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Abstract

We give characterizations of a finite group G acting symplecti-
cally on a rational surface (CP2 blown up at two or more points).
In particular, we obtain a symplectic version of the dichotomy of
G-conic bundles versus G-del Pezzo surfaces for the correspond-
ing G-rational surfaces, analogous to a classical result in alge-
braic geometry. Besides the characterizations of the group G

(which is completely determined for the case of CP2#NCP2, N =
2, 3, 4), we also investigate the equivariant symplectic minimality
and equivariant symplectic cone of a given G-rational surface.

1. Introduction

In this paper we study symplectic 4-manifolds (X,ω) equipped with
a finite symplectomorphism group G, where X is diffeomorphic to a ra-
tional surface. We shall call such a pair, i.e., ((X,ω), G), a symplectic
rational G-surface.

They are the symplectic analog of (complex) rational G-surfaces
studied in algebraic geometry, which are rational surfaces equipped with
a holomorphic G-action. These rational G-surfaces played a central role
in the classification of finite subgroups of the plane Cremona group, a
problem dating back to the early 1880s, see [6].

Note that any rational G-surface can be regarded as a symplectic ra-
tional G-surface – simply endowing it with a G-invariant Kähler form
which always exists. Our work shows that a large part of the story
regarding the classification of rational G-surfaces can be recovered by
techniques from 4-manifold theory and symplectic topology. Further-
more, we also add some new, interesting symplectic geometry aspect to
the study of rational G-surfaces; in particular, in regard to the equi-
variant symplectic minimality and equivariant symplectic cone of the
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underlying smooth action of a rational G-surface. In addition, we al-
so obtain some result which does not seem previously known in the
algebraic geometry literature (cf. Theorem 2.8).

We begin with a discussion on the notion of minimality (i.e., G-
minimality) in the equivariant context. Let (X,ω) be a symplectic
4-manifold with a finite symplectomorphism group G. Suppose there
exists a G-invariant set of disjoint union of symplectic (−1)-spheres in
X. Then blowing down X along the (−1)-spheres gives rise to a sym-
plectic 4-manifold (X ′, ω′), which can be arranged so that G is natually
isomorphic to a finite symplectomorphism group of (X ′, ω′). The sym-
plectic G-manifold X is called minimal if no such set of (−1)-spheres
exists. It was shown in [5] that when X is neither rational nor ruled, the
symplectic G-manifold is minimal if and only if the underlying smooth
manifold is minimal. However, in the case considered in the present
paper, the underlying rational surface is often not minimal even though
the corresponding symplectic rational G-surface is minimal. Further-
more, it is not known whether the notion of G-minimality is the same
for the various different categories, i.e., the holomorphic, symplectic, or
smooth categories. In general it is a difficult problem to establish the
equivalence of G-minimality in the different categories, and we refer the
reader to [5] for a more thorough discussion on this topic. For our pur-
pose in this paper, it suffices to only study minimal symplectic rational
G-surfaces.

The most fundamental problem in our study is to classify symplectic
rational G-surfaces up to equivariant symplectomorphisms. However,
work in [2, 3, 4, 5] showed that even in the simple case where X is CP2

or a Hirzebruch surface and G is a cyclic or meta-cyclic group, such
a classification is already quite involved. In fact, in one circumstance
where G is meta-cyclic, a weaker classification, i.e., classification up to
equivariant diffeomorphisms, still remains open.

With the preceding understood, the main objectives of this paper are
more basic: for symplectic rational G-surfaces X in general, we would
like to

(1) classify the possible symplectic structures;
(2) describe the induced action of G on H2(X);
(3) give a list of possible finite groups for G;
(4) understand the equivariant minimality and equivariant symplectic

cones.

These problems, however, are still highly non-trivial and not com-
pletely settled. In particular, part of our determination of G and the
induced action on H2(X) relies on the Dolgachev-Iskovskikh’s solution
of the corresponding problems in algebraic geometry, with new inputs
from Gromov-Witten theory and a detailed analysis of the symplectic
structures.
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1.1. The setup. In this paper, we shall be focusing on the case where
the rational surface, denoted by X, is CP2 blown up at 2 or more
points. More concretely, we shall consider minimal symplectic ratio-
nal G-surfaces (X,ω) where X = CP2#NCP2, for N ≥ 2. (Note that
the minimality assumption implies in particular that G is a nontrivial
group.) The case where the rational surface is CP2 or a Hirzebruch sur-
face had been previously studied, cf. [2, 3, 4, 5]; we point out that the
J-holomorphic curve techniques employed in this paper are drastically
different in flavor from those developed in these previous works.

For convenience, we shall fix some notations and terminology, which
will be frequently used throughout the paper. We will denote byH,E1, E2, · · · , EN

a basis of H2(X,Z), under which the intersection matrix takes its stan-
dard form, i.e., H2 = 1, E2

i = −1, H ·Ei = 0, ∀i, and Ei ·Ej = 0,∀i 6= j.
The canonical class of (X,ω) will be denoted by Kω ∈ H2(X), in order
to emphasize its dependence on the symplectic form ω. Another fre-
quently used notation is H2(X)G, which denotes the subset of H2(X,Z)
consisting of elements fixed under the induced action of G, and is called
the invariant lattice.

Recall that a symplectic rational surface (X,ω) is called monotone if
Kω = λ[ω] is satisfied in H2(X;R) for some λ ∈ R. In this case, we
have λ < 0, and N must be in the range N ≤ 8. Such a symplectic
rational surface is the symplectic analog of Del Pezzo surface in algebraic
geometry. Another important notion, given in the following definition
and called a symplectic G-conic bundle, corresponds to a conic bundle
structure on a rational G-surface in algebraic geometry.

Definition 1.1. Let (X,ω) be a symplectic 4-manifold equipped with
a finite symplectomorphism group G. A symplectic G-conic bundle
structure on (X,ω) is a genus-0 smooth Lefschetz fibration π : X → B
which obeys the following conditions:

• each singular fiber of π contains exactly one critical point;
• there exists a G-invariant, ω-compatible almost complex structure
J such that the fibers of π are J-holomorphic;
• the group action of G preserves the Lefschetz fibration.

Remark 1.2. Although the above definition looks more rigid than
it should be (in particular, it is always an almost complex fibration),
Theorem 1.3 shows that this is a purely symplectic notion in the case
of minimal symplectic rational G-surfaces.

A symplectic G-conic bundle is called minimal if for any singular fiber
there is an element of G whose action switches the two components of
the singular fiber.

Here are some immediate consequences from the definition:
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Gminimal conic bundle

Gminimal symplectic surface
with conic bundle structure

Gminimal complex surface
with conic bundle structure

• X is a rational surface if and only if B = S2; in this case, note
that the number of singular fibers of π equals N − 1, where X =
CP2#NCP2;
• the Lefschetz fibration is symplectic with respect to ω;
• the fiber class lies in the invariant lattice H2(X)G as G preserves

the Lefschetz fibration;
• if the underlying symplectic G-manifold is minimal, then the sym-

plectic G-conic bundle must be also minimal.

1.2. The symplectic structures. Our first theorem is concerned with
the symplectic structure of a minimal symplectic rational G-surface.

Theorem 1.3. Let (X,ω) be a minimal symplectic rational G-surface,

where X = CP2#NCP2 for some N ≥ 2. Then N 6= 2, and one of the
following holds true:

(1) The invariant lattice H2(X)G has rank 1. In this case, 3 ≤ N ≤ 8
and (X,ω) must be monotone.

(2) The invariant lattice H2(X)G has rank 2. In this case, N = 5 or
N ≥ 7, and there exists a symplectic G-conic bundle structure on
((X,ω), G).

Remark 1.4. (a) An analog of Theorem 1.3 for minimal rational
G-surfaces is a classical theorem in algebraic geometry (see e.g.
Theorem 3.8 in [6]), a proof of which can be given using the equi-
variant Mori theory (see §4 of [8]). With this understood, we
remark that our proof of Theorem 1.3 gives an independent proof
of the corresponding result in algebraic geometry by taking ω to
be a G-invariant Kähler form. Consequently, a significant portion
of the theory of rational G-surfaces (e.g. as described in [6]) can
be recovered (see Theorems 1.5 1.8).

(b) In case (1) of Theorem 1.3 the invariant lattice H2(X)G is spanned
by Kω, and in case (2), H2(X)G is spanned by Kω and the fiber
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class of the symplectic G-conic bundle. We should point out that
the analysis on the type of the group G, the induced action on
H2(X), as well as the structure of the equivariant symplectic cone,
depends on the rank of the invariant lattice H2(X)G.

(c) In case (2), the proof of Theorem 1.3 reveals the following addi-
tional information about the symplectic G-conic bundle structure:
there exists a basis H,E1, E2, · · · , EN of H2(X) with standard
intersection matrix such that
(i) the fiber class is given by H −E1 and the pair of (−1)-spheres

in a singular fiber are given by the classes Ej and H−E1−Ej ,
where j = 2, · · · , N ;

(ii) the symplectic areas satisfy ω(Ej) = 1
2ω(H − E1), ω(E1) ≥

ω(Ej) for j = 2, · · · , N ;
(iii) the canonical class Kω = −3H + E1 + E2 + · · ·+ EN .

(d) In complex geometry, it was known that a minimal (complex)
rational G-surface which is diffeomorphic to CP2 blown up at 6
points must be Del Pezzo (cf. [6], Theorem 3.8, Proposition 5.2).
However, it seemed new that the invariant Picard group Pic(X)G

must be of rank 1.

Comparing the three minimality assumptions:

The reader should be noted that a minimal symplectic G-conic bundle
is different from a minimal symplectic G-surface with G-conic bundle
structure: a minimal symplectic G-conic bundle may still contain a G-
invariant disjoint union of symplectic (−1)-spheres. However, Lemma
4.2 implies this cannot happen when N ≥ 5 and N 6= 6.

The minimal G-conic bundles is an intermediate notion between min-
imal symplectic G-surfaces and minimal complex G-surfaces. There is
always a G-invariant symplectic form compatible with the given com-
plex structure on a minimal complex G-surface. Although we do not
know whether this symplectic form is always G-minimal, if we assume
a symplectic G-conic bundle structure underlies this action, this conic
bundle structure is always minimal. Therefore, proving our results in
the more general minimal G-conic bundle context plays an important
role in bridging the complex and symplectic G-surfaces as well as in the
study of the equivariant symplectic cones.

1.3. The homological action and the groups. Our next task is to
describe possible candidates for G.

We begin with case (1) in Theorem 1.3 where (X,ω) is a minimal
symplectic rational G-surface such that the invariant lattice H2(X)G

has rank 1. In this case (X,ω) is monotone, H2(X)G is spanned by Kω,
and 3 ≤ N ≤ 8. With this understood, we note that the orthogonal
complement of Kω in H2(X) (with respect to the intersection product),
denoted by RN , is a G-invariant root lattice of type EN (N = 6, 7, 8),
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D5 (N = 5), A4(N = 4), and A2 +A1 (N = 3) respectively. We denote
by WN the corresponding Weyl group.

Theorem 1.5. Let (X,ω) be a minimal symplectic rational G-surface
such that H2(X)G has rank 1. There are two cases:

(1) Suppose 4 ≤ N ≤ 8. Then the induced action of G on H2(X)
is faithful, which gives rise to a monomorphism ρ : G → WN .
Moreover, the image ρ(G) in WN satisfies∑

g∈G
trace{ρ(g) : RN → RN} = 0.

(2) Suppose N = 3. Let Γ be the subgroup of G which acts trivially
on H2(X) and let K := G/Γ be the quotient group. Then Γ is
isomorphic to a subgroup of the 2-dimensional torus and K is
isomorphic to Z6 or the dihedral group D12. Furthermore, G is a
semi-direct product of Γ by K. As a corollary, G can be written as
a semi-direct product of an imprimitive finite subgroup of PGL(3)
by Z2.

Remark 1.6. 1. For N = 4, 5, the subgroups of the Weyl group
WN which satisfy the condition

∑
g∈G trace{ρ(g) : RN → RN} = 0 are

determined, see Theorem 6.4 and Theorem 6.9 in [6] respectively. All
such groups can be realized by a minimal G-Del Pezzo surface, which
is also minimal as a symplectic rational G-surface with respect to any
G-invariant Kähler form (cf. Theorem 1.10(2)).

2. For N = 3, Theorem 1.3 (2) and Theorem 1.5 completely de-
termined all possible G that acts minimally on X. The statement in
Theorem 1.5 implies the corresponding statement in [6], Theorem 6.3.
In fact, the semi-direct product structure of G in our statement is an
improvement upon the corresponding theorem in algebraic geometry.
For a list of imprimitive finite subgroups of PGL(3) up to conjugacy,
see Theorem 4.7 in [6].

