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Abstract. We characterize the standard smooth structure of K3 among all
smooth structures by the existence of a certain symplectic symmetry of order
96.

1. Introduction and the main theorem

In the theory of differentiable transformation groups, a classical problem concerns
the correlation between the exoticness of the smooth structure and possible smooth
(effective) compact Lie group actions on the manifold. In higher dimensions, this
problem has been extensively studied in the case of exotic spheres (cf. [15]). In
dimension four, however, the case of homotopy K3 surfaces (instead of homotopy
4-spheres) was first studied (cf. [6, 7]). In particular, it was shown in [7] that the
existence of symplectic symmetries by certain maximal symplectic K3 groups will
force the corresponding symplectic homotopy K3 surface to be “minimally exotic”,
meaning that the 4-manifold has the same Seiberg–Witten invariant of the standard
K3. In this paper, we shall improve the results in [7] from “minimally exotic” to
“standard” by employing some new ideas from the recent paper [5].

By way of definition, a K3 group is a finite group which can be realized as an
automorphism group of a K3 surface. Furthermore, the K3 group (as well as the
corresponding automorphism group ofK3 surface) is called symplectic if its induced
action on the holomorphic canonical line bundle is trivial. Symplectic K3 groups
are completely classified, and there are 11 groups which are maximal (see Mukai
[14]).

Recall that a symplectic homotopyK3 surface is a symplectic 4-manifold which is
homotopy equivalent to a K3 surface. By a theorem of Freedman [11], a symplectic
homotopy K3 surface is homeomorphic to a K3 surface. On the other hand, all
complex K3 surfaces are diffeomorphic as smooth 4-manifolds [2]; the underlying
smooth structure is referred to as the standard smooth structure of K3 surface.

Main Theorem. There is a finite group G of order 96 which gives the following
characterization of the standard smooth structure of K3 surface: Let M be a sym-
plectic homotopy K3 surface. Then M is diffeomorphic to a K3 surface if and only
if M admits a symplectic G-action.
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Remarks. (1) The Main Theorem above is the first example (in any dimension)
where the standard smooth structure of a manifold is characterized by the existence
of a finite symmetry group of certain geometric structure. Earlier results of such a
nature (e.g., cf. [15]) are all characterized by smooth Lie group actions of positive
dimension. However, we should mention that, strictly speaking, our result in the
Main Theorem is not characterized by smooth actions of a finite group, as there are
homotopy K3 surfaces which admit no symplectic structures; or even though the
homotopy K3 surface admits a symplectic structure, it is not known whether for
any smooth finite group action it always possesses an invariant symplectic structure.

On the other hand, we point out that in the case of K3 surface, there do exist
infinitely many distinct symplectic homotopy K3 surfaces with an exotic smooth
structure, e.g., those constructed using the Fintushel-Stern knot surgery [10]. How-
ever, none of these examples are minimally exotic; it is an open question as to
whether there is a minimally exotic but non-standard smooth structure on K3
surface (cf. [8, 12]).

(2) In dimension four, the smooth structures which support a smooth S
1-action

are known to be quite restricted. For example, a simply connected smooth 4-
manifold admitting a smooth S

1-action must be a connected sum of S4, ±CP
2, or

S2 × S2. This was proved in the late 1970s (cf. [9, 19]), modulo the 3-dimensional
Poincaré Conjecture which is now resolved, cf. [13]. On the other hand, for fixed-
point free S1-actions, it was shown in [4] that for any given finitely presented group
G with infinite center, there are only finitely many distinct smooth orientable 4-
manifolds admitting a smooth fixed-point free S1-action, whose fundamental group
is isomorphic to G, with the number of such 4-manifolds bounded by a constant
depending only on G. With this said, we point out that homotopy K3 surfaces do
not admit any smooth S

1-actions by a theorem of Atiyah and Hirzebruch [1].

In the Main Theorem, the group G = T48 × Z2, where T48 is one of the 11
maximal symplectic K3 groups which has order 48. In fact, G is a K3 group, i.e.,
it can be realized as an (non-symplectic) automorphism group of a K3 surface. By
choosing a G-invariant Kähler form which is naturally a symplectic structure on
the K3 surface, this fact immediately implies half of the Main Theorem, i.e., the
“only if” part. We shall give a brief description below (see Mukai [14], p. 193, for
further details).

