Hurwitz-type Theorems for Automorphisms of Smooth 4-manifolds

Weimin Chen

Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA 01003, USA

Max Planck Institute for Mathematics, Bonn
July 31, 2014
Theorem (Hurwitz, 1893) Let C be a complex curve of genus $g \geq 2$. Then the automorphism group $\text{Aut}(C)$ satisfies

$$|\text{Aut}(C)| \leq 84(g - 1) = 42 \deg K_C.$$

Furthermore, the bound $84(g - 1)$ is optimal.

A complex curve C is called a Hurwitz curve if the bound is attained (i.e., $|\text{Aut}(C)| = 84(g - 1)$). In this case, the corresponding automorphism group $\text{Aut}(C)$ is called a Hurwitz group.
Theorem (Hurwitz, 1893) Let C be a complex curve of genus $g \geq 2$. Then the automorphism group $\text{Aut}(C)$ satisfies

$$|\text{Aut}(C)| \leq 84(g - 1) = 42 \deg K_C.$$

Furthermore, the bound $84(g - 1)$ is optimal.

A complex curve C is called a Hurwitz curve if the bound is attained (i.e., $|\text{Aut}(C)| = 84(g - 1)$). In this case, the corresponding automorphism group $\text{Aut}(C)$ is called a Hurwitz group.
Some Examples

The Hurwitz curve of the smallest genus is given by the Klein quartic C_{Klein}, which has genus 3. Furthermore,

$$\text{Aut}(C_{Klein}) \cong PSL(2,7),$$

which is the unique simple group of order 168.

Note: $168 = 84(3 - 1)$.

A projective model of C_{Klein}: $xy^3 + yz^3 + zx^3 = 0$. (Klein, 1878)

The next Hurwitz curve has genus 7, which is called the Macbeath curve, with automorphism group $PSL(2,8)$ of order 504. The next smallest Hurwitz group has order 1092, with three distinct Hurwitz curves of genus 14 (called the first Hurwitz triplet). There are infinitely many Hurwitz groups (e.g., the alternating groups A_n are Hurwitz groups for large n).
Some Examples

The Hurwitz curve of the smallest genus is given by the Klein quartic C_{Klein}, which has genus 3. Furthermore,

$$\text{Aut}(C_{Klein}) \cong \text{PSL}(2, 7),$$

which is the unique simple group of order 168.

Note: $168 = 84(3 - 1)$.

A projective model of C_{Klein}: $xy^3 + yz^3 + zx^3 = 0$. (Klein, 1878)

The next Hurwitz curve has genus 7, which is called the Macbeath curve, with automorphism group $\text{PSL}(2, 8)$ of order 504. The next smallest Hurwitz group has order 1092, with three distinct Hurwitz curves of genus 14 (called the first Hurwitz triplet). There are infinitely many Hurwitz groups (e.g., the alternating groups A_n are Hurwitz groups for large n).
Some Examples

The Hurwitz curve of the smallest genus is given by the Klein quartic C_{Klein}, which has genus 3. Furthermore,

$$\text{Aut}(C_{Klein}) \cong PSL(2, 7),$$

which is the unique simple group of order 168.

Note: $168 = 84(3 - 1)$.

A projective model of C_{Klein}: $xy^3 + yz^3 + zx^3 = 0$. (Klein, 1878)

The next Hurwitz curve has genus 7, which is called the Macbeath curve, with automorphism group $PSL(2, 8)$ of order 504. The next smallest Hurwitz group has order 1092, with three distinct Hurwitz curves of genus 14 (called the first Hurwitz triplet). There are infinitely many Hurwitz groups (e.g., the alternating groups A_n are Hurwitz groups for large n).
Some Examples

The Hurwitz curve of the smallest genus is given by the Klein quartic C_{Klein}, which has genus 3. Furthermore,

$$\text{Aut}(C_{\text{Klein}}) \cong PSL(2, 7),$$

which is the unique simple group of order 168.

Note: $168 = 84(3 - 1)$.

