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Contact splitting of symplectic Q-homology CP2

Weimin Chen

Abstract. This paper is the written and expanded version of a talk at the twenty-
fourth Gökova Geometry/Topology Conference (2017). We consider splittings of a
symplectic rational homology CP2 by a contact rational homology sphere, which is
embedded as a hypersurface of contact type inside the symplectic manifold. After
going over some basic properties, we give evidence of subtle obstructions for such
splittings in the case of CP2 and explain how these are related to interesting rigidity
phenomena in symplectic and algebraic geometry. Based on the existence of such
obstructions, we propose a method for constructing exotic CP2’s and other related
new small symplectic 4-manifolds.

1. Introduction
By symplectic Q-homology CP2, we mean a symplectic 4-manifold (X,ω) with b1 = 0

and b2 = b+2 = 1. These are the smallest possible symplectic 4-manifolds in terms of
Betti numbers and Euler characteristic. The only known examples of such symplectic
4-manifolds are CP2 or a fake CP2, the latter being an algebraic surface of general type
satisfying c21 = 3c2. As quotient of the complex unit ball by a discrete subgroup of
PU(2, 1), a fake CP2 is completely determined by its fundamental group, and there are
exactly 50 fake CP2s as smooth 4-manifolds, cf. [62, 63, 13].

Our original and primary goal was to construct new examples of symplectic Q-homology
CP2, particularly the simply connected ones which give exotic smooth structures on CP2.
However, interesting connections or applications to some other natural problems were
found later, namely, the topological classification of rational cuspidal curves in CP2 and
characterization of rationally convex domains in C2. These aspects will also be dis-
cussed here. There has been a surge of activities in constructing simply connected exotic
smooth/symplectic 4-manifolds with small Euler characteristic; currently the best record
of such small exotic manifolds are exotic CP2#2CP2 (cf. [3, 35]). This said, our proposed
method will be completely different in nature compared with these past works. It is based
on the notion of contact splitting which is at the center of all the discussions in this
paper.

Key words and phrases. Small symplectic 4-manifolds, exotic smooth structures, rational cuspidal
curves, rationally convex domains, Q-homology spheres, hypersurface of contact type, Q-homology ball
fillings, small concave fillings, Gay’s construction, open book decompositions, classification of tight contact
structures, symplectic field theory, Reeb dynamical systems, finite energy spheres.
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Let (X,ω) be a symplectic Q-homology CP2, and M be an orientable 3-manifold which
is a Q-homology sphere. Suppose M is embedded in (X,ω) as a hypersurface of contact
type, i.e., there is a contact form α on M such that ω|M = dα, cf. [79]. Equivalently,
there is a Liouville vector field Θ (i.e., LΘω = ω) in a neighborhood of M which is normal
along M ; in this connection, α and Θ are related by iΘω = α. Clearly, X is decomposed
by M into two connected components W,V . On the other hand, M is given with a contact
structure ξ := kerα which is uniquely determined up to contact isotopy by the embedding
M ↪→ X; in particular, ξ is independent of the choice of α or Θ, and M will be oriented
canonically by ξ. Obviously, the contact manifold (M, ξ) must be tight (cf. [25]). We
shall call the decomposition X = W ∪M V a contact splitting of (X,ω) by the contact
manifold (M, ξ), and for simplicity, when no confusion is caused or no contact structure
is specified, we shall drop ξ in our notation and simply call the decomposition of X a
contact splitting by M .

Throughout this paper, we shall fix the notation such that the Liouville vector field Θ is
always outward-pointing with respect to W . With this convention, the contact manifold
(M, ξ) is a convex (resp. concave) boundary of (W,ω) (resp. (V, ω)). We shall call W the
convex part and V the concave part of the splitting. (In this paper, when we speak
of convex or concave boundary, we always mean that there is a Liouville vector field in a
neighborhood of the boundary, pointing outward or inward.)

In what follows, we shall discuss the various aspects of contact splitting, which are
centered around, roughly, the following topics:

• Constraints on (M, ξ), particularly when X = CP2.
• Construction of X with a contact splitting X = W ∪M V .
• Criteria for X = W ∪M V to be non-diffeomorphic to CP2.

In the last section, we extend our considerations to the case of Hirzebruch surfaces.

2. A preliminary lemma and some immediate corollaries
We are mostly interested in constraints on (M, ξ) which are derived from the assump-

tion that (M, ξ) is a hypersurface of contact type in (X,ω). We begin with the following
simple observation.

Lemma 2.1. The convex part of a contact splitting is always a Q-homology ball.

Proof. 1 It follows from Mayer-Vietoris theorem that either W or V must be a Q-homology
ball. Assume to the contrary that V is a Q-homology ball. Then there exists a 1-form
β on V such that ω = dβ. We claim that one can choose β such that β|M = α. To see
this, note that dβ|M = ω|M = dα, so that β|M − α is closed. Since we require M to be
a Q-homology sphere, there is a smooth function f on M such that β|M − α = df . We
extend f to a neighborhood of M and let ρ be a cut-off function which equals 1 near M .
Then replacing β by β − d(ρf), we arrived at the desired property of the 1-form β.

1I wish to thank Patrick Massor for showing me this simple proof; my original proof of the lemma was
similar in spirit but used a neck-stretching argument from [15] which turns out to be unnecessary.
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With the preceding understood, the following contradiction finishes off the proof:

0 <

∫
V

ω ∧ ω =

∫
V

dβ ∧ dβ =

∫
−M

α ∧ dα < 0,

where the last inequality uses the fact that (M, ξ) is a concave boundary of V , so that
the orientation of M as the boundary of V is the opposite of the orientation defined by
the contact structure.

□

As the first corollary, we observe the following immediate constraint on (M, ξ).

Corollary 2.2. The contact manifold (M, ξ) must be strongly symplectically fillable by a
Q-homology ball.

In particular, the invariant θ(ξ) introduced by Gompf [40] must be equal to −2. Indeed,
θ(ξ) = c21(W )− 2χ(W )− 3σ(W ) = 0− 2 · 1− 3 · 0 = −2.