The K3 surface with G as an automorphism group can be constructed as follows.
Recall that T48 is a subgroup of GL(2,C) with the binary tetrahedral group T24 ⊂
SL(2,C) as an index-2 normal subgroup. Furthermore, the linear representation
of T48 on C

2 leaves the degree 6 polynomial xy(x4 + y4) invariant. With this
understood, consider the hypersurface in C4,

Z := {(x, y, z, w) ∈ C
4|w2 = xy(x4 + y4) + z6}.

We consider the following action of G on Z: for any g ∈ T48 ⊂ GL(2,C), the action
of g on Z is induced by

g · (x, y, z, w) = (g(x, y), (det g)z, w),

and the action of the nontrivial element τ ∈ Z2 is given by

τ · (x, y, z, w) = (x, y, z,−w).

The G-action commutes with the following C∗-action on Z,

λ · (x, y, z, w) = (λx, λy, λz, λ3w), ∀λ ∈ C
∗.
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With this understood, let S := (Z \ {(0, 0, 0, 0)})/C∗. Then π : S → CP2 induced
by the projection (x, y, z, w) �→ (x, y, z) defines S as a double branched covering of
CP

2 with branch loci given by the degree 6 curve xy(x4 + y4) + z6 = 0. Hence S
is a K3 surface. The G-action on Z naturally descends to a G-action on S, where
the Z2-factor is the deck transformation group of the double-branched covering
π : S → CP2, and T48 acts as a symplectic automorphism group of the K3 surface
S.

Note that the 4-manifold M in the Main Theorem is a symplectic homotopy K3
surface equipped with a symplectic T48-action, as T48 is contained in G = T48 ×Z2

as a subgroup. Hence by Theorem 1.1 of [7], M must have trivial canonical class,
i.e., c1(KM ) = 0. With this understood, the main technical result of this paper,
proving the “if” part of the Main Theorem, is the following theorem.

Theorem 1.1. Let M be a symplectic homotopy K3 surface with c1(KM ) = 0.
Suppose M admits a symplectic G-action, where G = T48 × Z2. Then M is diffeo-
morphic to the standard K3 surface.

2. Proof of Theorem 1.1

We begin by recalling some relevant results from [7], which will be used in the
proof of Theorem 1.1. To this end, let M be a symplectic homotopy K3 surface
with c1(KM ) = 0, equipped with a symplectic G-action (where G is finite). Denote
by ω the symplectic structure on M , which is invariant under the G-action. Then

(†) There is a natural homomorphism ρ : G → S1, defined as follows. We fix a
G-invariant metric such that the symplectic form ω is self-dual. This allows
us to identify H2,+(M ;R) with the space of self-dual harmonic 2-forms on
M , under which [ω] ∈ H2,+(M ;R) is identified to ω. Consequently, we
obtain an induced action of G on H2,+(M ;R) through the G-action on the
space of self-dual harmonic 2-forms, and it is easily seen that the choice
of the metric is non-essential here. Now observe that [ω] ∈ H2,+(M ;R) is
fixed by theG-action, so that there is an inducedG-action on the orthogonal
complement [ω]⊥ ⊂ H2,+(M ;R) (with respect to the cup-product). Since
b+2 (M) = 3, [ω]⊥ ∼= R2. With this understood, it was shown in [7], Lemma
2.1, that the G-action on [ω]⊥ ∼= R2 is orientation-preserving, which gives
rise to the homomorphism ρ : G → S1.

(‡) For any subgroup H of G such that ρ(H) = {1}, it was shown in Theorem
1.2 of [7] that H is a symplectic K3 group, and moreover, there is a K3
surface with H as a symplectic automorphism group such that the fixed-
point set structure of the holomorphic H-action on the K3 surface is the
same as the fixed-point set structure of the symplectic H-action on M .