Now we consider case (2) of Theorem 1.3. In fact, we will work
in a slightly more general situation, where the symplectic rational G-
surface (X,ω) is not assumed to be minimal, but only admits a minimal
symplectic G-conic bundle π : (X,ω) → S2. Furthermore, we assume
N ≥ 4 (instead of the fact that N ≥ 5 when (X,ω) is a minimal
symplectic rational G-surface).

We make the following definition.

Definition 1.7.

• Q / G is the subgroup that acts trivially on the base S2 of the
G-conic bundle;
• G0 / Q is the subgroup that acts trivially on H2(X) (in the case

we consider, there are N − 1 ≥ 3 critical values on the base that
was fixed, hence G0 / Q);
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• P = G/Q, so that G decomposes as

(1) 1→ Q→ G→ P → 1.

We denote by Σ the subset of S2 which parametrizes the singular
fibers of the symplectic G-conic bundle π. Note that #Σ = N − 1, and
the induced action of P on S2 leaves the subset Σ invariant. The action
of P on S2 is effective, so P is isomorphic to a polyhedral group, i.e., a
finite subgroup of SO(3).

Therefore, up to an extension problem, the description of G boils
down to the following theorem which describes the subgroups G0 and
Q.

Theorem 1.8. Let (X,ω) be a symplectic rational G-surface equipped
with a minimal symplectic G-conic bundle structure with at least three
singular fibers (i.e, N ≥ 4). Let G0, Q be given as in Definition 1.7.
Then one of the following is true.

1. G0 = Zm, m > 1, and Q is either the dihedral group D2m con-
taining G0 as an index 2 subgroup, or Q = G0 and m is even.
Moreover, N must be odd, and any element τ ∈ Q \ G0 switches
the two (−1)-spheres in each singular fiber.

2. G0 is trivial and Q = Z2 or (Z2)2. In the latter case, let τ1, τ2, τ3

be the distinct involutions in Q. Then Σ is partitioned into subsets
Σ1, Σ2, Σ3, where Σi parametrizes those singular fibers of which
τi leaves each (−1)-sphere invariant, and #Σi ≡ N − 1 (mod 2),
for i = 1, 2, 3.

Remark 1.9. (a) Note that when G0 is trivial and Q = (Z2)2, each
element of P acts on Q as an automorphism, permuting the three
involutions τ1, τ2, τ3. Consequently, the action of P on the base S2

preserves the partition Σ = Σ1 t Σ2 t Σ3. For the corresponding
result in algebraic geometry, see [6], Theorem 5.7.

(b) When the fiber class of the symplectic G-conic bundle is unique,
Q is uniquely determined as a subgroup of G, see Proposition 4.5
for more details.

1.4. Minimality and equivariant symplectic cones. In this sub-
section, we are concerned with the underlying smooth action of a mini-
mal symplectic rational G-surface. In particular, our consideration here
offers an interesting symplectic geometry perspective to the study of
rational G-surfaces in algebraic geometry.

We begin with the setup of our study here. Let X = CP2#NCP2,
N ≥ 2, which is equipped with a smooth action of a finite group G.
Suppose there is a G-invariant symplectic form ω0 on X such that the
corresponding symplectic rational G-surface (X,ω0) is minimal. With
this understood, we denote

(2) Ω(X,G) := {ω : ω is symplectic on X, g∗ω = ω, for any g ∈ G}.
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Note that Ω(X,G) is non-empty as ω0 ∈ Ω(X,G). The part (2) of
the following theorem shows that the underlying smooth action of a
minimal (complex) rational G-surface satisfies the above assumption,
where we can take ω0 to be any G-invariant Kähler form.

Theorem 1.10. (1) Let X = CP2#NCP2, N ≥ 2, which is equipped
with a smooth action of a finite group G. Suppose there is a G-invariant
symplectic form ω0 on X such that ((X,ω0), G) is minimal. Then for
any ω ∈ Ω(X,G), the canonical class Kω = Kω0 or −Kω0, and the
symplectic rational G-surface (X,ω) is minimal.

(2) Let X be any minimal (complex) rational G-surface which is CP2

blown up at 2 or more points. Then for any symplectic form ω which
is invariant under the underlying smooth action of G (e.g., any G-
invariant Kähler form), the corresponding symplectic rational G-surface
(X,ω) is minimal.

At the time of writing, it is not known whether the symplectic mini-
mality would imply the smooth minimality of the underlying group ac-
tion. The symplectic minimality in Theorem 1.10 is a weaker statement
that symplectic minimality is determined by the underlying smooth ac-
tion, but the proof is still quite non-trivial. For related (stronger) results
in the case of G-Hirzebruch surfaces, see [5].

With the minimality in Theorem 1.10(1) in place, we now turn our
attention to the equivariant symplectic cone of the G-manifold (X,G).

Definition 1.11. The equivariant symplectic cone of (X,G) is de-
fined as

C̃(X,G) = {Ω : Ω = [ω], ω is a G-invariant symplectic form} ⊂ H2(X;R)G.

Note that K−ω = −Kω. Therefore it suffices to consider the subset

C(X,G) := {[ω]|ω ∈ Ω(X,G),Kω = Kω0} ⊂ H2(X;R)G.

Furthermore, we observe that ifH2(X)G has rank 1, C(X,G) = {λKω0 |λ ∈
R, λ < 0}. In what follows, we shall assume that H2(X)G has rank 2.
Note that under this assumption, N 6= 6 by part (2) of Theorem 1.3.

In order to describe C(X,G), it is helpful to introduce the following
terminology. A class F ∈ H2(X)G is called a fiber class if there exists
an ω ∈ Ω(X,G) such that F is the class of the regular fibers of a
symplectic G-conic bundle on ((X,ω), G). Since we will focus on the set
C(X,G), we shall assume further that [ω] ∈ C(X,G), i.e., Kω = Kω0 .

We observe that since rank H2(X)G = 2, the class of such an ω can
be written as

[ω] = −aKω0 + bF, a > 0.
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With this understood, we consider the following subset of C(X,G)
and its projective classes
(3)
C(X,G,F ) = {[ω] ∈ C(X,G) : ω = −aKω0 + bF, a > 0, b ≥ 0},
Ĉ(X,G,F ) = {[ω] ∈ C(X,G,F ) : ω(F ) = 2} (equivalently, a = 1).

Now [ω] ∈ Ĉ(X,G,F ) can be written as [ω] = −Kω0 + δω,FF . Then

the one to one correspondence [ω] 7→ δω,F identifies Ĉ(X,G,F ) with a
subset of R. With this understood, we introduce

δX,G,F := inf
[ω]∈Ĉ(X,G,F )

δω,F ∈ [0,∞).

Note that (X,ω) is monotone if and only if δω,F = 0, so δω,F may be
thought of as a sort of gap function which measures how far away (X,ω)
is from being monotone.

Theorem 1.12. Let X = CP2#NCP2, N ≥ 2, be equipped with a
smooth finite G-action which is symplectic and minimal with respect to
some symplectic form ω0. Furthermore, assume rank H2(X)G = 2.

(1) If N ≥ 9 or G0 is nontrivial, there is a unique fiber class F , and
C(X,G) = C(X,G,F ).

(2) For N = 5, 7, 8, either there is a unique fiber class F , or there
are two distinct fiber classes F, F ′. In the former case, C(X,G) =
C(X,G,F ), and in the latter case, C(X,G) = C(X,G,F )∪C(X,G,F ′),
with C(X,G,F ) ∩ C(X,G,F ′) being either empty or consisting of
[ω] such that (X,ω) is monotone.

(3) For any fiber class F , Ĉ(X,G,F ) is identified with either [0,∞) or
(δX,G,F ,∞) under [ω] 7→ δω,F . (In particular, δX,G,F can not be
attained unless it equals 0.)

We conjecture that when there are two distinct fiber classes, the equi-
variant symplectic cone must contain the class of a monotone form. Fur-
thermore, it is an interesting problem to determine the gap functions
δX,G,F for a given minimal rational G-surface X with Pic(X)G = Z2.
We shall leave these studies for a future occasion.

The organization of this paper is as follows. Section 2 is concerned
with the proof of the structural theorem, Theorem 1.3. In section 2.1 we
collect some preliminary lemmas on minimal symplectic G-conic bun-
dles. In section 2.2 we review a reduction process for the exceptional
classes of a rational surface which plays an essential role in the proof of
Theorem 1.3. Sections 2.3 and 2.4 are devoted to the proof of Theorem
1.3. Section 3 is concerned with the analysis of the structure of group
G. Proofs of Theorems 1.5 and 1.8 are presented here. Finally, section
4 is devoted to the discussion on equivariant symplectic minimality and
equivariant symplectic cones. In particular, we prove Theorems 1.10



10 WEIMIN CHEN, TIAN-JUN LI, AND WEIWEI WU

and 1.12. At the end of section 4, we also include a uniqueness result
on the subgroup Q in Definition 1.7.

Acknowledgments. This long overdue project started from the Work-
shop and Conference on Holomorphic Curves and Low Dimensional
Topology in Stanford, 2012. We are grateful to Igor Dolgachev for
inspiring conversations during the FRG conference on symplectic bira-
tional geometry 2014 in University of Michigan. This work was partially
supported by NSF Focused Research Grants DMS-0244663 and DMS-
1065784, under FRG: Collaborative Research: Topology and Invariants
of Smooth 4-Manifolds. WW is supported by Simons Collaboration
Grant 524427.

2. The structure of (X,ω)

2.1. Preliminary lemmas on symplectic G-conic bundles. Let
(X,ω) be a symplectic rational G-surface, where X = CP2#NCP2, and
let π : X → S2 be a symplectic G-conic bundle on (X,ω). We first
observe that each singular fiber of π consists of a pair of (−1)-spheres.
To see this, let C1, C2 be the components of a singular fiber, which are
embedded J-holomorphic spheres. Since C1, C2 are isolated J-curves,
their self-intersection must be negative. On the other hand, C1 ·C2 = 1,
so it follows easily from (C1 + C2)2 = 0 that both of C1, C2 are (−1)-
spheres.

There are N − 1 singular fibers. We shall pick a (−1)-sphere from
each singular fiber and name the homology classes by E2, · · · , EN . Then
there is a unique pair of line class and exceptional class H and E1 such
that

(i) H − E1 is the fiber class of π,
(ii) H,E1, E2, · · · , EN form a basis of H2(X) with standard intersec-

tion matrix.

With this understood, observe that

(1) for each (−1)-sphere Ej , j = 2, · · · , N , the other (−1)-sphere lying
in the same singular fiber has homology class H − E1 − Ej ,

(2) the canonical class Kω = −3H + E1 + · · ·+ EN .

There are further consequences if the symplectic G-conic bundle is
minimal. In this case, for each (−1)-sphere Ej , j = 2, · · · , N , there
exists a g ∈ G such that g · Ej = H − E1 − Ej . This implies

ω(Ej) =
1

2
ω(H − E1), j = 2, · · · , N.

Thus a minimal symplectic G-conic bundle falls into three cases:

(i) ω(E1) = ω(Ej), (ii) ω(E1) > ω(Ej), (iii) ω(E1) < ω(Ej).
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Case (i) occurs iff (X,ω) is monotone. Since E1 is a section class, we
shall call case (ii) (resp. case (iii)) a symplectic G-conic bundle with
small fiber area (resp. large fiber area).

The following lemma is the J-holomorphic analog of Lemma 5.1 in
[6].

Lemma 2.1. Let π : X → S2 be a symplectic G-conic bundle on
(X,ω), which comes with a G-invariant, ω-compatible almost complex
structure J . Suppose E,E′ are two distinct J-holomorphic sections of
self-intersection −m,−m′, and let r be the number of singular fibers
where E,E′ intersect the same component. Then

N − 1 = r +m+m′ + 2E · E′.

Moreover, if the symplectic G-manifold (X,ω) is minimal, then N ≥ 5
must be true.

Proof. Since E1, F = H −E1, Es, s > 1 generate H2(X), both E and
E′ have the form

(4) E1 + cF +
∑
t>1

ctEt,

where c ∈ Z, and ct = 0 or 1 depending on which component they
intersect on each singular fiber.