The second corollary gives a criterion for X to be diffeomorphic to CP2 in light of a
given contact splitting of X.

Corollary 2.3. Let X = W∪M V be a contact splitting. Then whether X is diffeomorphic
to CP2 is entirely determined by the concave part V ; more precisely,

X = CP2 if and only if c1(KV ) · [ω] < 0.

Proof. By work of Taubes [73], X is diffeomorphic to CP2 if and only if c1(KX) · [ω] < 0.
On the other hand, since M is a Q-homology sphere, the splitting X = W ∪M V implies
the decomposition c1(KX) · [ω] = c1(KW ) · [ω] + c1(KV ) · [ω]. By Lemma 2.1, W is a
Q-homology ball, hence c1(KW ) · [ω] = 0. The corollary follows immediately.

□

Given a contact splitting X = W ∪M V , in general it is not clear how to determine the
sign of c1(KV ) · [ω] except in one special circumstance, namely, when the concave part
V contains a pseudo-holomorphic curve (which may be singular). In this case, one can
determine the sign of c1(KV ) · [ω] via the adjunction formula. We will come back to this
observation in section 4 with some potential applications.

In the next section, we shall discuss some potential criteria for “X ̸= CP2” in terms of
the contact manifold (M, ξ), or even simply the Q-homology sphere M .

3. The case of CP2: more subtle obstructions
When X = CP2, there may be more subtle constraints on (M, ξ) other than the one

given in Corollary 2.2. In order to explain this, we shall consider a weaker version of
contact splitting, which will be called a weak contact splitting.

Let (X,ω) be a symplectic Q-homology CP2, and M be a Q-homology sphere which
is smoothly embedded in X, decomposing X into W and V . Suppose there is a contact
structure ξ on M such that ω|ξ is non-degenerate. We continue to fix the convention so
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that (M, ξ) is “convex” with respect to W , which is to say that the boundary orientation
of M coincides with the orientation as a contact manifold. Finally, since it is not clear
that Lemma 2.1 is true when ω is only non-degenerate on ξ, for the purpose of comparison
we shall impose the condition that W is a Q-homology ball. Under these assumptions,
we shall call X = W ∪M V a weak contact splitting.

We remark that even though W is only a weak symplectic filling of (M, ξ), because
M is a Q-homology sphere, one can slightly modify the symplectic structure near M
so that (M, ξ) is also strongly symplectically filled by W (see [59]). In particular, by
our definition (M, ξ) must be strongly symplectically fillable by a Q-homology ball as
a necessary condition even for a weak contact splitting. (In what follows, we shall not
distinguish between the two notions of symplectic fillings.)

With this understood, we have the following theorem, which indicates that there may
be additional constraints on (M, ξ) in the case of X = CP2.

Let M0 := S3/Q(8), where Q(8) is the subgroup of order 8 generated by the elements
i, j, k of the group of unit quaternions.

Theorem 3.1. There are no contact splittings of CP2 by M0, however, CP2 admits a
weak contact splitting by M0.

Proof. We note that M0 is a small Seifert space. Under the standard notation, it is either
M(−1; 1

2 ,
1
2 ,

1
2 ) or M(−2; 1

2 ,
1
2 ,

1
2 ), depending on the orientation. The latter’s orientation

coincides with the orientation of M0 as the link of the complex singularity in C2/Q(8).
With this understood, we recall that both manifolds have a unique tight contact struc-

ture up to contactomorphisms according to the classifications in [38, 75]. In particular,
the Milnor fillable contact structure (cf. [14]), denoted by ξMil, is the only tight con-
tact structure on M(−2; 1

2 ,
1
2 ,

1
2 ). We shall denote by ξ0 the unique tight structure on

M(−1; 1
2 ,

1
2 ,

1
2 ).

Both contact structures are known to be Stein fillable. For ξMil, a particular Stein
filling which will be denoted by Z is given by the minimal resolution of the complex
singularity in C2/Q(8). We note that, since the singularity is a Du Val singularity, c1(Z)
is trivial. Furthermore, Z is negative definite with b2(Z) = 4, and is simply connected.
This in particular implies that the Gompf invariant θ(ξMil) = 2. Indeed,

θ(ξMil) = c1(Z)2 − 2χ(Z)− 3σ(Z) = 0− 2 · (1 + 4)− 3 · (0− 4) = 2.

For the contact manifold (M(−1; 1
2 ,

1
2 ,

1
2 ), ξ0), a particular Stein filling, to be denoted

by W0, is given in [58]. The manifold W0 is diffeomorphic to a regular neighborhood of
an embedded RP2 in R4. In particular, W0 is a Q-homology ball, and consequently, the
Gompf invariant θ(ξ0) = −2.

With the preceding understood, we now give a proof of the theorem. To see that CP2

admits a weak contact splitting by M0, we simply use the fact from [58] that W0 can be
realized as a Stein domain in C2. Embed C2 holomorphically in CP2. Then the standard
Kähler form on CP2 is non-degenerate on ξ0, which is identified with the 2-plane field
of complex tangencies on M0 ⊂ CP2. (Note that the standard Kähler form on CP2 and
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the canonical Kähler form ωϕ := ddcϕ on W0, where ϕ is any strictly plurisubharmonic
defining function on W0, may not agree near M0, so here we don’t necessarily get a contact
splitting of CP2 in the strong sense.)

To see that there are no contact splittings of CP2 by M0, we suppose to the contrary
that there is a contact splitting CP2 = W ∪M0

V . Let ξ be the contact structure on M0

induced from the splitting. Then by Corollary 2.2, we have θ(ξ) = −2. It follows easily
from the preceding discussion, particularly θ(ξMil) = 2, that ξ = ξ0 must be true, and
M0 = M(−1; 1

2 ,
1
2 ,

1
2 ) as oriented manifolds. Now we remove the convex part W from CP2

and glue back the Stein filling W0 of (M0, ξ0). Denote the resulting symplectic manifold
by X. Then by Corollary 2.3, X is diffeomorphic to CP2.