A projective model of C_{Klein}: $xy^3 + yz^3 + zx^3 = 0$. (Klein, 1878)

The next Hurwitz curve has genus 7, which is called the Macbeath curve, with automorphism group $PSL(2, 8)$ of order 504. The next smallest Hurwitz group has order 1092, with three distinct Hurwitz curves of genus 14 (called the first Hurwitz triplet). There are infinitely many Hurwitz groups (e.g., the alternating groups A_n are Hurwitz groups for large n).
Generalization of Hurwitz’s theorem to complex surfaces

Theorem (G. Xiao, 1994, 1995) Let X be a minimal complex surface of general type. Then

$$|Aut(X)| \leq (42)^2 c_1^2(K_X).$$

Remarks 1. The bound is optimal: let C be a Hurwitz curve, then $X = C \times C$ attains the bound because

$$|Aut(C \times C)| = 2 \cdot |Aut(C)|^2, \quad c_1^2(K_{C \times C}) = 2 \cdot (\deg K_C)^2.$$

Generalization of Hurwitz’s theorem to complex surfaces

Theorem (G. Xiao, 1994, 1995) Let X be a minimal complex surface of general type. Then

$$|\text{Aut}(X)| \leq (42)^2 c_1^2(K_X).$$

Remarks

1. The bound is optimal: let C be a Hurwitz curve, then $X = C \times C$ attains the bound because

$$|\text{Aut}(C \times C)| = 2 \cdot |\text{Aut}(C)|^2, \quad c_1^2(K_{C \times C}) = 2 \cdot (\text{deg}K_C)^2.$$

Generalization of Hurwitz’s theorem to complex surfaces

Theorem (G. Xiao, 1994, 1995) Let X be a minimal complex surface of general type. Then

$$|\text{Aut}(X)| \leq (42)^2 c_1^2(K_X).$$

Remarks

1. The bound is optimal: let C be a Hurwitz curve, then $X = C \times C$ attains the bound because

$$|\text{Aut}(C \times C)| = 2 \cdot |\text{Aut}(C)|^2, \quad c_1^2(K_{C \times C}) = 2 \cdot (\text{deg}K_C)^2.$$

Generalization of Hurwitz’s theorem to complex surfaces

Theorem (G. Xiao, 1994, 1995) Let X be a minimal complex surface of general type. Then

$$|\text{Aut}(X)| \leq (42)^2 c_1^2(K_X).$$

Remarks

1. The bound is optimal: let C be a Hurwitz curve, then $X = C \times C$ attains the bound because

$$|\text{Aut}(C \times C)| = 2 \cdot |\text{Aut}(C)|^2, \quad c_1^2(K_{C \times C}) = 2 \cdot (\deg K_C)^2.$$

Topological version of Hurwitz’s theorem

Theorem: Let G be a finite group acting on an orientable surface of genus $g \geq 2$ by orientation-preserving homeomorphisms. Then

$$|G| \leq 84(g - 1).$$

Topological version of Xiao’s theorem?

1. In Xiao’s theorem, the bound $(42)^2 c_1^2(K_X)$ is topological:

$$c_1^2(K_X) = 2\chi(X) + 3 \text{Sign}(X) \leq 5(1 + b_1(X) + b_2(X)).$$

2. Two distinct categories and four distinct classes of 4-manifolds:

$$\{\text{Topological}\} > \{\text{Smooth}\} > \{\text{Symplectic}\} > \{\text{Kähler}\}.$$
Topological version of Hurwitz’s theorem

Theorem: Let G be a finite group acting on an orientable surface of genus $g \geq 2$ by orientation-preserving homeomorphisms. Then

$$|G| \leq 84(g - 1).$$

Topological version of Xiao’s theorem?

1. In Xiao’s theorem, the bound $(42)^2 c_1^2(K_X)$ is topological:

$$c_1^2(K_X) = 2\chi(X) + 3 \text{ Sign}(X) \leq 5(1 + b_1(X) + b_2(X)).$$

2. Two distinct categories and four distinct classes of 4-manifolds:

$$\{\text{Topological}\} > \{\text{Smooth}\} > \{\text{Symplectic}\} > \{\text{Kähler}\}.$$
Topological version of Hurwitz’s theorem

Theorem: Let G be a finite group acting on an orientable surface of genus $g \geq 2$ by orientation-preserving homeomorphisms. Then

$$|G| \leq 84(g - 1).$$

Topological version of Xiao’s theorem?