With the preceding understood, we now let M and G be as in Theorem 1.1.
We denote by G0 the subgroup of G which is the kernel of the homomorphism
ρ : G → S1. In other words, G0 is the maximal normal subgroup of G such that
b+2 (M/G0) = 3. The following lemma identifies the subgroup G0.

Lemma 2.1. The Z2-factor in G = T48 × Z2 has a non-trivial image under ρ :
G → S

1. Consequently, G is isomorphic to G0 × Z2, where G0 is isomorphic to
T48.

Proof. We recall that T48 is a nontrivial semi-direct product T24×φZ2 and the com-
mutator [T48, T48] = T24. It follows easily that the subgroup T24 ⊂ G is contained
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in G0. Assume, to the contrary, that the Z2-factor in G = T48 × Z2 has a trivial
image under ρ : G → S1. Then the subgroup H := T24 × Z2 of G is contained in
G0. Now as we mentioned in (‡) above, H must be a symplectic K3 group. On
the other hand, examining Table 2 in [18], we find that H is not listed there, as
H has order 48 and [H,H] = [T24, T24] = Q8. The lemma follows easily from this
contradiction. �

In what follows, we identify G with G0 × Z2, and denote by τ the generator of
the Z2-factor. A key fact we need to establish is that the action of τ is not free.

To this end, recall that by Theorem 1.2 of [7] (as we mentioned in (‡) above),
the action of G0 = T48 on M has the same fixed-point set structure of a symplectic
T48-automorphism of a K3 surface. With this understood, and by examining Table
2 of [18], we find that the quotient space M/G0 contains 7 isolated singular points,
with the corresponding resolution graphs being E6, A7, A2, and 4A1. We shall
particularly look at the singular point whose resolution graph is A7. The preimage
of this singular point in M consists of a set of six points {p1, p2, . . . , p6}, where each
pi has an isotropy subgroup isomorphic to Z8 whose action on the tangent space
Tpi

M has weights (k,−k). On the other hand, since τ commutes with G0, there
is an induced action of τ on the quotient space M/G0. The action must fix the
isolated singular point whose resolution graph is A7 because such a singular point
is unique in M/G0. Consequently, the set {p1, p2, . . . , p6} must be invariant under
the action of τ .

Lemma 2.2. The set {p1, p2, . . . , p6} is contained in the fixed-point set of τ ; in
particular, the action of τ is not free.

Proof. Suppose to the contrary that τ acts nontrivially on {p1, p2, . . . , p6}. Then
without loss of generality, we assume τ ·p1 = p2. We denote by Γ ⊂ G0 the isotropy
subgroup of p1. Since τ commutes with G0, it follows easily that the isotropy
subgroup of p2 is also Γ. On the other hand, note that G0 acts transitively on the
set {p1, p2, . . . , p6}. Hence, there is an element h ∈ G0 such that h · p2 = p1. Since
p1, p2 have the same isotropy subgroup Γ, it follows easily that h−1Γh = Γ. Finally,
note that (hτ ) · p1 = p1, which implies easily that h2 ∈ Γ. In particular, h has an
even order. We set x := hτ .

To proceed further, we shall give a description of Γ next. Let γ be a generator
of Γ. Then consider the image of γ under the homomorphism G0 = Q8×φ S3 → S3

(here Sn is the symmetry group of n letters). Since γ has order 8, the image of γ in
S3 must be an element of order 2, to be denoted by δ. It follows easily that γδ must
be an element of order 4 in Q8. Without loss of generality, we assume γδ = i ∈ Q8,
or equivalently, γ = iδ. With this understood, note that iδiδ = γ2 ∈ Q8 is an
element of order 4. We may assume iδiδ = k, or δiδ = j without loss of generality.
Then δjδ = i and δkδ = −k follows easily. Note that k ∈ Γ.