To derive a contradiction, we recall the following crucial fact about W0 from [58]:
with respect to a Kähler form ωϕ := ddcϕ on W0, where ϕ is a strictly plurisubharmonic
defining function on W0. There is an embedded singular Lagrangian RP2 in W0. Since
the symplectic structure on X = W0 ∪M0 V equals ωϕ on the W0 part, we conclude that
CP2 contains an embedded singular Lagrangian RP2 (i.e., the one inherited from W0).
Now according to [58], one can locally resolve the singular point of the Lagrangian RP2 to
produce an embedded Lagrangian Klein bottle in CP2. However, this is a contradiction,
as there is no embedded Lagrangian Klein bottle in CP2, see [65, 57]. Hence there are no
contact splittings of CP2 by M0. This finishes off the proof.

□

Corollary 3.2. Suppose (M0, ξ0) is the concave boundary of a symplectic 4-manifold
(V, ω) with b1 = 0 and b2 = 1. Then c1(KV ) · [ω] > 0.

Proof. Let X = W0 ∪M0
V be the symplectic 4-manifold obtained by gluing W0 and V

along the contact boundary (M0, ξ0). By the assumptions on the Betti numbers of V ,
it follows that X is a symplectic Q-homology CP2. By Theorem 3.1, X ̸= CP2, hence
c1(KV ) · [ω] > 0 by Corollary 2.3.

□

Non-existence results of contact splitting such as Theorem 3.1 may be used in the
construction of exotic CP2 or other new examples of symplectic Q-homology CP2.

Question 3.1. (Construction of exotic CP2) Does there exist a simply connected sym-
plectic 4-manifold V with b2 = 1, having (M0, ξ0) as its concave boundary?

If the manifold V in Question 3.1 exists, then the symplectic 4-manifold X obtained by
gluing W0 and V along (M0, ξ0) is an exotic CP2. Indeed, observe that π1(∂W0) → π1(W0)
is surjective, so X is simply connected, and hence homeomorphic to CP2. By Corollary
3.2, the smooth structure of X must be exotic (cf. Corollary 2.3).

Remark 3.1. The symplectic manifold V in Question 3.1 is called a concave filling of
(M0, ξ0) (the simply-connectedness and Betti number condition are irrelevant). Concave
fillings are known to exist for any contact 3-manifolds, even for the overtwisted ones (cf.
[30, 37]); later a weaker version of concave fillings (also called symplectic caps), where the
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contact structure and symplectic structure are compatible only in the usual weak sense,
are introduced and shown to exist in general (cf. [26, 29]). Although it has become a
powerful tool, the fact that concave fillings exist for any given contact manifold indicates
that there is no symplectic or contact rigidity in this notion. However, concave fillings
which have small Betti numbers seem hard to produce with the current techniques (cf.
e.g. [37]).

For a given contact Q-homology sphere (M, ξ), a concave filling (V, ω) is called a small
concave filling if b1(V ) = 0 and b2(V ) = b+2 (V ) = 1. A small concave filling (V, ω) is
called positive (resp. negative) if c1(KV ) · [ω] > 0 (resp. c1(KV ) · [ω] < 0). We
remark that unlike the convex fillings where one can alter the symplectic structure near
the boundary to turn a weak filling into a strong filling (e.g., using Lemma 2.1 of [26]),
such modification is not possible for concave fillings. Specifically, (M0, ξ0) admits a weak
small concave filling which can not be altered into a strong one. In this paper, we shall
only be concerned with small concave fillings in the strong sense.

In section 4, we shall discuss constructions of such symplectic 4-manifolds V with
small Betti numbers (i.e., b1 = 0 and b2 = b+2 = 1) as well as some potential applications
stemming from considerations described above.

The phenomenon revealed in Theorem 3.1 seems to be only a tip of the iceberg. In fact,
it has interesting connections with a certain symplectic rigidity phenomenon expected in
low dimensions.

Recall that a holomorphically convex domain W ⊂ Cn is said to be rationally convex
if for every point p ∈ Cn \ W there is a complex algebraic hypersurface H ⊂ Cn such
that p ∈ H and H ⊂ Cn \W . Together with holomorphic convexity, rational convexity
is one of the several notions of convexity that play an important role in several complex
variables. In higher dimensions (i.e., n > 2), recent work of Cieliebak and Eliashberg [20]
gave a complete topological characterization of rationally convex domains in Cn, showing
in particular that the above two notions of convexity are in fact equivalent. Their work
relies on the recent advances [28, 56] in symplectic flexibility, which are known only in
higher dimensions. In dimension two, a similar topological characterization is available
only for holomorphically convex domains, see [41]. Characterization for rationally convex
domains in C2 remains largely open, however, recent work of Nemirovski and Siegel [58]
indicates that the question is more subtle in dimension two.

The connection between rational convexity and contact splitting is provided by the
following symplectic characterization of rational convexity (see e.g. [20]):

A holomorphically convex domain in Cn is rationally convex if and only if it admits a
strictly plurisubharmonic defining function ϕ such that ωϕ := ddcϕ extends to a Kähler
form on Cn which is standard outside a ball.

With the preceding understood, it follows easily that the boundary of a rationally
convex domain in C2 gives rise naturally to a hypersurface of contact type in CP2 (after
embedding C2 in CP2); note that the boundary of a holomorphically convex domain in

58



Contact splitting of symplectic Q-homology CP2

C2 only gives a pseudoconvex hypersurface in CP2. In particular, let W ⊂ C2 be any
holomorphically convex domain which has the rational homology of a 4-ball. Then there
is an associated weak contact splitting of CP2, having W as its convex part. Furthermore,
if W is rationally convex, then the weak contact splitting is in fact a contact splitting.
With this understood, constructions in Gompf [41] give many examples of weak contact
splittings of CP2, however, no examples of nontrivial contact splittings of CP2 are known
from this construction. (Contact splittings by S3 always exist, which we regard as trivial.)
Finally, we remark that our Theorem 3.1 is simply the generalization of the following result
in [58] to CP2 :

The contact manifold (M0, ξ0) can not be realized as a hypersurface of contact type in
R4, but can be realized as a pseudoconvex hypersurface.