Since E,E′ are sections, we have

E′ − E = bF +
∑
s

bsEs,

where b ∈ Z and bs = ±1 with s running over the set of singular fibers
at where E′, E intersect different components. Note that the number
of s is exactly N − 1− r. Now

(E′ − E)2 =
∑
s

b2sE
2
s = −(N − 1− r),

which gives

N − 1 = r +m+m′ + 2E · E′.
Now suppose (X,ω) is minimal. We will show that N ≥ 5 in this

case. First, we claim that the sections E,E′ in the lemma do exist.
This is because the class E1 can be represented by a J-holomorphic
stable curve. By checking the intersection with H − E1, the E1 stable
representative contains a unique J-holomorphic section E. Note that
E,F = H − E1, Es, s > 1 also form a basis of H2(X), and E1 can be
written as

E1 = a(H − E1) +
∑
s>1

asEs + E,
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where a ≥ 0, and as = 0 or 1 depending on which component that E
intersects at each singular fiber. Note that

E2 = −2a− 1−
∑
s>1

as.

We take E′ = g · E for some g ∈ G such that E′ 6= E. Such a g ∈ G
exists because E must intersect a singular fiber and there is a g ∈ G
which switches the two (−1)-spheres in that singular fiber. Note that
E′ is a section, as the fiber class is G-invariant so that E′ · (H −E1) =
E · (H −E1) = 1. Furthermore, note that (E′)2 = E2. Consequently, if
E2 ≤ −2, we must have

N = 1 + r +m+m′ + 2E · E′ ≥ 1 + 0 + 2 + 2 + 0 = 5.

If E2 > −2, then a = as = 0 and E = E1 must be a (−1)-sphere. The
minimality assumption then implies that E′ = g ·E for some g ∈ G can
be chosen such that E′ intersects E. In this case, we have

N = 1 + r +m+m′ + 2E · E′ ≥ 1 + 0 + 1 + 1 + 2 = 5.

This finishes off the proof of Lemma 2.1.
q.e.d.

Lemma 2.2. Let (X,ω) be a symplectic rational G-surface which ad-
mits a minimal symplectic G-conic bundle structure. Then the invariant
lattice H2(X)G has rank 2 which is spanned by Kω and the fiber class
of the symplectic G-conic bundle.

Proof. First, we show that H2(X;R)G is 2-dimensional. To see this,
we first note that Kω, H − E1, E2, · · · , EN form a basis of H2(X,R).
We set

V = H2(X;R)/Span R(Kω, H − E1).

Then it suffices to show that V G = {0} because Kω, H−E1 ∈ H2(X)G.
We let e2, · · · , eN be the image of E2, · · · , EN under the quotient

map, which form a basis of V . Suppose to the contrary, there is a
x 6= 0 in V G. We write x =

∑N
k=2 akek. Then there exists a k0 such

that ak0 6= 0. With this understood, we note that by the minimality
assumption, there is a g ∈ G such that g · Ek0 = H − E1 − Ek0 , which
means that g · ek0 = −ek0 . Now we set I = {k|g · ek = −ek}. Then
k0 ∈ I; in particular, I 6= ∅. We let J be the complement of I in the set
{2, · · · , N}. Then it follows easily that if k ∈ J , then g · ek = ±el for
some l ∈ J (g · Ek = El or H − E1 − El for some l).

With this understood, we write x = y+ z, where y =
∑

k∈I akek and
z =

∑
k∈J akek. Then g · x = −y + z′ for some z′ ∈ Span R(ek|k ∈ J).

Since g · x = x, we have 2y = z′ − z ∈ Span R(ek|k ∈ J). Since
e2, · · · , eN form a basis of V , this clearly contradicts the fact that y ∈
Span R(ek|k ∈ I) and y 6= 0. Hence the claim that H2(X;R)G is 2-
dimensional.
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Now for any α ∈ H2(X)G, we write α = aKω + b(H − E1) for some
a, b ∈ Q. Then α · EN = −a, implying a ∈ Z. On the other hand,
α · E1 = −a+ b, we have b ∈ Z also. Hence H2(X)G is spanned by Kω

and H − E1.
q.e.d.

Lemma 2.3. Let π : X → S2 be a minimal symplectic G-conic bundle
where X = CP2#NCP2 with N ≥ 6 and even. Let J be any G-invariant,
compatible almost complex structure, and let

mJ = max{m ∈ Z : there is a J-holomorphic section of π of self-intersection −m}.
Then mJ ≤ (N − 4)/2. In particular, when N = 6, mJ ≤ 1.

Proof. First, note that if E is a J-holomorphic section of self-intersection
−m, then there is a g ∈ G such that g · E 6= E, where g · E is also of
self-intersection −m. This is because E must intersect a singular fiber,
and by the minimality assumption there is a g ∈ G which switches the
two components of that singular fiber. Clearly for this g, g · E 6= E.
Now apply Lemma 2.1 to E and E′ = g ·E, we see that m ≤ (N − 2)/2
as N is even. Hence we reduced the lemma to showing m 6= N−2

2 .
Suppose to the contrary that m = (N − 2)/2, and let E,E′ be a pair

of sections whose self-intersection equals −m. Then by Lemma 2.1, we
see that E,E′ are disjoint and r = 1. Let F be the singular fiber where
E,E′ intersect the same (−1)-sphere. Then again by the minimality
assumption there is a h ∈ G which switches the two (−1)-spheres in
F . It follows easily that h · E, E, and E′ are distinct. Let r, r′ be the
number of singular fibers where h ·E, E and h ·E, E′ intersect the same
(−1)-sphere, respectively. Then it follows easily that r + r′ = N − 2.
On the other hand, Lemma 2.1 implies that r = r′ = 1, contradicting
the fact that N ≥ 6. Hence the lemma.

q.e.d.

2.2. Reduction of exceptional classes. Momentarily we let ω be
any symplectic structure on X = CP2#NCP2, and denote

Eω = {e ∈ H2(X)|e2 = −1,Kω · e = −1, ω(e) > 0}
which may depend on ω. The following fact is crucial in our considera-
tions.

Lemma 2.4. (cf. [9]) Assume N ≥ 2. Then for any ω-compatible
almost complex structure J on X, each class E ∈ Eω with minimal area,
i.e., ω(E) = mine∈Eω ω(e), is represented by an embedded J-holomorphic
sphere.

The key ingredient in the proof of Theorem 1.3 is a reduction proce-
dure which involves a certain type of standard basis of H2(X), called a
reduced basis. We shall begin by a brief digression and refer the reader
to [11, Proposition 4.14] or independently [1] for more details.
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Recall that a reduced basis is a basis H,E1, · · · , EN of H2(X) with s-
tandard intersection matrix, where Ei ∈ Eω, such that ω(EN ) = mine∈Eω ω(e),
and for any i < N , Ei satisfies the following inductive condition: let
Ei = {e ∈ Eω|e · Ej = 0 ∀i < j}, then ω(Ei) = mine∈Ei ω(e). Fur-
thermore, the canonical class Kω = −3H +E1 · · ·+EN . Reduced basis
always exists.

If N = 2, then Eω = {E1, E2, H − E1 − E2}. For N ≥ 3, a reduction
procedure can be introduced, which requires the following discussions.

1. Introduce Hijk = H − Ei − Ej − Ek for i < j < k and Hij =
H −Ei −Ej for i < j. Then Hij ∈ Ej , which implies that ω(Hijk) ≥ 0.

2. For any E ∈ Eω, write E = aH −∑
s bsEs. Then

• a ≥ 0;
• if a > 0, then bs ≥ 0 for all s;
• if a = 0, then E = El for some l;
• assume a > 0, and let bi, bj , bk be the largest three coefficients

(here we use the assumption N ≥ 3), then bi ≤ a < bi + bj + bk,
which is equivalent to E ·Hijk < 0 and E · (H − Ei) ≥ 0.

3. The classes Hijk are represented by embedded (−2)-spheres, hence
for each Hijk there is a diffeomorphism of X inducing an automorphism
R(Hijk) on H2(X):

R(Hijk)α = α+ (α ·Hijk) ·Hijk, ∀α ∈ H2(X).

Moreover, each R(Hijk) has the following properties: (1) R(Hijk)Kω =
Kω, (2) R(Hijk)E ∈ Eω, ∀E ∈ Eω.

With the preceding understood, consider any E ∈ Eω, where E =
aH −∑

s bsEs with a > 0. Let bi, bj , bk be the largest three coefficients
for some i < j < k. Then it follows easily from the last bullet of item 2
that

• R(Hijk)E = a′H −∑
s b
′
sEs for some a′ < a, and

• ω(R(Hijk)E) ≤ ω(E) with “ = ” iff ω(Hijk) = 0.

Set E′ := R(Hijk)E. We say that E is reduced to E′ by Hijk.
The operations R(Hijk) has the following properties of our interests:

1) (finite termination) By [13, Proposition 1.2.12], one may find a
sequence of finitely many Hijk for any E ∈ Eω, such that after
performing R(Hijk), E is reduced to El for some l.

2) (monotonicity) The symplectic area is monotonically decreas-
ing during the above reduction procedure.

Therefore, after the reduction procedure, ω(E) ≥ ω(El), with “ = ”
iff ω(Hijk) = 0 for all the Hijk’s involved. In particular, when E has
the minimal area in Eω, i.e., ω(E) = ω(EN ), then we have
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(5)
ω(El) = ω(El+1) = · · · = ω(EN ), and ω(Hijk) = 0 for all the H ′ijks involved.

We first rule out the case of N = 2.

Lemma 2.5. There are no minimal symplectic rational G−surface
with N = 2.

Proof. Suppose ((X,ω), G) is a minimal symplectic rationalG−surface
withN = 2. Let {H,E1, E2} be a reduced basis. Then Eω = {E1, E2, H−
E1 − E2}.

Fix a G-invariant J , and let C be the J-holomorphic (−1)-sphere
representing E2 (cf. Lemma 2.4). We set Λ := ∪g∈Gg · C. Then Λ
is a union of finitely many J-holomorphic (−1)-spheres, containing at
least two distinct (−1)-spheres intersecting each other because of the
minimality assumption. Since Eω = {E1, E2, H−E1−E2}, there are only
two possibilities: (1) Λ is a union of three (−1)-spheres, representing
the classes E1, E2 and H − E1 − E2, and (2) Λ is a union of two (−1)-
spheres representing the classes E2 and H − E1 − E2. In either case,
H − E1 − E2 is represented by a (−1)-sphere. Since H − E1 − E2 is
the only characteristic element in Eω, it must be fixed by the G-action,
which contradicts the minimality of the symplectic G-manifold (X,ω).
Hence there are no minimal symplectic rational G−surface with N = 2.

q.e.d.

2.3. Reduced basis for symplectic rational G-surfaces. Due to
Lemma 2.5, in what follows we assume that (X,ω) is a minimal sym-

plectic rational G-surface, where X = CP2#NCP2 with N ≥ 3.

Lemma 2.6. Suppose N ≥ 3. Then one of the following must be
true.

(i) (X,ω) is monotone.
(ii) The reduced basis of X satisfies ω(E1) > ω(E2) = · · · = ω(EN ),

ω(H−E1) = 2ω(Ej). Moreover, if E ∈ Eω has minimal area, then
either E = Ej or E = H1j = H − E1 − Ej for some j > 1.

Proof. Assume (X,ω) is not monotone. We shall first prove a slightly
weaker statement that is independent of the G-action.

Claim: If E ∈ Eω has minimal area in Eω and E 6= Es for any s, then
E = H − E1 − Ej for some j > 1, and furthermore, if such an E exists
and E = H − E1 − Ej for some j > 2, then we must have

ω(E2) = · · · = ω(EN ).

Proof of Claim. Let E ∈ Eω be such a class, i.e., E has minimal area
in Eω and E 6= Es for any s, We reduce E to El for some l by a
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sequence of Hijk’s. Since E has minimal area in Eω, it follows that
ω(El) = · · · = ω(EN ). Note that l > 1. Otherwise, ω(Ei) = ω(Ej) and
ω(Hijk) = 0 for some i, j, k from property (3) in the reduction process
in Section 2.2. This violates that (X,ω) is not monotone.

Suppose the reduction from E to El takes n steps, let E′ ∈ E be the
class obtained at the (n − 1)th step. Then E′ = aH −∑

s bsEs, where
a > 0 and bs ≥ 0. The equation El = E′ + (E′ ·Hijk) ·Hijk reads

El = (2a− bi − bj − bk)H −
∑

s=i,j,k

(bs + a− bi − bj − bk)Es −
∑

s 6=i,j,k

bsEs,

which implies that l must be one of i, j or k, and without loss of gener-
ality assuming that l = k, then

2a = bi + bj + bk, a = bj + bk = bi + bk, a− bi − bj = −1.