Next we analyze the normalizer of Γ; in particular, the possible values for the
element h. First, we let g0 be an element of order 3 in S3. Then since g−1

0 Q8g0 = Q8,
it follows easily that the image of g−1

0 γg0 under the homomorphism G0 = Q8 ×φ

S3 → S3 equals g−1
0 δg0, which is not equal to δ. This shows that g0 is not in the

normalizer of Γ. On the other hand, one can easily check that both Q8 and δ are
contained in the normalizer of Γ. So the normalizer of Γ is the semi-direct product
of Q8 with δ. In particular, the possible values of h are δ,±i,±j. Since Γ is of
index 2 in its normalizer, it is easy to see that the action of h on Γ by conjugation
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is independent of the possible choice of h. In particular, we obtain

h−1γh = δ−1γδ = δ(iδ)δ = −i(iδiδ)δ = −iγ2δ = γ2iδ = γ3.

It follows then that x−1γx = γ3, where x = hτ , which fixes the point p1.
Now we are ready to derive a contradiction by looking at the action of x on the

tangent space Tp1
M . Recall that the action of Γ on Tp1

M has weights (k,−k).
This means that the eigenvalues of γ in Tp1

M are λ, λ−1 for some 8-th root of unity
λ. Let v ∈ Tp1

M be an eigenvector of γ with eigenvalue λ. Then

(x−1γx) · v = γ3 · v = λ3v,

which implies that γ ·(x·v) = λ3(x·v), i.e., x·v is an eigenvector of γ with eigenvalue
λ3 �= λ, λ−1. This contradiction completes the proof of the lemma. �

Next we analyze the fixed-point set of τ , denoted by Mτ , by exploiting the
natural action of G0 on it, noting that since τ and G0 commute, Mτ is invariant
under G0.

First of all, we observe that each of p1, · · · , p6 ∈ Mτ in Lemma 2.2 must be
contained in a 2-dimensional component of Mτ . This is because from the proof of
Lemma 2.2, we see that −1 ∈ Q8 fixes each pi and its action on Tpi

M is given by
−Id. If pi were an isolated fixed point of τ , then action of τ on Tpi

M would also
have been given by −Id. That would imply that the product of τ and −1 ∈ Q8

acts trivially on Tpi
M , which is a contradiction, hence the claim. In particular, Mτ

must have 2-dimensional components.
At this point, we shall review the new ingredient which is crucial for the proof

of Theorem 1.1, by recalling the relevant constructions from [5]. To this end, let
(X,ω) be any symplectic 4-orbifold, and let Σ denote its singular set, i.e.,

Σ = {p ∈ X|the isotropy group Γp is nontrivial}.

If we fix an ω-compatible (orbifold) almost complex structure J , and let gJ be the
corresponding Riemannian metric, then at each p ∈ Σ, the tangent space TpX can
be identified with C2, with the action of Γp on TpX given by a subgroup of U(2).
Consequently, Σ can be decomposed as a disjoint union Σ0 	 Σ∗ 	 Σ1, where

• Σ0 = {p ∈ Σ|the action of Γp on TpX \ {0} is free}.
• Σ∗ = {p ∈ Σ|Γp fixes a complex line in (TpX, J)}.
• Σ1 = {p ∈ Σ|the action of Γp on TpX \ {0} is not free but is fixed-point

free}.
Both Σ0,Σ1 consist of finitely many points, but Σ∗ is a 2-dimensional smooth

manifold such that ω|Σ∗ is an area form. We can compactify each connected com-
ponent of Σ∗ in X by adding points from Σ1. Let {Σi} be the set of compactified
connected components of Σ∗. Then each Σi is a symplectic orbifold surface in
(X,ω) (possibly immersed), with the points of self-intersection of each Σi and the
points of intersection of distinct Σi,Σj contained in Σ1. We denote by |X| the
underlying space of X, which is naturally a smooth 4-orbifold with at most isolated
singularities; in particular, Σ∗ lies in the smooth locus of the orbifold |X| (see [5]
for more details).

With this understood, the main result of [5] constructs a canonical symplectic
resolution for the symplectic 4-orbifold (X,ω). The key step is to first de-singularize
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the symplectic form ω along the 2-dimensional singular strata Σ∗, making |X| nat-
urally a symplectic 4-orbifold with at most isolated singularities. This construction
can even be done equivariantly when (X,ω) admits a finite symplectic G-action.