4. A construction of David Gay
In this section, we shall consider the following problem:
Construct a symplectic Q-homology 4-ball W with convex boundary and a

symplectic 4-manifold V with concave boundary, where b1(V ) = 0 (e.g., π1(V ) = 0),
b2(V ) = b+2 (V ) = 1, such that the contact boundaries of W and V are contactomorphic.

Note that with W,V as above, one obtains a symplectic Q-homology CP2 by gluing
W and V along the contactomorphic boundaries. The resulting manifold X = W ∪M V ,
where M denotes the boundary, comes with a natural contact splitting.

The above consideration will involve at least the following three issues in a fundamental
way:

(1) Constructing V and understanding the contact boundary of V .
(2) Classifying tight contact structures on Q-homology spheres up to contactomor-

phisms.
(3) Constructing or obstructing symplectic fillings of a given contact Q-homology

sphere by a Q-homology ball.
We remark that (2) and (3) are related to or belong to some of the central problems
in low-dimensional and symplectic/contact topology. More effectively implementing the
ideas discussed in this section relies on further progress on these fundamental problems
(see Remark 4.3 for more details).

On the other hand, as for (1), we shall revisit a beautiful construction introduced by
David Gay in 1999 (cf. [36]), in which he showed how to turn a symplectic 4-manifold
with convex boundary into one with concave boundary by attaching symplectic 2-handles
along a certain transverse link.

More concretely, let (V ′, ω′) be a symplectic 4-manifold with convex boundary. Suppose
L = {Ki} ⊂ ∂V ′ is a link and p : ∂V ′\L → S1 is a fibration, such that (L, p) is compatible
with the contact structure on ∂V ′ in a suitable sense. (In the terminology of Gay [36],
L is called nicely fibered with respect to the contact structure. In particular, this means
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that p : ∂V ′ \ L → S1 is a rational open book supporting the contact structure in the
sense of [4].) Then for any framing of L which is “positive” with respect to the fibration
p, Gay showed in [36] how to attach a 2-handle to V ′ along each component Ki of the link
L with the given framing, such that the resulting manifold, denoted by V , is a symplectic
manifold with concave boundary.

We shall be only interested in the case where p : ∂V ′ \ L → S1 defines an honest open
book supporting the contact structure on ∂V ′. In this case, the “nicely fibered” condition
in [36] can be fulfilled after changing the contact structure by an isotopy (see Lemma 4.5
in [37]), and the framing of L being positive simply means that over each component Ki,
the framing of Ki equals the page framing of Ki plus a positive integer ki.

With the preceding understood, in what follows we shall be concerned with the follow-
ing special situation of Gay’s construction, where

• V ′ is a Q-homology ball, e.g., V ′ is contractible,
• L has only one component and p : ∂V ′\L → S1 is an honest open book supporting

the contact structure on ∂V ′. (When V ′ is Stein, there is an explicit algorithm
in [2] to obtain a supporting open book for the contact boundary.)

Under these assumptions, it is clear that the resulting manifold V satisfies b1 = 0 and
b2 = b+2 = 1. For our purpose here, an important issue is whether the contact structure
on the boundary is fillable (in particular, tight). Since the boundary of V is concave, the
filling by V does not necessarily imply the tightness. However, from Gay’s construction
in [36] it is known that the contact structure is supported by a canonical rational open
book. One may resolve it to a honest supporting open book (cf. [4]), and then Wand’s
criteria [77, 78] may be used to determine whether the contact structure is tight. For
fillability of the contact structure, a necessary condition is given by the non-vanishing of
the Ozsváth-Szabó contact invariant (cf. [60, 47]).

We shall illustrate the idea by looking at some natural examples, where in these exam-
ples, V ′ is diffeomorphic to the 4-ball but the contact boundary ∂V ′ = S3 is given with
some specific supporting open books with a connected binding.

A plane curve singularity z = 0 ∈ C ⊂ C2 is called cuspidal if the link of the singularity,
i.e., C∩∂B4

ϵ where B4
ϵ is the ball of radius ϵ centered at 0, is connected for small ϵ > 0. In

this case, K := C ∩ ∂B4
ϵ is an algebraic knot in S3. It is well-known that the topological

classification of the germ of C is completely determined by the isotopy class of the link K
(cf. e.g. [54, 24]). Locally, up to topological equivalence a cuspidal singularity is modeled
by a singularity defined by the following parametrization

x(t) = tp, y(t) = tq1 + tq2 + · · ·+ tqm .

The sequence of numbers (p; q1, q2, · · · , qm) is called the characteristic sequence, which
satisfies the following constraints: p > 1, p < q1 < q2 < · · · < qm, and if we set
r0 = p, ri+1 = gcd(ri, qi+1), then the sequence ri is strictly decreasing with rm = 1.
The number p is called the multiplicity of the singularity, and m is called the length of
the characteristic sequence. A fundamental invariant associated to the singularity is the
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so-called δ-invariant, which equals the genus of the link K, i.e., δ = µ/2 where µ is the
Milnor number and can be computed from the following formula (cf. [54])

µ =

m∑
i=1

(qi − 1)(ri−1 − ri) = (p− 1)(q1 − 1) +

m−1∑
i=1

(ri − 1)(qi+1 − qi).

When m = 1, the link of the singularity is the (p, q)-torus knot, where q = q1. While
there are more subtle invariants for the analytical type of the singularity, the topological
type of the singularity (the same as the isotopy class of the link) is completely determined
by the characteristic sequence.

