HOMEWORK 4 ## SUPPLEMENTARY PROBLEMS - 1. Let $S \subset \mathbb{R}^3$ be a regular surface and let g be a Riemannian metric on S. Investigate how the Christoffel Symbols Γ^k_{ij} , and Riemann curvature tensor R^l_{ijk} , and the Gauss curvature K change under the following change of g, i.e., replacing g by the scalar multiple $r \cdot g$, where r > 0 is a constant. - 2. Let $S \subset \mathbb{R}^3$ be a regular surface and let g be a Riemannian metric on S. Let (U, F, V) be a local parametrization. We define for i, j = 1, 2, $$g_{ij}(u) = g_{F(u)}(\frac{\partial F}{\partial u^i}, \frac{\partial F}{\partial u^j}), \text{ where } u \in U.$$ Let R^l_{ijk} be defined by the formula $R(\frac{\partial F}{\partial u^i}, \frac{\partial F}{\partial u^j}) \frac{\partial F}{\partial u^k} = \sum_{l=1}^2 R^l_{ijk} \frac{\partial F}{\partial u^l}$. Then prove that the Gauss curvature K satisfies $$K = \frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} g^{jk} R_{ijk}^{i},$$ where (g^{ij}) is the inverse of the 2×2 matrix (g_{ij}) .