It follows easily that E′ = Hij = H−Ei−Ej . Here we assume i < j, but
do not require any condition on k = l > 1. Note that E′ has minimal
area in Eω, which implies that ω(H) = ω(Ei) +ω(Ej) +ω(El) from (5).

Next we prove that i = 1. Suppose to the contrary that i > 1. Then
ω(H1ij) = ω(H) − ω(E1) − ω(Ei) − ω(Ej) ≥ 0. On the other hand,
ω(H) = ω(Ei) + ω(Ej) + ω(El) and ω(E1) ≥ ω(El), which implies that
ω(E1) = · · · = ω(EN ) = 1

3ω(H). This is a contradiction because we
assume (X,ω) is not monotone. Hence i = 1 and E′ = H − E1 − Ej .

We claim that E = E′ = H − E1 − Ej . Suppose this is not true.

Then there must be a class Ẽ which is reduced to E′ by some Hvrt for
v < r < t. We assert v > 1. To see this, write Ẽ = aH −∑

s bsEs,
where a > 0 and bs ≥ 0. Then similarly we have

H−E1−Ej = (2a−bv−br−bt)H−
∑

s=v,r,t

(bs+a−bv−br−bt)Es−
∑

s 6=v,r,t

bsEs.

If v = 1, then 2a− bv − br − bt = 1 and a− br − bt = 1, implying a = bv.
Now for s = r, t, the coefficient of Es on the right hand side is bt, br
respectively, which are non-negative. It follows that br = bt = 0 from the
property 2 in Section 2.2, which contradicts the fact that a < bv+br+bt.
Hence v > 1.

We now get a contradiction as follows. Note that ω(Hvrt) = 0 and
ω(H1vr) ≥ 0 implies that

ω(E1) = · · · = ω(Et).

Then with ω(Hvrt) = 0 again, we have ω(H) = 3ω(E1). On the other
hand, ω(El) = ω(E′) = ω(H) − ω(E1) − ω(Ej), from which it follows
that

ω(E1) = · · · = ω(El) = · · · = ω(EN ).

This contradicts the assumption that (X,ω) is not monotone. Hence
E = H − E1 − Ej is proved. Finally, if j > 2, then ω(H12j) ≥ 0 and
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ω(H) − ω(E1) − ω(Ej) = ω(El) implies that ω(E2) = ω(El), hence
ω(E2) = · · · = ω(EN ). This concludes the claim.

q.e.d.

To obtain Lemma 2.6, it remains to show that if (X,ω) is not mono-
tone, then there exists some j > 2, such that E = H−E1−Ej attains the
minimal area within Eω. To this end, we fix a G-invariant ω-compatible
J . Then by Lemma 2.4, there exists a J-holomorphic (−1)-sphere C
representing the class EN . Note that for any g ∈ G, g · C ∈ Eω. Now
by the assumption that (X,ω) is minimal, there must be a g ∈ G such
that g ·C 6= C and g ·C intersects with C. The class g ·C has minimal
area in Eω and g · C 6= Es for any s. Let g · C = H − E1 − Ej . Then
j = N ≥ 3 must be true because g · C intersects with C. This finishes
the proof of the lemma.

q.e.d.

2.4. Proof of Theorem 1.3. In what follows, we still assume that
N ≥ 3. We will discuss according to the following three possibilities:

i) (X,ω) is not monotone: By Lemma 2.6, there is a reduced basis
{H,E1, · · · , EN} such that

ω(E1) > ω(E2) = · · · = ω(EN ),

and moreover, if E ∈ Eω has minimal area, then either E = Ej or
E = H1j = H − E1 − Ej for some j > 1.

Let J be any G-invariant ω-compatible almost complex structure.
For each fixed j > 1, Ej has minimal area so by Lemma 2.4, so there
is an embedded J-holomorphic sphere C representing Ej . Since (X,ω)
is minimal, there must be a g ∈ G such that g · C 6= C and g · C ∩
C 6= ∅. It follows easily that g · C must be the J-holomorphic (−1)-
sphere representing the class H −E1−Ej , since it also has the minimal
area. Furthermore, g · C and C intersect transversely and positively
at a single point. Standard gluing construction in J-holomorphic curve
theory yields a J-holomorphic sphere Ĉ, carrying the class C + g ·C =
H −E1. It follows that Ĉ has self-intersection 0, and by the adjunction
formula it must be embedded. By a standard Gromov-Witten index
computation, the moduli space of J-spheres in class [Ĉ] gives rise to a
fibration (which contains singular fibers) structure on X, where each

fiber is homologous to Ĉ. Since X is a rational surface, the base of the
fibration must be S2. We denote the fibration by πj : X → S2.

Next we show that πj is G-invariant. To see this, note that for any
h ∈ G, h · (C ∪ g · C) must be a pair of J-holomorphic (−1)-spheres
representing Ek and H − E1 − Ek for some k (see Lemma 2.6). It

follows that the class of Ĉ, which is H − E1, is invariant under the
G-action. This implies that the fibration πj is G-invariant.
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Finally, we note that the fibration πj is independent of j, because the
fiber class, which is H − E1, is independent of j. We will denote the
fibration by π : X → S2. Note that the same argument shows also that
π contains at least N − 1 singular fibers, consisting of a pair of (−1)-
spheres whose classes are Ej , H − E1 − Ej for j = 2, · · · , N . There are
no other singular fibers by an Euler number count. Note that Lemma
2.2 asserts rank H2(X)G = 2 in this case.

ii) (X,ω) is monotone and H2(X)G has rank 1: In this case, note
that Kω ∈ H2(X)G and is a primitive class, hence H2(X)G is spanned
by Kω. The constraint N ≤ 8 is an easy consequence of (X,ω) being
monotone.

iii) (X,ω) is monotone and rank H2(X)G > 1: Note that the de
Rham class [ω] = λKω ∈ H2(X;R)G for some λ ∈ R. Since rank H2(X)G >
1, we may pick a G-invariant closed 2-form η such that [η] lies in a dif-
ferent direction in H2(X;R)G. Let ω′ := ω + εη for some very small ε.
Then ω′ is a G-invariant symplectic structure such that (X,ω′) is not
monotone.

Claim: (X,ω′) is minimal as a symplectic G-manifold for sufficiently
small ε.

Suppose there is a disjoint union of ω′-symplectic (−1)-spheres {Ci},
such that for any g ∈ G, g ·Ci = Cj for some j. Note that for sufficiently
small ε, we have Eω = Eω′ because Kω = Kω′ . Let ei be the class of
Ci. It follows easily that for each i, ei ∈ Eω. Now pick a G-invariant J
compatible with ω. Since (X,ω) is monotone, each ei is represented by

an embedded J-holomorphic (−1)-sphere Ĉi. Notice that {ei} has the
following properties: ei · ej = 0 for i 6= j, and for any g ∈ G, g · ei = ej
for some j. It follows that {Ĉi} is a disjoint union of ω-symplectic
(−1)-spheres which is invariant under the G-action. This contradicts
the minimality assumption on (X,ω), hence the claim.

We apply the argument for case i) to (X,ω′). Consequently there is a
reduced basis {H,E1, · · · , EN} (w.r.t. ω′), and a G-invariant fibration
π′ : X → S2, whose fiber class is H − E1 and the singular fibers are
pairs of (−1)-spheres representing Ej , H − E1 − Ej for j > 1. Note
that by taking ε small, we have Ei ∈ Eω′ = Eω. Finally, observe the
following crucial property (

∑
g∈G g ·Ej)

2 = 0 for any j > 1 because Ek

and H − E1 − Ek must appear in pairs in the sum.
Now let J be any G-invariant ω-compatible almost complex structure.

For each fixed j > 1, since (X,ω) is monotone and Ej ∈ Eω, Ej is
represented by an embedded J-holomorphic (−1)-sphere C. Let Λ :=
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∪g∈G g · C. Then the set Λ is a union of finitely many distinct J-
holomorphic (−1)-spheres. Since (

∑
g∈G g · Ej)

2 = 0 for any j > 1, it

follows easily that Λ2 = 0.
Let {Λi} be the set of connected components of Λ. Since G acts

on the connected components of Λ transitively, it follows that for any
i 6= k, Λ2

i = Λ2
k. Clearly Λ2 =

∑
i Λ2

i , which implies that Λ2
i = 0 for

any i. Now Λ2
i = 0, together with the fact that Λi is a union of finitely

many distinct J-holomorphic (−1)-spheres and Λi is connected, implies
that Λi consists of two (−1)-spheres intersecting transversely at a single
point. We claim that the pair of (−1)-spheres in each Λi have classes
Ek, H −E1 −Ek for some k > 1. This is because for each g ∈ G, g ·Ej

is either Ek or H −E1−Ek for some k > 1, and for each k > 1, there is
a g ∈ G such that g · Ek = H − E1 − Ek. By the same argument as in
case i), we obtain a G-invariant fibration on X as desired, independent
of the choice of j.

The statement that N ≥ 5 was proved in Lemma 2.1. The statement
that N 6= 6 follows from Lemma 2.7 below. This completes the proof of
Theorem 1.3.

Lemma 2.7. Let π : X → S2 be a minimal symplectic G-conic bundle

where X = CP2#6CP2
. Then for any G-invariant, compatible almost

complex structure J , there is a G-invariant J-holomorphic (−1)-sphere.

Proof. Let H,E1, · · · , E6 be a basis of H2(X) with standard inter-
action matrix such that H − E1 is the fiber class and E2, · · · , E6 are
(−1)-spheres contained in singular fibers. Note that the canonical class
KX = −3H + E1 + · · ·+ E6.

With this understood, note that C = −KX − (H − E1) = 2H −∑
6≥i≥2Ei ∈ H2(X)G, and C is an exceptional class. Hence for any

given G-invariant, compatible almost complex structure J , C has a J-
holomorphic representative, which admits a decomposition of irreducible
components

(6) C = F̂ + Ê,

where F̂ is the sum of components contained in the fibers of the G-conic
bundle (the vertical class), and Ê is the sum of other components (the
horizontal class).

By Lemma 2.3, E1 must have a J-holomorphic representative: oth-
erwise, it has a stable curve representative where one of the component
has to be a section since E1 ·F = 1. Such a section has self-intersection
less than −1, a contradiction.

To continue with our proof, we first show that Ê does not contain
E1-components. Suppose the multiplicity of the E1-component is k,
since all irreducible components pairs with H−E1 non-negatively, (C−
kE1) · (H − E1) ≥ 0, hence k ≤ 2.
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Furthermore, if the multiplicity is 2 (meaning either there is a doubly

covered component or two components), Ê = 2E1. Otherwise, Ê · (H −
E1) ≥ 3 > C · (H − E1), violating the positivity of intersection with
H − E1.

For the multiplicity 2 case, F̂ = 2H − 2E1 −
∑

6≥i≥2Ei, while all
possible irreducible components are of the form H − E1 − Ei, Ei or
H − E1 for 6 ≥ i ≥ 2. A simple check shows this cannot be consistent
with (6).

For the multiplicity 1 case, Ê = E1 + E′. E′ has E′ · (H − E1) = 1
hence a section. Therefore, E′ ≥ −1 from Lemma 2.3. Since E′ 6= E1,
its coefficient of H under the reduced basis must be positive. One may
again easily check F̂ cannot be represented as a combination of classes
of forms H − E1 − Ei, Ei or H − E1.

Now since the equivariant J-holomorphic representative of C does not
contain E1-components, it is disjoint from the E1-section. Therefore,
F̂ ·E1 = 0, which implies the sum of vertical components F̂ =

∑
msEs

for some s 6= 1. However, there is always an element g ∈ G which sends
Es to H − E1 − Es for any s 6= 1. This forces F̂ = 0, and C = Ê.

At last, again note that Ê has at most 2 components by positivity
of intersection with H −E1. We assume Ê has two components, which
are both sections S1 and S2.

C2 = (S1 + S2)2 = −1 = S2
1 + S2

2 + 2S1S2 ≥ −2 + 2S1 · S2

from Lemma 2.3. Therefore, 2S1 ·S2 ≤ 1, which implies S1 ·S2 = 0. This
implies these are disjoint sections S2

1 = −1 and S2
2 = 0. A simple check

on class C shows there are no such decomposition of section classes
(recall that [S1] 6= E1).

Summarizing, we have showed that the J-representative of C is indeed
irreducible, which is a G-invariant J-holomorphic (−1)-sphere. Hence
the lemma.

q.e.d.

To compare with known results in algebraic geometry, it seems worth
to record the following easy consequence.

Theorem 2.8. Let (X,ω) be a minimal symplectic rational G-surface

where X = CP2#6CP2. Then the invariant lattice H2(X)G must be of
rank 1. In particular, a minimal complex rational G-surface X which is
CP2 blown up at 6 points must be Del Pezzo with Pic(X)G = Z.