For any n > 0, we fix n topological types of cuspidal singularities, which will be denoted
by the corresponding links, K = (K1,K2, · · · ,Kn), and fix an integer k > 0. We shall
construct a symplectic 4-manifold with concave boundary, denoted by VK,k, using Gay’s
construction as follows. For each i = 1, 2, · · · , n, we pick a germ of plane curve singularity
zi = 0 ∈ Ci ⊂ C2 of type Ki, and fix a sufficiently small ϵ > 0. Let Bi be the ball B4

ϵ which
contains zi ∈ Ci, endowed with the standard symplectic structure on C2, and we identify
Ki with the link Ci∩∂Bi. Furthermore, we shall slightly perturb Ci near the boundary of
Bi so that it is tangent to the standard Liouville vector field 1

2r∂r. Note that the Milnor
fibration pi : ∂Bi \Ki → S1 defines an open book which supports the contact structure
on ∂Bi (cf. [14]). With this understood, we attach n− 1 symplectic 1-handles to ⊔n

i=1Bi,
such that for each i < n, a 1-handle is attached to Bi, Bi+1 with the core of the 1-handle
sitting on Ki,Ki+1. The resulting manifold V ′

K,k, a symplectic manifold with convex
boundary, is diffeomorphic to the 4-ball, however, the contact boundary is equipped with
a supporting open book canonically constructed from the Milnor fibrations pi, which has
a connected binding K := K1#K2# · · ·#Kn, the connected sum of the knots Ki. The
manifold VK,k is obtained by attaching a symplectic 2-handle along K with framing k.

We shall denote the contact boundary of VK,k by (MK,k, ξK,k), where MK,k is canon-
ically oriented by the contact structure. Note that since VK,k has a concave boundary,
MK,k = −∂VK,k as oriented manifolds. Clearly, in our terminology VK,k is a small con-
cave filling of (MK,k, ξK,k). We note from the construction that VK,k contains a singular
symplectic sphere, to be denoted by CK,k, which has n cuspidal singular points with
the given topological type K. Clearly, CK,k is pseudo-holomorphic with respect to some
compatible almost complex structure. Furthermore, note that C2

K,k = k > 0. Finally, we
remark that in this case, c1(KVK,k

) can be determined from the adjunction formula, from
which we may compute the invariant θ(ξK,k) and determine whether VK,k is positive or
negative.

Example 4.1. (Rational cuspidal curves in CP2)
An algebraic curve in CP2 is called a rational cuspidal curve if it is topologically a two-

sphere with only cuspidal singularities. It is known that rational cuspidal curves in CP2

exhibit severe restrictions. For example, it is conjectured that the number of singularities
is at most three with the exception of a degree 5 curve with four singularities (see [61]
for some experimental evidence). More generally, one is interested in what combinations
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of singularity types can be realized by a rational cuspidal curve in CP2. In this example,
we shall explain an interesting connection of this problem to contact splitting of CP2 and
related questions in symplectic and contact geometry.

Suppose we are given a topological type of cuspidal singularities K = (K1, · · · ,Kn).
Let δi be the δ-invariant of the singularity zi (i.e., the genus of Ki). Assume there is an
integer d > 0 such that (d− 1)(d− 2) =

∑n
i=1 2δi > 0. (Note that if the given singularity

type K is realized by a rational cuspidal curve C in CP2, then d is the degree of C.) We
shall consider the symplectic manifold VK,k with k = d2. In this case, an easy calculation
with the adjunction formula on CK,k shows that

c1(KVK,k
) = −3

d
CK,k,

which implies immediately that VK,k is negative. Furthermore,

θ(ξK,k) = −(c1(KVK,k
)2 − 2χ(VK,k)− 3σ(VK,k)) = −2.

We shall introduce the following special notations in the case of k = d2: V 0
K , (M0

K , ξ0K)

and C0
K for the corresponding objects VK,k, (MK,k, ξK,k) and CK,k.

The negativity of V 0
K leads easily to the following observation, which shows that, unlike

(M0, ξ0) in Theorem 3.1, there is no further constraint on (M0
K , ξ0K) in order to contact-

split CP2 other than being symplectically fillable by a Q-homology ball.
Observation 4.1: The contact manifold (M0

K , ξ0K) is symplectically fillable by a Q-
homology ball if and only if there is a contact splitting of CP2 by (M0

K , ξ0K).

Indeed, if (M0
K , ξ0K) is symplectically filled by a Q-homology ball W , then by Corol-

lary 2.3, X := W ∪M0
K
V 0
K is diffeomorphic to CP2, with a natural contact splitting by

(M0
K , ξ0K). The converse implication follows from Corollary 2.2.
With the preceding understood, the following conjecture suggests an interesting con-

nection of the rational cuspidal curve problem to symplectic and contact geometry.

Conjecture 4.1. The following statements are equivalent.
(1) There is a rational cuspidal curve C in CP2 realizing the singularity type K.
(2) The contact manifold (M0

K , ξ0K) is symplectically fillable by a Q-homology ball.

Conjecture 4.1 may be proved along the following lines (see [17] for more details): for
(1)⇒(2), show that the rational cuspidal curve C has a neighborhood which is symplec-
tically modeled by the symplectic manifold V 0

K , and for (2)⇒(1), prove that the pseudo-
holomorphic rational cuspidal curve C0

K may be deformed into a genuine holomorphic
rational cuspidal curve through a family of pseudo-holomorphic rational cuspidal curves,
preserving the topological type of the singularities. We remark that the corresponding
Gromov theory for the “symplectic isotopy problem” of singular symplectic surfaces was
developed in [64, 52], see also [70, 66, 67].
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Characterizing the topological types of singularities of a rational cuspidal curve of a
given degree in CP2 is a classical problem in algebraic geometry with many interesting
connections, particularly to the theory of open surfaces (cf. [33]). Crucial to the char-
acterization problem are certain compatibility properties (not necessarily a complete set)
between local invariants from the cuspidal singularities and certain global invariants such
as the degree of the curve or the log Kodaira dimension of the complement of the curve in
CP2; in fact, a complete list of rational cuspidal curves with a unique singularity whose
link is a torus knot may be obtained using these compatibility properties, see [34]. A more
recent breakthrough was brought about in [32] with a set of conjectured compatibility
properties, which connect this old problem to the modern theories in low-dimensional
topology. Further progress was made in [9] using the d-invariants from the Heegaard
Floer homology theory, exploiting the fact that the complement of a regular neighbor-
hood of the rational cuspidal curve realizing the singularity type K is a Q-homology ball
smoothly filling the 3-manifold M0

K . See also [5, 7]. (For a nice and relevant introduction
on rational cuspidal curves, see [55].)

