivial theorem of A. Newlander and L. Nirenberg.

Theorem 2.11. (Newlander-Nirenberg). An almost complex structure is integrable if and only if the Nijenhuis tensor vanishes.

In particular, every symplectic 2-dimensional manifold is Kähler.

References

^[1] D. McDuff and D. Salamon, *Introduction to Symplectic Topology*, Oxford Mathematical Monographs, 2nd edition, Oxford Univ. Press, 1998.