Theorem 2.3 (Theorem 1.1 of [5]). Let (X,ω) be a symplectic 4-orbifold, and let
G be a finite group acting smoothly on the 4-orbifold X, preserving the symplectic
structure ω. There are G-invariant neighborhoods U of Σ1 in |X|, which can be
taken arbitrarily small, such that for any choice of U , there is a G-invariant sym-
plectic structure ω′ on the orbifold |X|, such that ω′ = ω on |X| \ (Σ∗ ∪ U) (as
symplectic forms) and ω′ = ω on Σ∗ \ U as area forms. Each Σi is a symplec-
tic orbifold surface in (|X|, ω′), which may be singular with respect to the smooth
structure of the orbifold |X|. The self-intersections and singular points of each Σi

occur only at points in Σ1, and there is a G-invariant, ω′-compatible, integrable
almost complex structure on U with respect to which each Σi ∩ U is a (genuine)
holomorphic curve.

The symplectic resolution of the symplectic 4-orbifold (X,ω), to be denoted by

(X̃, ω̃), is simply taken to be a minimal symplectic resolution of the symplectic
4-orbifold (|X|, ω′) (which has isolated singularities). Note that this can be done

equivariantly, so there is a natural symplectic G-action on (X̃, ω̃) (cf. [5], Theorem
1.5).

With the preceding understood, we go back to the proof of Theorem 1.1. We
shall apply the symplectic resolution construction to the symplectic 4-orbifold X :=

M/〈τ 〉, and denote the corresponding symplectic resolution (X̃, ω̃) by Mτ . We call
Mτ the resolution of the τ -action on M . It follows easily from the construction that
each 2-dimensional component of the fixed-point set Mτ descends to a symplectic
surface in Mτ , and each isolated fixed point in Mτ gives rise to a symplectic (−2)-
sphere in Mτ . (Note that in the present situation, the subset Σ1 of the singular set
Σ is empty.)

Now the fact that the fixed-point set Mτ contains a 2-dimensional component
has the following important consequence (cf. Lemma 4.1 in [5]):

The resolution Mτ of the τ -action on M is a symplectic rational 4-manifold.
With the resolution Mτ at hand, we shall further analyze the fixed-point set

Mτ . To this end, we first collect some standard facts about Mτ in terms of the
integral Z2-representation on H2(M) induced by the action of τ . Recall that the
integral Z2-representation on H2(M) splits into a direct sum of 3 types of Z2-
representations: the regular type of rank p = 2, the trivial representation of rank 1,
and the representation of cyclotomic type of rank p− 1 = 1. If we let r, t, s be the
number of summands of the above 3 types of Z2-representations in H2(M). Then
they obey the following constraints: (a) 2r + t + s = b2(M) = 22, (b) χ(Mτ ) =
2 + t − s by the Lefschetz fixed point theorem as the trace of τ on H2(M) equals
t− s (the regular Z2-representations contribute trivially to the trace of τ ), and (c)
b1(M

τ ) = s (see e.g. Proposition 1.1 in [3], for a more detailed review as well as
references).

Lemma 2.4. Let x, y be the number of spheres and tori in Mτ respectively, and
let ε be the number of 2-dimensional components of Mτ which have genus > 1. Let
z be the number of isolated points in Mτ . Then (1) ε = 0 or 1, (2) z = 0, and (3)
x+ 2y + ε ≤ 12.
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Proof. Let {Σi|i ∈ I} be the set of 2-dimensional components of Mτ , and let gi be
the genus of Σi. We first show that ε = 0 or 1. To see this, note that c1(KM ) = 0,
so that the adjunction formula gives Σ2

i = 2gi − 2. If gi > 1, then Σ2
i > 0. This

implies easily the following upper bound ε ≤ b+2 (M/〈τ 〉). Then ε = 0 or 1 follows
immediately from the fact that b+2 (M/〈τ 〉) = 1 (cf. Lemma 2.1).