Let C be a rational cuspidal curve realizing singularity type K. Going beyond the
smooth filling of M0

K by a Q-homology ball, one may further explore the symplectic and
contact aspects of the Q-homology ball filling. In particular, consider the following:

• Any compatibility properties from the tightness or fillability of (M0
K , ξ0K).

• Compatibility properties as obstructions for (M0
K , ξ0K) to contact-split CP2.

• Any connection between the contact topology of (M0
K , ξ0K) and the log Kodaira

dimension of the complement CP2 \ C.

Example 4.2. (A variant of Example 4.1)
In this example, we consider the construction VK,k with a different framing k, where

we choose k = (d− 3)2, assuming d > 3 (here d is as defined in Example 4.1). With this
choice of k, we have instead

c1(KVK,k
) =

3

d− 3
CK,k

from the adjunction formula on CK,k. It is easy to see that we continue to have
θ(ξK,k) = −2, however, this time VK,k is a positive small concave filling of the con-
tact boundary (MK,k, ξK,k). We shall use special notations: VK , (MK , ξK) and CK , for
the corresponding objects in this case.
Observation 4.2: (Constructing new examples of symplectic Q-homology CP2) If the
contact manifold (MK , ξK) is symplectically filled by a Q-homology ball W , then the
manifold XK := W∪MK

VK is a new example of symplectic Q-homology CP2; in particular,
when π1(∂W ) → π1(W ) is surjective, we have XK an exotic CP2.

Indeed, since VK is positive, XK is not diffeomorphic to CP2 by Corollary 2.3. When
π1(∂W ) → π1(W ) is surjective, XK is simply connected hence an exotic CP2. In general,
XK can not be a fake CP2 because π2(XK) ̸= 0 (note that CK ⊂ XK defines a nontrivial
element in π2).
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Remark 4.3. For the applications in both Example 4.1 and Example 4.2, it requires
construction of symplectic Q-homology ball fillings of a given contact Q-homology sphere,
i.e., either (M0

K , ξ0K) or (MK , ξK). In general, such a problem is rather challenging, which
involves a number of components that are all quite difficult.

First of all, given a Q-homology sphere M , whether there exists a smooth 4-manifold
W with the same Q-homology of a 4-ball such that ∂W = M (i.e., a smooth filling by
a Q-homology ball) is a fundamental problem in low-dimensional topology. Respectively,
there is a related but largely independently motivated question for homology spheres,
where W is required to be an integral homology ball. While there exist a number of
invariants obstructing such a smooth filling, in general the problem is largely open except
for some special classes of 3-manifolds, such as lens spaces, Brieskorn spheres, certain
graph manifolds (which is in connection with the rational homology disk smoothings of
a normal surface singularity), etc., and certain special constructions, e.g., Mazur-type
4-manifolds, or the slice-ribbon problem in knot theory. Secondly, there seem to be
additional obstructions for M to be symplectically fillable by a Q-homology ball. For
example, a recent paper by Mark and Tosun [53] showed that there is an infinite family of
Brieskorn spheres which are smoothly fillable but not symplectically fillable by an integral
homology ball. (However, it is known that an integral homology sphere which can not
be smoothly filled by an integral homology ball may be filled by a Q-homology ball; the
first such example, the Brieskorn sphere Σ(2, 3, 7), was due to Fintushel and Stern, and
recently two infinite families were found in [1].) Lastly, suppose M is smoothly filled
by a Q-homology ball W and suppose one actually is able to show that W carries a
symplectic structure with convex contact boundary (e.g., W is Stein). It still remains to
show that the induced contact structure on M is contactomorphic to the original, given
contact structure on M . And this involves the fundamental problem of classification of
tight contact structures, which is also largely open for a general 3-manifold.

Despite the lack of understanding in general on these fundamental questions, for the
following special classes of tight contact 3-manifolds significant progress has been made
in the recent past years (see [71, 72, 6, 76, 14]):

• Lens space or small Seifert space, or the connected sums.
• Link of a normal surface singularity with the Milnor fillable contact structure.

Extending Question 3.1, we consider
Problem 4.4: (Constructing small concave fillings of a given contact Q-homology sphere)
Let (M, ξ) be a contact Q-homology sphere from the list above which is symplectically
fillable by a Q-homology ball. Construct a small concave filling of (M, ξ) using Gay’s
construction described in this section.

5. Input from the Symplectic Field Theory
The discussions in this section will be centered around the following:
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Problem 5.1: Suppose a contact Q-homology sphere (M, ξ) contact-splits CP2. What
can be said about the topology of M or the contact structure ξ?

Progress on Problem 5.1 will have implications in the following problems:

• characterization of rationally convex domains in C2,
• classification of rational cuspidal curves in CP2, and most desirably,
• criteria for a symplectic Q-homology CP2, X = W ∪M V (e.g., X is from the

construction in Problem 4.4), to be non-diffeomorphic to CP2.

Regarding the last item, if X = W ∪M V where M can not contact-split CP2, then
X ̸= CP2. Such a criterion is in terms of the contact 3-manifold may be practically more
useful than the positivity of the concave part V (cf. Corollary 2.3).