Proof. Under the above assumptions, Lemma 2.7 implies (X,ω) is
not a G-conic bundle, hence rank(H2(X)G) = 1 by Theorem 1.3.

For the second statement, notice that a conic bundle on a minimal
complex rational G-surface defines a minimal symplectic G-conic bundle
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with respect to any G-invariant Kähler form. Theorem 3.8 of [6] asserts
then X must be a del Pezzo surface if rankH2(X)G = 1.

q.e.d.

3. The structure of G

3.1. Proof of Theorem 1.5, 4 ≤ N ≤ 8. We start with the following
observation.

Lemma 3.1. Suppose (X,ω) is monotone. If N ≥ 4, then the rep-
resentation of G on H2(X) is faithful.

Proof. Fix a G-invariant J . Let g ∈ G be any element acting trivially
on H2(X). Then g fixes every element E ∈ Eω, which implies that all the
J-holomorphic (−1)-spheres are invariant under g. Now let C1 be the
J-holomorphic (−1)-sphere representing E1, and for each 1 < j ≤ N , let
Cj be the J-holomorphic (−1)-sphere representing H −E1 −Ej . Then
it is clear that C1 intersects each Cj , j > 1, transversely at one point
and the Cj ’s are mutually disjoint. It follows that the cardinality of the
set C1∩(∪jCj) is N−1. On the other hand, each point in C1∩(∪jCj) is
fixed under g, hence the action of g on C1 contains at least N − 1 fixed
points. When N ≥ 4, it follows that C1 must be fixed by g. A similar
argument shows that every J-holomorphic (−1)-sphere is fixed by g.
Since there are J-holomorphic (−1)-spheres intersecting transversely at
a point, the action of g on the tangent space at the intersection point
must be trivial, which shows that g must be trivial. Hence the lemma.

q.e.d.

Assume (X,ω) is a symplectic rationalG-surface with rankH2(X)G =
1.

Since Kω ∈ H2(X) is fixed under the action of G, there is an induced
representation of G on the orthogonal complement RN , which is faithful
by Lemma 3.1. This gives rise to a monomorphism ρ : G → WN . On
the other hand, H2(X)G is spanned by Kω, so that RG

N = {0}. This
implies that

1

|G|
∑
g∈G

trace{ρ(g) : RN → RN} = rank RG
N = 0.

The proof for Case 1 is completed.

3.2. Proof of Theorem 1.5, N = 3. Our main objective in this case
is to show that G contains an index 2 subgroup which is isomorphic to
an imprimitive finite subgroup of PGL(3).

We first describe the list of subgroups of PGL(3) involved. For sim-
plicity, we will adapt the following convention from [6]: we denote an
element T ∈ PGL(3) by the image of [z0, z1, z2] ∈ CP2 under T .
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Here is the list of imprimitive finite subgroups of PGL(3) up to con-
jugacy (see Theorem 4.7 in [6]), where µr = exp(2πi/r) is the r-th root
of unity.

• Gn, generated by the following elements of PGL(3):

[µnz0, z1, z2], [z0, µnz1, z2], [z2, z0, z1]

The group Gn is isomorphic to a semi-direct product of (Zn)2 and
Z3.
• G̃n, generated by the following elements of PGL(3):

[µnz0, z1, z2], [z0, µnz1, z2], [z0, z2, z1], [z2, z0, z1]

The group G̃n is isomorphic to a semi-direct product of (Zn)2 and
S3.
• Gn,k,s, where k > 1, k|n, and s2 − s + 1 = 0 (mod k). It is

generated by the following elements of PGL(3):

[µn/kz0, z1, z2], [µsnz0, µnz1, z2], [z2, z0, z1]

The group Gn,k,s is isomorphic to a semi-direct product of Zn ×
Zn/k and Z3.

• G̃n,3,2, generated by the following elements of PGL(3):

[µn/3z0, z1, z2], [µ2
nz0, µnz1, z2], [z0, z2, z1], [z1, z0, z2]

The group G̃n,3,2 is isomorphic to a semi-direct product of Zn ×
Zn/3 and S3.

3.2.1. Preliminaries: factorization of G by exceptional spheres.
Let {H,E1, E2, E3} be a reduced basis. Then

Eω = {E1, E2, E3, H − E1 − E2, H − E1 − E3, H − E2 − E3}.
Since (X,ω) is monotone, the classes in Eω have the same area, and
consequently, each class in Eω is represented by a J-holomorphic (−1)-
sphere for any fixed J , which we assume to be G-invariant. Let Λ be
the union of these six (−1)-spheres. The intersection pattern of these
curves can be described by a hexagon, where each edge represents a
(−1)-sphere and each vertex represents an intersection point (See Figure
1). For simplicity, for each E ∈ Eω we shall use the same notation to
denote the corresponding (−1)-sphere.

Obviously there is an induced G-action on Λ.

Lemma 3.2. The action of G on the components of Λ is transitive,
and consequently, there is a short exact sequence

(7) 1→ Γ→ G→ K → 1,

where Γ is isomorphic to a subgroup of S1× S1, and K is either D12,
the full automorphism group of the hexagon, or the cyclic subgroup of
order 6.
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H − E1 − E3
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H − E2 − E3
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a+ b

−b
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−a− b

−a

−b

b

−a− b

H − E1 − E2

Figure 1. Exceptional configurations and action

weights in CP2#3CP2

Proof. Let C be any of the (−1)-spheres. Then the class of the union
∪g∈Gg · C must lie in H2(X)G. Since H2(X)G = Span (Kω), the class
of ∪g∈Gg ·C must be a multiple of Kω. On the other hand, the class of
Λ equals −Kω, from which it follows easily that Λ = ∪g∈Gg · C. This
proves that the action of G on components of Λ is transitive.

The action of G on Λ gives rise to a short exact sequence

1→ Γ→ G→ K → 1,

where Γ is the normal subgroup of G consisting of elements which leave
each (−1)-sphere invariant. The quotient group K = G/Γ has an ef-
fective, transitive action on the hexagon Λ, which must be either the
automorphism group D12 of the hexagon, or the cyclic subgroup of order
6.

To see that Γ is a subgroup of S1 × S1, we look at the action of Γ
on the tangent space of any intersection point of two adjacent (−1)-
spheres in Λ. The action preserves a pair of complex lines intersecting
transversely, giving a natural isomorphism of Γ to a subgroup of S1×S1.

q.e.d.

In fact, we may identify K geometrically as follows. There is a natural
isomorphism D12 = Z2 × S3, where the latter is the Weyl group WN

of the corresponding root lattice RN , which is generated by H − E1 −
E2 − E3, E1 − E2 and E2 − E3. In this sense, Z2 = 〈s1〉 where s1 is
the rotation of 180 degrees of the hexagon, and S3 = 〈s2, s3〉 where
s2, s3 are the reflections of the hexagon which switches E1 and E2,
E2 and E3 respectively. Note that s2s3, which is s3 followed by s2, is
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a counter-clockwise rotation of 120 degrees of the hexagon. It follows
that the short exact sequence 1 → Γ → G → K → 1 is the same as
the one obtained from the induced action of G on the root lattice RN ,
with Γ being the subgroup of G acting trivially on H2(X). Under this
identification, one of the following is true by Lemma 3.2

• K is generated by s1, s2 and s3 if it is the cyclic subgroup of order
12.
• K is generated by s1 and s2s3 if it is the cyclic subgroup of order

6.

In order to understand the structure of G, we begin by getting more
information about the subgroup Γ. To this end, we fix a monomorphism
Γ → S1 × S1 induced from the action of Γ on the tangent space of the
intersection point of E1 and H − E1 − E3, where the first S1-factor is
from the action on E1. We summarize the main objects in consideration
as follows for readers’ convenience:

• Γ / G is the subgroup with trivial homological action,
• K = G/Γ,
• ρi : Γ→ S1, i = 1, 2, are the projection to the two S1-factors,
• Γi = ker ρi,
• Γ′i = image ρi ⊂ S1.

• Γ̃i is a subgroup of Γ such that ρi : Γ̃i → Γ′i is isomorphic.

Lemma 3.3.

1) Γi, Γ′i are cyclic,
2) ord (Γ1)=ord (Γ2) and ord (Γ′1)=ord (Γ′2)
3) ord (Γi)|ord (Γ′i)

We will hence denote n := ord(Γ′i) and k :=ord(Γ′i)/ord(Γi)

Proof. It is clear that Γ′i is cyclic. Γi is also cyclic because both ρ2|Γ1

and ρ1|Γ2 are injective. Note that this also shows that the order of Γ′1
(resp. Γ′2) is divisible by the order of Γ2 (resp. Γ1).

Finally, Γ1 and Γ2 have the same order. This is because if we let
g ∈ G be an element whose action on the hexagon is a counter-clockwise
rotation of 60 degrees, then gΓ2g

−1 = Γ1. Consequently, the order of
Γ′i = Γ/Γi is independent of i.

q.e.d.

Lemma 3.4. The subgroup Γ̃i < Γ exists. In particular, since Γ is
Abelian, Γ ∼= Γi × Γ̃i for i = 1, 2.

Proof. Let h ∈ Γ be an element such that ρ1(h) is a generator of Γ′1.
Since ρ1(h)n = 1, we have hn ∈ Γ1. We claim hn = 1. This is because
ρ2|Γ1 is injective, so that if hn 6= 1 in Γ1, then ρ2(h)n = ρ2(hn) 6= 1 in
Γ′2. But this contradicts the fact that the order of Γ′2 equals n. Hence

hn = 1. With this understood, we simply take Γ̃1 to be the subgroup
generated by h.
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q.e.d.

3.2.2. Rotation numbers. Next we recall some basic facts about rota-
tion numbers. Let h ∈ Γ be any element and E ∈ E be any (−1)-sphere
which is invariant under h. Then either h fixes E or h acts on E non-
trivially. In the latter case, h fixes two points on E. The following fact
is a straightforward local computation:

Fact: if we let (a, b) be the rotation numbers of h at one of the fixed
point, where a is the tangential weight and b is the weight in the normal
direction, then the rotation numbers at the other fixed point are (−a, b+
a), with the second number being the weight in the normal direction.

Explicitly, the tangential weight being a means that the action of h
is given by multiplication of exp(2aπ

√
−1/ord(h)) and similarly for the

normal weight. Here we orient the (−1)-sphere by the almost complex
structure J and orient the normal direction accordingly, so there is no
sign ambiguity on a, b. Note that even when E is fixed by h, this
continues to make sense, with the understanding that a = 0 in this
case.

With the preceding understood, we order the exceptional curves and
their intersections according to the counter-clockwise orientation of the
hexagon in Figure 1, and ask E1 to be the first exceptional curve.

For example, we say H − E1 − E3 is before E1 and H − E1 − E2 is
after E1, and the intersection point of H −E1−E3 and E1 is the first
fixed point on E1, etc.

Now for any h ∈ Γ, we denote by (a, b) the rotation numbers at the
intersection point of H − E1 − E3 and E1, with a being the weight
in the direction tangent to E1. According to the orientation of the
hexagon, this is the first fixed point of h on E1. With this understood,
the rotation numbers at the fixed points of h on (−1)-spheres are given
below according to the orientation of the hexagon,

(a+ b,−a), (b,−a− b), (−a,−b), (−a− b, a), (−b, a+ b).

Finally, we remark that h is completely determined by the rotation
numbers at the six vertices of the hexagon.

Throughout the rest of the proof of Theorem 1.5,

g ∈ G will denote those elements which act on the hexagon by a
counter-clockwise rotation of 60 degrees,

and we shall investigate the action of g on Γ = Γ1 × Γ̃1 given by
conjugation, i.e., h 7→ ghg−1, ∀h ∈ Γ.

Here is the first corollary of the analysis on rotation numbers: note
that the action of g3, which is a rotation of 180 degrees, sends every pair
of rotation numbers to its negative, i.e., (a, b) 7→ (−a,−b), (a+b,−a) 7→
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(−a− b, a) and (b,−a− b) 7→ (−b, a+ b). This implies that

g3hg−3 = h−1, ∀h ∈ Γ.

Since g3 is sent to s1 ∈ K under the homomorphism G→ K in (7), we
obtain the following lemma:

Lemma 3.5. (1) For any element of G which is sent to s1 ∈ K under
G→ K, its action on Γ by conjugation sends h ∈ Γ to h−1. (2) g6 = 1.