To see z = 0, we note that by Proposition 3.2 in [5], c1(KMτ
) = − 1

2

∑
i∈IPD(Bi),

where Bi is the descendent of Σi in Mτ and PD(Bi) denotes the Poincaré dual of
Bi. Observing that PD(Bi)

2 = 2 · Σ2
i , we obtain

c1(KMτ
)2 =

1

4
·
∑
i∈I

2 · Σ2
i =

∑
i∈I

(gi − 1) = s/2− (x+ y + ε),

because Σ2
i = 2gi − 2 and s = b1(M

τ ) =
∑

i∈I 2gi. On the other hand, as a

symplectic rational 4-manifold, c1(KMτ
)2 = 10− b2(Mτ ), so that

b2(Mτ ) = 10 + x+ y + ε− s/2.

Computing b2(Mτ ) differently, we have

b2(Mτ ) = b2(M/〈τ 〉) + z =
1

2
(b2(M) + tr(τ |H2(M))) + z = 11 +

1

2
(t− s) + z.

It follows easily that x + y + ε = 1 + t/2 + z. Finally, χ(Mτ ) = t − s + 2 means∑
i∈I(2− 2gi) + z = t− s+ 2, which gives

2(x+ y + ε)− s+ z = t− s+ 2.

With x+y+ ε = 1+ t/2+z, it follows easily that z = 0. Finally, note that y ≤ s/2,
which implies

x+ 2y + ε ≤ 1 + (t+ s)/2 ≤ 1 + b2(M)/2 = 12.

�

Lemma 2.5. x = y = 0.

Proof. We first show that there are no spheres in Mτ , i.e., x = 0. Suppose to the
contrary that there is a sphere in Mτ , to be denoted by Σ0. We consider the image
C0 of Σ0 in the quotient space M/G0. Since Σ0 is a 2-sphere, C0 is a spherical
2-orbifold, whose singular points are among the singular points of M/G0. With this
understood, recall that M/G0 has 7 isolated singular points, with the corresponding
resolution graphs being E6, A7, A2 and 4A1. The singular point whose resolution
graph is E6 can not occur in C0 because its isotropy group is isomorphic to T24

which is non-abelian. The singular points corresponding to A7, A2, or A1 are all
possibly contained in C0; their isotropy groups are cyclic of order 8, 3, or 2.

With the preceding understood, note that as a spherical 2-orbifold C0 is either
a football (two singular points of order n), or a turnover which has three singular
points of orders (n, 2, 2), (3, 3, 2), (4, 3, 3), or (5, 3, 2). With the description of the
singular points of M/G0 given in the previous paragraph, it is clear that only the
case of football with n = 2 or a turnover (n, 2, 2) with n = 3 or 8 can occur. The
case of football can be ruled out immediately, as the subgroup of G0 which leaves Σ0

invariant has order 2, so that there must be at least 48/2 = 24 spheres in Mτ (i.e.,
x ≥ 24). But this is a contradiction as x+ 2y + ε ≤ 12, in particular, x ≤ 12. The
case of turnover with n = 8 is also not possible because in this case the subgroup of
G0 which leaves Σ0 invariant is a dihedral group of order 16, and there is no such
subgroup in G0 (see the proof of Lemma 2.2).
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To rule out the possibility that C0 is a turnover with orders (3, 2, 2), we shall
consider the 2-dimensional components of Mτ which contain the points p1, . . . , p6
in Lemma 2.2. In the present situation, it is clear that p1, . . . , p6 are not contained
in spheres in Mτ . Furthermore, since a 2-torus does not admit any Z8-action with a
fixed point, the points are not contained in tori in Mτ either. Hence there must be a
genus > 1 component of Mτ which contains p1, . . . , p6. We denote this component
by Σ, and let gΣ be its genus. Denote by C the 2-orbifold which is the image of Σ
in M/G0.

To derive a contradiction, we first note that the orbifold Euler number of C is

χ(C) =
2− 2gΣ
|G0|

=
1− gΣ
24

.

On the other hand, C contains a singular point of order 8, and may contain at most
two singular points of order 2. Let κ be the number of singular points of order 2 in
C, and denote by |C| the underlying 2-manifold of C. Then

χ(C) = χ(|C|)− (1− 1

8
)− κ · (1− 1

2
),

which implies easily that gΣ = 22 + 12κ− 24 · χ(|C|). Finally, note that

gΣ ≤ s/2 ≤ b2(M)/2 = 11.