A natural approach to Problem 5.1 is by the so-called symplectic field theory techniques
[27]. The method has its origin in the neck-stretching arguments in gauge theory, see also
[15]. Crucial to any of this type of arguments is the corresponding Floer theory. For the
case we are interested in, the foundation was laid by Hofer in [42], with additional works
[43, 44, 45] joint with Wysocki and Zehnder. Later important contributions include the
intersection theory of Siefring [68, 69] (see also the lecture notes by Wendl [80]). Finally,
the embedded contact homology, cf. Hutchings and Taubes [48, 49, 50, 51, 74], provides
the Floer homology theory in this context.

The general set-up goes as follows. Let (X,ω) be a general symplectic 4-manifold
and M be a connected hypersurface of contact type, decomposing X into two connected
components W and V . We assume W has the convex boundary, and let α be a contact
form on M such that ω|M = dα, and let ξ = kerα be the corresponding contact structure.
Crucial to our consideration is the Reeb dynamical system associated to the contact form
α, which is generated by the Reeb vector field Y = Yα on M , uniquely determined by the
following equations:

α(Y ) = 1, iY dα = 0.

For technical reasons, we assume the contact form α is generic in the sense that all the
closed orbits of the Reeb vector field Yα are non-degenerate (cf. [46]).

A neighborhood of M in (X,ω) is modeled by (−ϵ, ϵ) × M in the symplec-
tization (R × M,d(esα)) for some small ϵ > 0. Suppose A ∈ H2(X;Z) is a class such
that the Gromov-Taubes invariant GT (A) ̸= 0. Then for any fixed, generic choice of
ω-compatible almost complex structure J̃ of X, which takes the following form on the
neck (−ϵ, ϵ) ×M : J̃( d

ds ) = Yα, J̃ |ξ = J where J is a dα-compatible complex multiplica-
tion on ξ (in particular, J̃ is constant in the variable s), we can, for any R > 0, form a
4-manifold XR by cutting X open along M and then insert the cylinder [−R,R]×M . The
almost complex structure J̃ naturally extends to an almost complex structure on XR, de-
noted by J̃R, which takes the same form on (−ϵ−R,R+ϵ)×M . With this understood, for
any R > 0, there is an embedded J̃R-holomorphic curve CR (which may be disconnected)
in XR representing the Poincaré dual of A. Furthermore, in the limiting process R → ∞,

65



CHEN

the curves CR disintegrate into pseudo-holomorphic curves in R×M and the almost com-
plex manifolds with cylindrical ends W̃ := W ∪ [0,∞)×M and Ṽ := V ∪ (−∞, 0]×M ,
where the almost complex structures are translation invariant on R ×M and the cylin-
drical ends, cf. [46, 11]. The pseudo-holomorphic curves in R×M or the cylindrical end
manifolds W̃ and Ṽ are called finite energy surfaces or generalized finite energy surfaces.
In particular, the finite energy surfaces in R ×M have deep connections with the Reeb
dynamical system ẏ(t) = Yα(y(t)) on M , which in the past have been mainly exploited
to show the existence of closed Reeb orbits (cf. e.g., [42, 46], see also [15]).

With the preceding understood, our purpose here is of a different nature. In the case
of X = CP2 given with a contact splitting by (M, ξ), we are instead interested in the
topological properties of the Q-homology sphere M or the contact structure ξ, inferred
from properties of the finite energy spheres in R ×M . And to this end, we rely heavily
on the following fact:

The manifold CP2 is foliated by embedded pseudo-holomorphic two-spheres.
Essentially, we are adapting and extending the techniques developed in the paper [46]

of Hofer, Wysocki and Zehnder, but for a different purpose. We remark that the above
property distinguishes CP2 from the other symplectic Q-homology CP2s.

5.1. The concave part V contains a symplectic (+1)-sphere
Under this assumption, the contact Q-homology sphere (M, ξ) can be realized as a

hypersurface of contact type in (R4, ωstd), and vice versa. In particular, if (M, ξ) is the
contact boundary of a rationally convex domain in C2, then the corresponding contact
splitting of CP2 by (M, ξ) satisfies this assumption.

Currently, there are no non-trivial examples, i.e., other than M = S3, of this type of
contact splittings of CP2; in particular, for all the examples of rationally convex domains in
C2 constructed in [58], the boundary is not a Q-homology sphere. On the other hand, it is
known that there are further obstructions for M to be smoothly embedded in R4, e.g., the
lens space L(4, 1) can be smoothly embedded in CP2 but not in R4 (cf. [12]). Furthermore,
there are also constraints from the dynamical system point of view. Indeed, if a contact
Q-homology sphere (M, ξ) is embedded in (R4, ωstd) as a hypersurface of contact type, it is
easily seen that there is a Liouville cobordism from (M, ξ) to (S3, ξstd). Then by a theorem
of Cioba and Wendl, for any non-degenerate contact form of ξ, the corresponding Reeb
dynamical system on M possesses an unknotted closed orbit of Conley-Zehnder index 2
or 3, cf. [21].

We believe the following is true, cf. [18].

Conjecture 5.1. If the concave part V contains a symplectic (+1)-sphere, then M must
be the 3-sphere. In particular, if a rationally convex domain in C2 is a Q-homology ball,
then it must be diffeomorphic to the 4-ball.
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5.2. Reeb dynamical systems adapted to a given open book
Since we are interested in the topological properties of the contact manifold (M, ξ), not

the Reeb dynamical systems on M , a natural strategy is to work with a Reeb dynamical
system that best suits our purpose. This strategy also applies to other relevant problems
which are topological in nature, e.g., gluing formula for Gromov-Taubes invariants.

This strategy is at all possible because we have complete freedom in choosing the
contact form we would like to work with. More precisely, suppose α′ is any other contact
form which also defines the contact structure ξ. Then α′ = efα for some smooth function
f on M . Suppose R > 0 is sufficiently large such that −R < f(x) < R for any x ∈ M .
Then the graph of f in the cylinder (−R,R) ×M ⊂ XR defines an embedding of M in
XR as a hypersurface of contact type, inducing the given contact form α′ on M . On the
other hand, XR is diffeomorphic to the original symplectic 4-manifold X (although not
necessarily symplectomorphic to X for the purpose here), which can be used to replace
X in the symplectic field theory setup.