Proof. It remains to show that g6 = 1. First, note that g6 ∈ Γ.
Secondly, the action of g3 on g6 by conjugation is trivial, but the action
of g3 on Γ sends h to h−1 as we just showed, from which we see that
either g6 = 1 or g6 is an involution. We rule out the latter by showing
that the action of g on any involution of Γ is nontrivial, and G is a
semi-direct product of Γ and K follows.

Let τ ∈ Γ be any involution. Without loss of generality, we assume τ
acts nontrivially on E1. Then in the rotation numbers of the two fixed
points, (a, b) and (−a, b+ a), a = 1 must be true because τ has order 2,
and furthermore, either b = 0 or b = 1. If b = 0, the rotation numbers
for the action of τ at the six vertices are

(1, 0), (1,−1), (0,−1), (−1, 0), (−1, 1), (0, 1).

If b = 1, the rotation numbers for the action of τ at the six vertices are

(1, 1), (0,−1), (1, 0), (−1,−1), (0, 1), (−1, 0).

In the former case, the rotation numbers for the action of gτg−1 are

(0, 1), (1, 0), (1,−1), (0,−1), (−1, 0), (−1, 1),

which shows gτg−1 6= τ . In the latter case, the rotation numbers for
the action of gτg−1 are

(−1, 0), (1, 1), (0,−1), (1, 0), (−1,−1), (0, 1),

which also shows gτg−1 6= τ . This finishes the proof of the lemma.
q.e.d.

With these preparation, we may now continue our proof according to
the alternative by Lemma 3.2

• Case A: K = Z6, and
• Case B: K = D12.

3.2.3. Case A: K = Z6. We begin with the following observation
which follows immediately from the fact that g6 = 1.

Proposition 3.6. G is a semi-direct product of Γ and K.

Let 〈Γ, g2〉 denote the index 2 subgroup of G generated by Γ and g2.

Proposition 3.7. If K = Z6, then 〈Γ, g2〉 is isomorphic to Gn when

k = 1, and is isomorphic to Gn,k,s when k > 1, where n = |Γ′1| = |Γ̃1|
and n/k = |Γ1|.
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Proof. Let h1 ∈ Γ1 be the generator whose rotation numbers at the
six vertices of the hexagon are

(0, 1), (1, 0), (1,−1), (0,−1), (−1, 0), (−1, 1),

and let h̃1 ∈ Γ̃1 be the generator whose rotation numbers at the six
vertices of the hexagon are

(1, b), (1 + b,−1), (b,−1− b), (−1,−b), (−1− b, 1), (−b, 1 + b).

This is can be shown by examining the weight on the first intersection
(the one between H − E1 − E3 and E1), because on the base it should
project to that of Γ′1. Then g2h1g

−2 has rotation numbers

(−1, 0), (−1, 1), (0, 1), (1, 0), (1,−1), (0,−1),

and g2h̃1g
−2 has rotation numbers

(−1− b, 1), (−b, 1 + b), (1, b), (1 + b,−1), (b,−1− b), (−1,−b).

Let g2h1g
−2 = h̃kl1 h

u
1 for some l and u (note that k · ord(Γi) = ord(Γ′i)).

Then comparing the rotation numbers we have

(−1, 0) = (l, bl) + (0, u),

which implies that l = −1 and u = b. Similarly, let g2h̃1g
−2 = h̃m1 h

v
1 for

some m and v, we have

(−1− b, 1) = (m,mb) + (0, kv),

which implies that b2 + b + 1 = kv (mod n) and m = −1 − b. Putting
together, we have

g2h1g
−2 = h̃−k1 hb1, g2h̃1g

−2 = h̃−b−1
1 hv1.

We will need a different presentation of 〈Γ, g2〉. To this end, we let

t1 = h1, t2 = h̃−1
1 , and moreover, we set s = −b. Then we have

g2t1g
−2 = tk2t

−s
1 , g2t2g

−2 = ts−1
2 t−v1 ,

where s2−s+1 = kv (mod n). With this presentation, one can identify
the subgroup 〈Γ, g2〉 with an imprimitive finite subgroup of PGL(3).

More precisely, when k = 1, i.e., Γ̃1 and Γ1 have the same order, we can
actually take Γ̃1 to be Γ2, which corresponds to b = 0. Then s = −b = 0,
and with k = 1, we have v = 1. In this case. 〈Γ, g2〉 is isomorphic to Gn

by identifying t1 = [µnz0, z1, z2], t2 = [z0, µnz1, z2], and g2 = [z2, z0, z1].
When k > 1, 〈Γ, g2〉 is isomorphic to the group Gn,k,s, by identifying
t1 = [µn/kz0, z1, z2], t2 = [µsnz0, µnz1, z2], and g2 = [z2, z0, z1]. This
finishes off the proof of Proposition 3.7.

q.e.d.
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3.2.4. Case B: K = D12. We will first show that G is a semi-direct
product of Γ and K.

Lemma 3.8. There exists an involution in G which is sent to the
reflection s3 under G→ K. Moreover,

• for any h ∈ Γ and any such involution τ , hτh−1 = ĥτ , where h, ĥ
are related as follows: if the rotation numbers of h at the first fixed
point on E1 (according to the orientation of the hexagon which is

counter-clockwise) are (a, b), then the rotation numbers of ĥ at the
first fixed point on E1 are (2a,−a).
• for any two such involutions τ, τ ′, τ ′ = hτ for some h ∈ Γ whose

rotation numbers at the first fixed point on E1 are (2a,−a) for
some a.

We note that analogous statements hold for the reflections s2 and
s2s3s2 in K.

Proof. Suppose τ ∈ G is sent to s3 under G → K, then τ leaves the
(−1)-spheres E1 and H−E2−E3 invariant. Let h1 ∈ Γ1 be the generator
with rotation numbers (0, 1) at the first fixed point. By examining the
rotation numbers, one can check easily that τh1τ

−1 = h1. On the other
hand, it is easily seen that τ2 ∈ Γ fixes 4 points (two fixed points from
τ and two from intersections with other exceptional curves) hence the
whole (−1)-sphere E1. Therefore, τ2 ∈ Γ1.

The key observation is that τ2 = h2b
1 is an even power of h1. To see

this, note that τ has two fixed points on E1 and their rotation numbers
are (a, b) and (−a, b + a) for some a, b. Furthermore, the order of τ
must be even, say 2m. Since τ2 fixes the (−1)-sphere E1, we must have
2a = 2m, and the rotation numbers of τ2 at the two fixed-points are
(0, 2b) and (0, 2b). Comparing with the rotation numbers with h1, we

see easily that τ2 = h2b
1 . With τh1τ

−1 = h1, we see easily that τh−b1 is
an involution which is sent to s3 under G→ K.

Now we consider any involution τ which is sent to s3. For any h ∈ Γ,
let x, y be the first and second fixed points on E1, and suppose the
rotation numbers of h at x are (a, b). Then τ(x) = y and τ : TxE1 →
TyE1. It is easily seen that hτh−1 : TxE1 → TyE1 equals (−a)τ(−a) =
−2aτ (here (−a) means multiplication by exp(2(−a)π

√
−1/ord(h))).

Similarly, hτh−1 = (a + b)τ(−b) = aτ in the normal direction. Hence

hτh−1 = ĥτ for some ĥ whose rotation numbers at y are (−2a, a). It

follows easily that the rotation numbers of ĥ at x are (2a,−a).
Finally, let τ, τ ′ be any two involutions sent to s3. We let

f = dτ : TxX → TyX

g = dτ ′ : TyX → TxX.

Then



SYMPLECTIC RATIONAL G-SURFACES AND EQUIVARIANT SYMPLECTIC CONES29

g ◦ f = d(τ ′τ) : TxX → TxX

g−1 ◦ f−1 = d(ττ ′) : TyX → TyX

Note that τ ′τ = h ∈ Γ. Since g−1 ◦ f−1 = (f ◦ (g ◦ f) ◦ f−1)−1, we
see easily that the rotation numbers of h at y are the negative of the
rotation numbers at x. If the rotation numbers at x are (c, d), then the
rotation numbers at y are (−c, c + d) (the second number in each pair
stands for the weight in the normal direction). This gives rise to the
relation c+d = −d, so that the rotation numbers of h at x are (−2d, d).
Setting d = −a we proved that τ ′ = hτ for some h ∈ Γ whose rotation
numbers at the first fixed point on E1 are (2a,−a) for some a, as we
claimed.

q.e.d.

Proposition 3.9. The group G is a semi-direct product of Γ and K.

Proof. Recall that we fixed an element g ∈ G which is sent to a
counter-clockwise rotation of 60 degrees under G→ K. We set τ1 = g3,
which is an involution by Lemma 3.5. We pick another involution τ3 ∈ G
which is sent to s3 ∈ K from Lemma 3.8. We shall first show that we
can always arrange to have τ1τ3τ1 = τ3.

By Lemma 3.5, τ1τ3τ1 = h′τ3 for some h′ ∈ Γ whose rotation numbers
at the first fixed point on E1 are (2a3,−a3) for some a3. On the other

hand, if we replace τ3 by hτ3h
−1 = ĥτ3, then from Lemma 3.5

τ1(ĥτ3)τ1 = ĥ−1τ1τ3τ1 = ĥ−2h′(ĥτ3).

Hence if there exists an ĥ ∈ Γ such that ĥ2 = h′, which is equivalent to
a3 being even, then we can replace τ3 by hτ3h

−1 for an h ∈ Γ to achieve
the commutativity property.

To show that a3 is even, we pick an involution τ2 which is sent to
s2 ∈ K (by an analog of Lemma 3.5) and consider τ1τ2τ1. By the

corresponding version of Lemma 3.5, we see that τ1τ2τ1 = h̃τ2 for some
h̃ ∈ Γ whose rotation numbers at the second fixed point on E1 are
(2a2,−a2) for some a2. It follows easily that the rotation numbers of h̃
at the first fixed point on E1 are (a2, a2).

Now τ2τ3 is sent to a counter-clockwise rotation of 120 degrees under
G→ K, so that there exists an h ∈ Γ such that τ2τ3 = hg2. Now

τ1(τ2τ3)τ1 = h̃τ2h
′τ3 = h̃h′kτ2τ3

for some k ∈ Γ whose rotation numbers can be determined as follows:
since the rotation numbers of h′ at the second fixed point on E1 are
(a3,−2a3), by the analog of Lemma 3.5 the rotation numbers of k at
the second fixed point on E1 are (−2a3, a3). It follows that the rotation
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numbers of k at the first fixed point are (−a3,−a3). With this under-

stood, note that the rotation numbers of h̃h′k at the first fixed point on
E1 are (a2 + a3, a2 − 2a3). On the other hand,

(8) τ1(τ2τ3)τ1 = τ1(hg2)τ1 = h−1τ1g
2τ1 = h−1g2 = h−2τ2τ3,

which implies that both a2 + a3, a2 − 2a3 are even. It follows that
a3 is even, and hence there is an involution τ3 sent to s3 ∈ K with the
property that τ1τ3τ1 = τ3.

We set τ2 := gτ3g
−1. Then τ2 is an involution sent to s2 ∈ K which

naturally satisfies τ1τ2τ1 = τ2. We will show that τ2, τ3 satisfy the
relation τ2τ3τ2 = τ3τ2τ3. Note that with this relation, the subgroup
generated by τ2, τ3 is isomorphic to S3. Together with the involution τ1,
we obtain a lifting of K = Z2×S3 in G, proving that G is a semi-direct
product of Γ and K.

As we have seen earlier, τ2τ3 = hg2 for some h ∈ Γ, where h2 = 1
from (8) because both τ2, τ3 commute with τ1. The rotation numbers of
h at the first fixed point on E1 must be one of the following: (i) (0, 1),
(ii) (1, 0), (iii) (1, 1). We claim that in case (i), we have τ2τ3τ2 = τ3τ2τ3.
To see this,

τ2τ3τ2 = hg2τ2 = hτ3g
2 = τ3hg

2 = τ3τ2τ3,

where we use the fact hτ3 = τ3h because the rotation numbers of h are
(0, 1).

It remains to rule out the cases (ii) and (iii). To this end, we compute

gτ2τ3g
−1 = g2τ3g

−2τ2 = (hτ2τ3)τ3(hτ2τ3)−1τ2 = hτ2τ3τ2hτ2 = hhkτ2τ3τ2τ2 = kτ2τ3,

where the rotation numbers of k ∈ Γ can be determined as follows. Note
that τ2τ3τ2 is sent to the reflection s2s3s2 ∈ K, so the rotation numbers
of k at the first fixed point on H − E1 − E3 can be determined by an
analog of Lemma 3.5. In case (ii), the rotation numbers of h at the first
fixed point on H−E1−E3 are (0, 1), so by an analog of Lemma 3.5, the
rotation numbers of k at the first fixed point on H −E1−E3 are (0, 0),
i.e., k is trivial in this case. In case (iii), the rotation numbers of h at
the first fixed point on H−E1−E3 are (1, 0), so by an analog of Lemma
3.5, the rotation numbers of k at the first fixed point on H − E1 − E3

are (0, 1). It follows that the rotation numbers of k at the first fixed
point on E1 are (1, 0) in this case.