This implies that in gΣ = 22 + 12κ − 24 · χ(|C|), we must have χ(|C|) = 2. Then
gΣ = 12κ− 26 < 0 as κ ≤ 2, a contradiction. Hence x = 0.

By a similar argument, we can show y = 0. More concretely, suppose to the
contrary that there is a torus in Mτ , denoted by Σ0. The image C0 of Σ0 in M/G0

is either a nonsingular torus, or a 2-orbifold with four singular points of order 2
(called a pillowcase), or a turnover with orders (6, 3, 2), (4, 4, 2), or (3, 3, 3). Clearly,
only the case of a nonsingular torus or a pillowcase can occur for C0. In the former
case, the subgroup of G0 which leaves Σ0 invariant must be abelian as its action on
Σ0 is free. This implies a bound y ≥ 6 because abelian subgroups of G0 are of order
at most 8. With the constraint x+ 2y + ε ≤ 12, we see that y = 6 and x = ε = 0.
But this is a contradiction because there must be a non-torus component in Mτ

which contains the points p1, . . . , p6 in Lemma 2.2. To rule out the latter case,
we consider the genus > 1 component of Mτ which contains the points in Lemma
2.2. We denote this component by Σ, and let gΣ be its genus. Denote by C the
2-orbifold which is the image of Σ in M/G0. Then C contains a singular point
of order 8, and possibly a singular point of order 3 and no other singular points.
Computing the orbifold Euler number, we have

1− gΣ
24

= χ(|C|)− (1− 1

8
)− κ · (1− 1

3
),

where κ = 0 or 1 is the number of singular points of order 3 in C. By the same
argument, gΣ ≤ 11 implies that χ(|C|) = 2 must be true. But with κ ≤ 1, we then
obtain gΣ < 0, which is a contradiction. This proves y = 0. �

With Lemmas 2.4 and 2.5, we now know that Mτ consists of a single component
Σ with genus gΣ > 1. We shall extend the arguments in Lemma 2.5 to find out
the possible values for gΣ. We continue to denote by C = Σ/G0 the 2-orbifold in
M/G0. Let κ be the number of singular points of order 2 in C.
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Case (i). Suppose C does not contain a singular point of order 3. In this case, we
have

1− gΣ
24

= χ(|C|)− (1− 1

8
)− κ · (1− 1

2
).

With the constraint gΣ ≤ 11, the only possibility in this case is gΣ = 10 with κ = 3.

Case (ii). Suppose C contains a singular point of order 3. In this case, we have

1− gΣ
24

= χ(|C|)− (1− 1

8
)− (1− 1

3
)− κ · (1− 1

2
).

Then the constraint gΣ ≤ 11 implies that κ = 1, gΣ = 2 is the only possibility. We
shall rule out this possibility by showing that G0 = T48 can not act effectively on a
genus-2 surface Σ. To see this, note that as a semi-direct product, T48 = Q8 ×φ S3.
The element −1 ∈ Q8 generates the center of T48. The action of −1 ∈ Q8 on the
genus-2 surface Σ is a hyperelliptic involution, with quotient a 2-sphere. There
is an induced action by the quotient group T48/〈−1〉 of order 24 on the 2-sphere.
Hence T48/〈−1〉 must be isomorphic to S4, which is not true. (To see this, note
that T48/〈−1〉 is a semi-direct product of (Z2)

2 with S3.)

Now Theorem 1.1 follows readily: with gΣ = 10, we see c1(KMτ
)2 = gΣ − 1 = 9,

implying that Mτ = CP2. Let B denote the descendant of Σ in Mτ = CP2. Then
B is an embedded symplectic surface in Mτ (cf. [5]), which is easily seen of degree
6 by the genus formula. Note that M is a double cover of Mτ = CP

2 branched
over B. With this understood, we note that B is isotopic to a degree 6 algebraic
curve by a theorem of Shevchishin [16] (see also Siebert and Tian [17]). Thus M is
diffeomorphic to a double branched cover of CP2 along a degree 6 curve, which is
a K3 surface.
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