By Giroux’s theorem [39], every contact structure on a 3-manifold is supported by an
open book decomposition, in the sense that there is a Reeb vector field that is transversal
to the pages of the open book and is tangent to the bindings. Although the supporting
open book is not uniquely determined by the contact structure, this viewpoint has been
extremely fruitful and fundamental in the later development of the subject. Given the
central role the open book decompositions play in the 3-dimensional contact geometry, it
is desirable to have this perspective in the setup of the symplectic field theory argument,
particularly when the problems at hand are topological in nature.

We believe the following problem, though its formulation is somewhat “vague”, would
be key to success for our project and other related topological questions.
Problem 5.2: Given an open book decomposition supporting a given contact structure,
construct some specific Reeb dynamical system which is adapted to the open book in a
suitable sense, for the use in the “embedded” symplectic field theory setting.

Some initial work has been done by Colin and Honda, see [22, 23]. The basic idea
goes as follows: by Thurston’s theory on surface diffeomorphisms (cf. [31]), for any
diffeomorphism h : F → F of an orientable surface of boundary (with negative Euler
characteristic), after changing h by an isotopy, F can be decomposed along a set of
disjoint circles S into subsurfaces Fi, such that h(S) = S, and for each i, h|Fi is either
periodic or pseudo-Anosov up to an isotopy. With this understood, an “ideal” Reeb
dynamical system would be the one whose return map will be able to “capture” these
geometric pieces of the isotopy class of h.

In a forthcoming paper [19], we shall pursue this line of research in the context of
contact splittings of CP2. A particular interesting test problem would be to give an
alternative proof for Theorem 3.1 based on ideas discussed here.
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6. Contact splitting in the case of Hirzebruch surfaces
In this section, we shall discuss parallel constructions and considerations in the case of

Hirzebruch surfaces. We begin with the following ad hoc definition.
Definition 6.1. Given any contact Q-homology sphere (M, ξ), a (strong) symplectic
filling (W,ω) of (M, ξ) is called a small convex filling if the following hold:

(1) The Betti numbers of W satisfy b1 = 0, b2 = 1, and W is negative definite.
(2) The symplectic form is exact, i.e., ω = dβ (e.g., W is a Stein filling).

We observe that (1) implies that θ(ξ) ≤ −1. Indeed,
θ(ξ) = c1(W )2 − 2χ(W )− 3σ(W ) ≤ 0− 2(1 + 1)− 3(0− 1) = −1.

Now let V be a small concave filling of (M, ξ). We form X := W ∪M V by gluing W and
V along the contact boundary (M, ξ). Clearly, X has the Q-homology of a Hirzebruch
surface. With this understood, we make the following observation which is a consequence
of Definition 6.1(2) (and the work of Taubes [73]), in analogy to Corollary 2.3.
Observation 6.1: The manifold X := W ∪M V is diffeomorphic to a Hirzebruch surface
if and only if V is a negative small concave filling of (M, ξ).

Next we fix a topological type of cuspidal singularities K = (K1, · · · ,Kn), and let δi
be the corresponding δ-invariants. Suppose a positive integer k and a rational number r
satisfy

k + rk + 2 =

n∑
i=1

2δi, r2k ≥ 8.

(Note that r is uniquely determined by k.) We consider the symplectic manifold VK,k.
An easy calculation with the adjunction formula on CK,k shows that

c1(KVK,k
) = r · CK,k.

Consequently, VK,k is positive (resp. negative) if and only if r > 0 (resp. r < 0). We also
observe that

θ(ξK,k) = −(c1(KVK,k
)2 − 2χ(VK,k)− 3σ(VK,k)) = 7− r2k ≤ −1,

so that the contact manifold (MK,k, ξK,k) satisfies the necessary condition for having a
small convex filling in the sense of Definition 6.1.
Example 6.1. (Rational cuspidal curves in Hirzebruch surfaces)

Suppose VK,k is negative. Note that in this case, one has −1 < r < 0. If (MK,k, ξK,k)
admits a small convex filling W , then X := W∪MK,k

VK,k is diffeomorphic to a Hirzebruch
surface. Inside X there is a pseudo-holomorphic rational cuspidal curve CK,k realizing
the given topological type of singularity K. Under further unobstructedness conditions
for deformation (cf. [64, 52, 70]), which in the present situation is given by

k + 2−
n∑

i=1

2δi = −rk >

n∑
i=1

(pi − 1), where pi is the multiplicity of singularity zi,
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one may try to deform CK,k to a genuine (i.e., algebraic) rational cuspidal curve in the
Hirzebruch surface, realizing the topological type K. See [10, 8] for more discussions on
rational cuspidal curves in Hirzebruch surfaces.

Example 6.2. (Constructing exotic Hirzebruch surfaces)
Likewise, if VK,k is positive, and (MK,k, ξK,k) admits a small convex filling W such

that π1(∂W ) → π1(W ) is surjective, then X := W ∪MK,k
VK,k is an exotic Hirzebruch

surface (i.e., homeomorphic but not diffeomorphic to a Hirzebruch surface).

We remark that regarding the construction described in section 4, in the case of Hirze-
bruch surfaces we still face the challenging problem of classifying tight contact structures,
however, the requirement of a small convex filling for a given contact Q-homology sphere
seems to be less stringent than that of a Q-homology ball filling (see [41] for some ex-
perimental facts in the case of Brieskorn spheres, and see also [53]). This said, one can
consider the analog of Problem 4.4 as a way to construct potential examples of exotic
Hirzebruch surfaces.

Finally, progress on the following problem will lead to criteria for exotic smooth struc-
tures on Hirzebruch surfaces. Furthermore, since a Hirzebruch surface is also foliated by
J-holomorphic two-spheres (cf. [16]), we expect to be able to tackle the problem by the
approach described in the previous section.
Problem 6.3: Suppose X = W ∪M V is a contact splitting of a Hirzebruch surface.
What can be said about the contact Q-homology sphere M?
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