On the other hand, g(hg2)g−1 = ghg−1g2 = h′g2 for some h′ ∈ Γ,
where the rotation numbers of h′ at the first fixed point on E1 are (0, 1)
in case (ii) and (1, 0) in case (iii). Since in both cases, h′h 6= k, so we
reached a contradiction. This ruled out the cases (ii) and (iii), and the
proposition is proved.

q.e.d.

Finally, we show that G contains an index 2 subgroup which is iso-
morphic to an imprimitive subgroup of PGL(3). To this end, we fix a
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lifting K ′ of K to G, and let g ∈ K ′ be an element of order 6 and τ ∈ K ′
be the involution sent to s3 ∈ K. We denote by 〈Γ, g2, τ〉 the subgroup
generated by the elements in Γ, g2 and τ .

Proposition 3.10. Suppose K = D12. Then 〈Γ, g2, τ〉 is isomorphic

to the imprimitive finite subgroup G̃n of PGL(3) when k = 1, and is

isomorphic to G̃n,3,2 when k > 1, where n = |Γ′1| = |Γ̃1| and n/k = |Γ1|.
Proof. Let h1 ∈ Γ1 be the generator whose rotation numbers at the

six vertices of the hexagon are

(0, 1), (1, 0), (1,−1), (0,−1), (−1, 0), (−1, 1),

and let h̃1 ∈ Γ̃1 be the generator whose rotation numbers at the six
vertices of the hexagon are

(1, b), (1 + b,−1), (b,−1− b), (−1,−b), (−1− b, 1), (−b, 1 + b).

Then the rotation numbers of τ h̃1τ are

(−1, 1 + b), (b, 1), (1 + b,−b), (1,−1− b), (−b,−1), (−1− b, b).
Writing τ h̃1τ = h̃l1h

u
1 for some l, u, we get

(−1, 1 + b) = (l, lb) + (0, ku),

which implies that l = −1 and 2b+ 1 = ku (mod n).

(i) Assume Γ̃1 and Γ1 have the same order n, i.e. k = 1. Recall
from the proof of Proposition 3.7 that in this case, b = 0, so that u = 1
and τ h̃1τ = h̃−1

1 h1. Renaming t1 = h1, t2 = h̃−1
1 as in the proof of

Proposition 3.7, we get

g2t1g
−2 = t2, g2t2g

−2 = t−1
2 t−1

1 , τ t1τ = t1, τ t2τ = t−1
2 t−1

1 .

With this presentation, the subgroup 〈Γ, g2, τ〉 can be identified with

G̃n by

g2 = [z2, z0, z1], τ = [z0, z2, z1], t1 = [µnz0, z1, z2], t2 = [z0, µnz1, z2].

(ii) Assume Γ̃1 and Γ1 have different orders, i.e., |Γ̃1| = n, |Γ1| = n/k,
with k > 1. In this case, we first note that 2b + 1 = 0 (mod k). On
the other hand, recall from the proof of Proposition 3.7 that b2 + b +
1 = 0 (mod k). It follows that b = 1 (mod k) and k = 3. With this

understood, note that one can modify h̃1 by a suitable power of h1 to
arrange so that b = −2. With this choice, we then have s = −b = 2 and
v = 1, where s, v appear in the relations (see the proof of Proposition
3.7)

g2t1g
−2 = tk2t

−s
1 , g2t2g

−2 = ts−1
2 t−v1 .

Moreover, b = −2 implies u = −1, hence the presentation of 〈Γ, g2, τ〉:
g2t1g

−2 = t32t
−2
1 , g2t2g

−2 = t2t
−1
1 , τ t1τ = t1, τ t2τ = t−1

2 t1
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With this presentation, the subgroup 〈Γ, g2, τ〉 can be identified with

G̃n,3,2 by identifying

g2 = [z2, z0, z1], τ = [z0, z2, z1], t1 = [µn/3z0, z1, z2], t2 = [µ2
nz0, µnz1, z2].

q.e.d.

It is clear that G is a semi-direct product of the imprimitive subgroup
of PGL(3) and Z2. The proof of Theorem 1.3 is completed.

The rest of this section is occupied by the proof of Theorem 1.8,
where we assume (X,ω) admits a minimal symplectic G-conic bundle
structure π : X → S2. Furthermore, we assume N ≥ 4. Recall that Q
is the subgroup of G which leaves each fiber of π invariant, and G0 is
the subgroup of Q which acts trivially on H2(X).

3.3. Proof of Theorem 1.8. We begin with some useful observations
about the rotation numbers of an element of Q at a fixed point.

Rotation numbers of fixed points.

Suppose q ∈ X is fixed by a nontrivial element g ∈ Q and q is not
the singular point of a singular fiber. Then g must fix the symplectic
orthogonal direction of the fiber at q, because g induces a trivial action
on the base. It follows that the rotation numbers of g at q are (a, 0) for
some a 6= 0.

Furthermore, if q lies in a singular fiber, then g must leave the (−1)-
sphere containing q invariant, and the rotation numbers of g at the other
fixed point, which is the singular point of the singular fiber, must be
(a,−a). (See Section 3.2.2)

Structure of fixed point sets.

Note that the fixed-point set of a nontrivial element g ∈ Q consists of
embedded J-holomorphic curves and isolated points. Since each regular
fiber contains two fixed points of g, it follows that the fixed-point set of
g consists of a bisection and isolated points which are the singular points
of those singular fibers of which g leaves each component invariant.

Clearly, one of the following must be true:

(i) g leaves components of a singular fiber invariant.
Then there is a fixed point q as described above, and the sin-

gularity p on the fiber has rotation number (a,−a) hence is an
isolated fixed point (and there is one more fixed point on either
component of the fiber).

(ii) g switches the 2 components of the singular fiber.
Then

a) the singularity p on the fiber is contained in the fixed bisection,
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b) p is a branched point of the double branched covering from the
bisection to the base,

c) g must be an involution, because if g2 6= 1, then p must be an
isolated fixed point of g2 from (i), a contradiction.

With the preceding understood, note that the subgroup G0 can be
identified with the subgroup which leaves each (−1)-sphere in a singular
fiber invariant. Since there are N − 1 ≥ 3 singular fibers, the induced
action of G0 on the base S2 has at least 3 fixed points. It follows that
the action of G0 on the base must be trivial, and G0 is a subgroup of
Q. It is clear that either G0 is trivial, or it is finite cyclic.

Furthermore, the fixed-point set of each nontrivial element of G0

consists of N−1 isolated points with rotation numbers (a,−a) for some
a 6= 0 (these are the singular points of the singular fibers) and two
disjoint fixed sections from the two other fixed points other than the
singular points on each fiber. The two fixed sections must have the same
self-intersection number because there exists a g ∈ G which switches the
two sections. Applying Lemma 2.1 to the fixed sections, we see that each
has self-intersection (N − 1)/2; in particular, N must be odd if G0 is
nontrivial. Finally, we note that each element of Q \ G0 must be an
involution (the square fixes 4 points in a general fiber: intersections
with the bisection, and the intersections of the two disjoint sections as
above).

Lemma 3.11. The group Q contains an involution; in particular, it
has an even order.

Proof. Let F be the singular fiber which contains the exceptional
sphere representing EN . The minimality assumption implies that there
is a g ∈ G which switches the two (−1)-spheres in F . Clearly, g has an
even order, say 2m. If g ∈ Q, then as we have shown earlier, g must be
an involution, and we are done. Suppose m > 1. We let h = gm, which
is an involution. We claim that h ∈ Q.

Suppose h is not contained in Q. Then h induces a rotation on the
base, so that the fixed-point set of h must be contained in the two fibers
which h leaves invariant. With this understood, we claim that h must
fix one of the (−1)-spheres in F . Denote Σ as the two dimensional
component of the fixed point set of h, which could be empty If h does
not fix either of the (−1)-spheres in F , we must have EN · Σ = 0. On
the other hand, by Proposition 5.1 in [7], we have

(h · EN ) · EN = EN · Σ (mod 2).

This is a contradiction because h · EN = EN or H − E1 − EN , so that
(h · EN ) · EN = ±1. Hence h fixes one of the (−1)-spheres in F . Now
since g commutes with h and g switches the two (−1)-spheres in F , h
must also fix the other (−1)-sphere. But this clearly contradicts the
fact that h is nontrivial. Hence h ∈ Q and the lemma is proved.
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q.e.d.

Proposition 3.12. If G0 is nontrivial, say, of finite order m > 1,
and Q 6= G0, then Q is the dihedral group D2m. Moreover, any invo-
lution τ ∈ Q \ G0 switches the two fixed sections of G0, hence the two
(−1)-spheres in each singular fiber.

Proof. For any g ∈ Q, since G0 is normal in Q, g leaves the two
fixed sections of G0 invariant. Note that if g leaves each of the section
invariant, then it must fix both of them because the induced action of
g on the base is trivial. Consequently, Q/G0 is either trivial or Z2,
depending on whether there is a g ∈ Q switching the two fixed sections
of G0. It follows easily that every element in Q \ G0 switches the two
(−1)-spheres in each singular fiber. Finally, if Q 6= G0, then Q must
be the corresponding dihedral group because each element in Q \G0 is
an involution. (g2 preserves all exceptional spheres hence in G0) This
finishes the proof of the proposition.

q.e.d.

Next we consider the case where G0 is trivial. Let Σ be the set of
singular fibers.

Proposition 3.13. Suppose G0 is trivial. Then Q = Z2 or (Z2)2.
In the latter case, let τ1, τ2, τ3 be the distinct involutions in Q. Then
Σ is partitioned into subsets Σ1, Σ2, Σ3, where Σi parametrizes the
set of singular fibers of which τi leaves each (−1)-sphere invariant, and
#Σi ≡ N − 1 (mod 2), for i = 1, 2, 3.

Proof. First of all, Q consists of involutions as G0 is trivial. Suppose
Q 6= Z2, and let τ, τ ′ ∈ Q be two distinct nontrivial elements. We claim
that there is no singular fiber such that both τ, τ ′ leave both of the (−1)-
spheres in this fiber invariant. This is because if there is such a singular
fiber, then by examining the action of ττ ′ at the singular point of the
fiber, we see ττ ′ must be trivial (the rotation numbers at this signular
point is (0, 0)). But this contradicts the assumption that τ 6= τ ′.

With the preceding understood, let τ1, · · · , τn, n > 1, be the distinct
involutions in Q, and let Σi be the set of singular fibers of which τi
leaves each (−1)-sphere invariant. Then the previous paragraph shows
that Σi ∩ Σj = ∅ for i 6= j. On the other hand, suppose τk = τiτj , then
Σ \ (Σi ∪ Σj) ⊂ Σk, implying

Σ \ (Σi ∪ Σj) = Σk.

It follows easily that n = 3 and Q = (Z2)2.
It remains to see that for each i, #Σi = N−1 (mod 2). Consider the

fixed-point set Si of τi. Then Si is a bisection and the projection of Si
onto the base is a double branched covering which ramifies exactly at the
singular points of those singular fibers not parametrized by the set Σi.
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Since the number of ramifications must be even, we have #Σi = N − 1
(mod 2) as claimed.

q.e.d.

The proof of Theorem 1.8 is completed.

4. Minimality and equivariant symplectic cones

Now let X = CP2#NCP2, N ≥ 2, which is equipped with a smooth
action of a finite group G. Suppose there is a G-invariant symplectic
form ω0 on X such that the corresponding symplectic rational G-surface
(X,ω0) is minimal. With this understood, we denote by Ω(X,G) the
set of G-invariant symplectic forms on X.

The following is a crucial observation.

Lemma 4.1. For any ω ∈ Ω(X,G), the canonical class Kω = Kω0

or −Kω0.

Proof. The lemma is obvious if H2(X)G has rank 1 because [ω0], [ω]
and Kω are proportional.

Assume that H2(X)G has rank 2. From Theorem 1.3, N 6= 6.
Recall also from the proof of Theorem 1.3, there is a reduced basis
H,E1, · · · , EN of (X,ω0) such that Kω0 = −3H +E1 +E2 + · · ·+EN .
Now after changing ω by sign and with a further scaling if necessary,
we can write [ω] = −Kω0 + bF = (3 + b)H − (1 + b)E1 − · · · − EN for
some b ∈ R. We claim that [ω] is always a reduced class in the sense of
[10] when N ≥ 9. To see this, note that the condition [ω]2 > 0 implies
4b > N − 9 ≥ 0, which implies b > 0. This gives 3 + b > 1 + b ≥ 1 and
3 + b = 1 + b+ 1 + 1. Now the conclusion follows from [10, Lemma 3.4
(part 5)], which asserts that any symplectic class with reduced form has
canonical class Kω0 .

For the case of N = 5, 7, 8, we have b > −1,−1
2 and −1

4 , respectively.
A complete list of K0-exceptional class in these cases are given by

• N = 5: Ei, H − Ei − Ej , 2H − E1 − · · · − E5;
• N = 7: Ei, H −Ei−Ej , 2H −Ei1 − · · · −Ei5 , 3H − 2Ei1 −Ei2 −
Ei3 − Ei4 − Ei5 − Ei6 − Ei7 ;
• N = 8: Ei, H − Ei − Ej , 2H − Ei1 − · · · − Ei5 ,

3H − Ei1 − 2Ei2 − Ei3 − Ei4 − Ei5 − Ei6 − Ei7 ,
4H − 2Ei1 − 2Ei2 − 2Ei3 − Ei4 − Ei5 − Ei6 − Ei7 − Ei8 ,
5H − 2Ei1 − 2Ei2 − 2Ei3 − 2Ei4 − 2Ei5 − 2Ei6 − Ei7 − Ei8 ,
6H − 3Ei1 − 2Ei2 − 2Ei3 − 2Ei4 − 2Ei5 − 2Ei6 − 2Ei7 − 2Ei8 .

It is not hard to check that in the respective range of b for each N ,
all such exceptional classes would have ω(E) = (−K0 + bF ) · E > 0 for
any E picked from the above list. This implies that Kω = K0 from [12,
Theorem 3].

q.e.d.
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Recall that we have shown that a minimal symplectic rational G-
surface where X = CP2#NCP2 admits a minimal symplectic G-conic
bundle only when N ≥ 5 and N 6= 6. The following lemma deals with
precisely these cases and gives the converse of this fact.

Lemma 4.2. Let (X,ω) be a symplectic rational G-surface where

X = CP2#NCP2 with N ≥ 5 and N 6= 6. Suppose (X,ω) admits
a minimal symplectic G-conic bundle structure. Then for any ω′ ∈
Ω(X,G) such that Kω′ = Kω, the symplectic rational G-surface (X,ω′)
is minimal.

Proof. By Lemma 2.2, H2(X)G is of rank 2 spanned by Kω and
the fiber class F of the symplectic G-conic bundle. Now suppose to
the contrary that (X,ω′) is not minimal. Then there is a G-invariant,
disjoint union of ω′-symplectic (−1)-spheres C1, C2, · · · , Cm. Let C =
C1 + · · ·+ Cm. Then since Kω′ = Kω, we have

−m = C2 = Kω · C.
On the other hand, C ∈ H2(X)G, so that

(9) C = aKω + bF, a, b ∈ Z.
The key ingredient for deriving a contradiction is the fact that F ·C ≥

0, which as a corollary implies that a < 0, and so that F ·C > 0. To see
this, Note that F is represented by an embedded J-holomorphic sphere
S where J is ω-compatible. On the other hand, since Kω′ = Kω, ω
and ω′ have the same set of symplectic (−1)-classes. Hence since the
class of each Ci is represented by a ω′-symplectic (−1)-sphere, it is also
represented by a ω-symplectic (−1)-sphere. Consequently, the class of
Ci can be represented by ∪jmjDj where Dj is a J-holomorphic curve
and mj > 0. Now since S is irreducible and S2 = 0, we have S ·Dj ≥ 0
for each j, which implies that F · Ci ≥ 0 for each i. Hence our claim
that F · C ≥ 0.

With this understood, we consider the pairing of C = aKω + bF with
Kω and then square both sides, we have

aK2
ω − 2b = −m

−m = a2K2
ω − 4ab

which gives

(10) m = − a2K2
ω

2a− 1
.

Notice that m > 0, hence K2
ω > 0, which excludes all cases for N ≥ 9.

Moreover, a2 and 2a−1 are co-prime for all a ≤ −1, therefore, 2a−1|K2
ω.

But this is not possible because of the assumption N ≥ 5 and N 6= 6.
q.e.d.
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Proof of Theorem 1.10

The claim regarding the canonical class is proved in Lemma 4.1. The
minimality claims are trivial if H2(X)G is of rank 1. For the case
rankH2(X)G > 1, they follow from Lemma 4.1, Lemma 4.2 for N ≥ 5
and N 6= 6; and Lemma 2.7 for N = 6. Theorem 1.3 implies these are
the only cases to consider. Combining these results with Theorem 3.8 of
[6], we cover the case (2) of minimal complex rational G-surfaces.q.e.d.

In Theorem 2.8, the case of complex rational G-surface admits an
alternative proof, which we sketch it here. Let X be a minimal complex
rational G-surface which is CP2 blown up at 6 points, and assume X is a
conic bundle. Then by Proposition 5.2 of [6], X must be Del Pezzo, and
hence has a G-invariant monotone Kähler form ω. Part (1) of Lemma
4.3 below implies there are two distinct fiber classes in H2(X)G, but
N = 6 contradicts part (2) of the lemma.

We now turn to the proof of Theorem 1.12. Fixing the canonical class
Kω0 , we recall that F ∈ H2(X)G is called a fiber class if it is the class
of the fibers of a symplectic G-conic bundle on X for some G-invariant
symplectic form ω with Kω = Kω0 .

Lemma 4.3. Suppose H2(X)G has rank 2.

(1) If X admits a G-invariant monotone symplectic form, then there
are at least two distinct fiber classes in H2(X)G.

(2) Suppose F, F ′ ∈ H2(X)G are distinct fiber classes. Then F + F ′ =
−aKω0 for some integer a > 0, and N = 5, 7 or 8 where a =
1, 2, 4 respectively. In particular, there are at most two distinct fiber
classes in H2(X)G.

Proof. To prove (1), let ω be a G-invariant monotone form on X, and
let F be the fiber class of the G-conic bundle structure obtained from
Theorem 1.3. Pick a G-invariant closed 2-form η representing F . Then
for sufficiently small ε 6= 0, the G-invariant symplectic form ω′ := ω+εη
is non-monotone, and the symplectic G-manifold (X,ω′) is minimal (as
shown in the proof of Theorem 1.3). By Theorem 1.3, (X,ω′) admits
a symplectic G-conic bundle with small fiber. An easy check with the
symplectic areas shows that for ε > 0, the small fiber class (whose area is
twice the minimal exceptional spheres) of the symplectic G-conic bundle
equals F , but for ε < 0, it is not F .

To prove (2), let ω, ω′ be the G-invariant symplectic forms associ-
ated with the symplectic G-conic bundles whose fiber classes are F, F ′

respectively. For simplicity, we set K = Kω0 .
Write

(11) F ′ = −aK + bF,
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for some a, b ∈ Z. Note that K · F = K · F ′ = −2, F 2 = (F ′)2 = 0, and
the assumption that F 6= F ′ implies a 6= 0. Then by pairing (11) with
K, F and F ′, respectively, one has −aK2 = −4 and b = −1. Therefore,
a and K2 are both divisors of 4, and F + F ′ = −aK.

We claim 2a = F · F ′ ≥ 0, which implies a > 0 and N = 5, 7, 8.
The point is that F can be represented by an embedded J-holomorphic
sphere V with V 2 = 0, where J is ω-compatible. Since Kω = Kω′ , this
fact implies the Gromov-Witten invariant of F ′ is nontrivial, hence F ′

can be represented by a stable J-holomorphic curves, from which our
claim F · F ′ ≥ 0 follows easily.

q.e.d.

Lemma 4.4. Suppose G0 is nontrivial. Then there is a unique fiber
class.

Proof. We note first that the 2-dimensional fixed point set of G0

consists of two embedded 2-spheres S1, S2 , each with self-intersection
−(N − 1)/2 (in particular, N must be odd). Suppose to the contrary
that there are two distinct fiber classes F, F ′. Then S1 (and S2) is
a J-holomorphic section of the corresponding symplectic G-conic bun-
dles with fiber classes F, F ′, for an appropriate ω or ω′-compatible G-
invariant J . This implies that S1 ·F = S1 ·F ′ = 1. On the other hand, by
Lemma 4.3, F+F ′ = −aKω0 for some a > 0, implying that Kω0 ·S1 < 0.
This violates the adjunction formula because S2

1 = −(N − 1)/2 ≤ −2,
and Kω = Kω′ = Kω0 .

q.e.d.

Proof of Theorem 1.12

Part (1) and part (2) follow immediately from Lemma 4.3 and Lemma
4.4, and the proof of Theorem 1.3. In the case (2) when there is a unique
fiber class F for theG-conic bundle, anyG-invariant symplectic form has
the form (3H−E1−· · ·−Em)+bF . From Theorem 1.3, ω(E1) ≥ ω(Ek),
hence b ≥ 0. This also shows C(X,G,F ) ∪ C(X,G,F ′) = C(X,G).

To see that C(X,G,F ) ∩ C(X,G,F ′) is either empty or consists of
classes of G-invariant monotone symplectic forms, let [ω] ∈ C(X,G,F )
and [ω′] ∈ C(X,G,F ′) such that [ω] = [ω′]. Then [ω] = −aKω0 + bF ,
[ω′] = −a′Kω0 + b′F ′, where a, a′ > 0 and b, b′ ≥ 0. If both b, b′ are non-
zero, then [ω] = [ω′], together with the fact that F +F ′ is a multiple of
Kω0 (cf. Lemma 4.3), would imply that F, F ′ are linearly dependent, a
contradiction.

To see (3), first we note that if [ω] ∈ Ĉ(X,G,F ), then for any δ >

δω,F , there is an ω′ ∈ Ω(X,G) such that [ω′] ∈ Ĉ(X,G,F ) with δω′,F =
δ. We can simply take ω′ := ω+ (δ− δω,F )π∗η, where π is a symplectic
G-conic bundle on (X,ω) with fiber class F , and η is an area form
on the base of π with total area 1. Secondly, if δX,G,F > 0, then it
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can not be attained. Suppose to the contrary that there is an ω such
that δω,F = δX,G,F . Then take 0 < ε < δX,G,F sufficiently small, the
G-invariant form ω′ := ω − εη, where η is a G-invariant closed 2-form
representing F , is a symplectic form. The condition ε < δX,G,F implies

that [ω′] ∈ Ĉ(X,G,F ), which contradicts the definition of δX,G,F .

We end this section with a uniqueness result on the subgroup Q from
Definition 1.7.

Proposition 4.5. Suppose (X,G) has a unique fiber class F . Then
the normal subgroup Q of G is uniquely determined, i.e., it is indepen-
dent of ω ∈ Ω(X,G), nor the symplectic G-conic bundle structure on
(X,ω) involved in the definition of Q.

Proof. Let ω, ω′ ∈ Ω(X,G), and let π, π′ be symplectic G-conic bun-
dles with fiber class F , and let Q,Q′ be the subgroups of G defined using
π, π′ respectively. Let H,E1, · · · , EN and H ′, E′1, · · · , E′N be a reduced
basis associated to π, π′ respectively.

Let Q(H,Ei) = {g ∈ G|g · Ej = Ej or H − E1 − Ej}. We claim
Q = Q(H,Ei). First, it is clear thatQ ⊂ Q(H,Ei). Secondly, if g ∈ Q(H,Ei),
then g leaves each singular fiber invariant. Since the number of singular
fibers is N − 1 which is greater than 3, the induced action of g on the
base S2 has at least 3 fixed points. This implies that the action of g
on the base must be trivial, and g ∈ Q. Hence Q = Q(H,Ei). Similarly,
Q′ = Q(H′,E′

i)
.

If we normalize so that ω(F ) = ω′(F ) = 2, then for each j = 2, · · · , N ,
ω(E′j) = ω′(Ej) = 1 also. In particular, H ′, E′1, · · · , E′N is a reduced

basis for (X,ω). By Lemma 2.6, and the fact that ω is not monotone,
we have, for each j > 1, E′j = Ek or H − E1 − Ek for some k > 1. It

follows that H ′−E′1−E′j = H−E1−Ek or Ek for the same k. From these

relations we see immediately that Q(H,Ei) = Q(H′,E′
i)

. Hence Q = Q′.
q.e.d.
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