1. In Xiao’s theorem, the bound $(42)^2 c_1^2(K_X)$ is topological:

$$c_1^2(K_X) = 2\chi(X) + 3 \text{Sign}(X) \leq 5(1 + b_1(X) + b_2(X)).$$

2. Two distinct categories and four distinct classes of 4-manifolds:

$$\{\text{Topological}\} > \{\text{Smooth}\} > \{\text{Symplectic}\} > \{\text{Kähler}\}.$$
Topological version of Hurwitz’s theorem

Theorem: Let G be a finite group acting on an orientable surface of genus $g \geq 2$ by orientation-preserving homeomorphisms. Then

$$|G| \leq 84(g - 1).$$

Topological version of Xiao’s theorem?

1. In Xiao’s theorem, the bound $(42)^2 c_1^2(K_X)$ is topological:

$$c_1^2(K_X) = 2\chi(X) + 3 \text{Sign}(X) \leq 5(1 + b_1(X) + b_2(X)).$$

2. Two distinct categories and four distinct classes of 4-manifolds:

$$\{\text{Topological}\} > \{\text{Smooth}\} > \{\text{Symplectic}\} > \{\text{Kähler}\}.$$
The Topological version of Hurwitz’s theorem

Theorem: Let G be a finite group acting on an orientable surface of genus $g \geq 2$ by orientation-preserving homeomorphisms. Then

$$|G| \leq 84(g - 1).$$

The Topological version of Xiao’s theorem?

1. In Xiao’s theorem, the bound $(42)^2 c_1^2(K_X)$ is topological:

$$c_1^2(K_X) = 2\chi(X) + 3 \text{Sign}(X) \leq 5(1 + b_1(X) + b_2(X)).$$

2. Two distinct categories and four distinct classes of 4-manifolds:

$${\text{Topological}} > {\text{Smooth}} > {\text{Symplectic}} > {\text{Kähler}}.$$
Our Goal: Generalizations of Xiao’s theorem to symplectic 4-manifolds, or even more generally, to smooth 4-manifolds.

A smooth, oriented 4-manifold X is called symplectic if it admits a symplectic structure ω, i.e., a closed, non-degenerate 2-form, such that ω^2 orients the manifold. Kähler surfaces are natural examples of symplectic 4-manifolds, with the Kähler form being the symplectic structure. Symplectic 4-manifolds are prominent in the study of differential topology in dimension 4.

Reformulation of Xiao’s theorem: two issues

1. The automorphism group $\text{Aut}(X)$ needs to be replaced by a finite group G acting on X.

2. The "general type" condition – an appropriate substitute needed.
Our Goal: Generalizations of Xiao’s theorem to symplectic 4-manifolds, or even more generally, to smooth 4-manifolds.

A smooth, oriented 4-manifold X is called symplectic if it admits a symplectic structure ω, i.e., a closed, non-degenerate 2-form, such that ω^2 orients the manifold. Kähler surfaces are natural examples of symplectic 4-manifolds, with the Kähler form being the symplectic structure. Symplectic 4-manifolds are prominent in the study of differential topology in dimension 4.

Reformulation of Xiao’s theorem: two issues

1. The automorphism group $\text{Aut}(X)$ needs to be replaced by a finite group G acting on X.

2. The "general type" condition – an appropriate substitute needed.
Our Goal: Generalizations of Xiao’s theorem to symplectic 4-manifolds, or even more generally, to smooth 4-manifolds.

A smooth, oriented 4-manifold X is called **symplectic** if it admits a symplectic structure ω, i.e., a closed, non-degenerate 2-form, such that ω^2 orients the manifold. Kähler surfaces are natural examples of symplectic 4-manifolds, with the Kähler form being the symplectic structure. Symplectic 4-manifolds are prominent in the study of differential topology in dimension 4.

Reformulation of Xiao’s theorem: two issues

1. The automorphism group $\text{Aut}(X)$ needs to be replaced by a finite group G acting on X.

2. The "general type" condition – an appropriate substitute needed.
Our Goal: Generalizations of Xiao’s theorem to symplectic 4-manifolds, or even more generally, to smooth 4-manifolds.

A smooth, oriented 4-manifold X is called symplectic if it admits a symplectic structure ω, i.e., a closed, non-degenerate 2-form, such that ω^2 orients the manifold. Kähler surfaces are natural examples of symplectic 4-manifolds, with the Kähler form being the symplectic structure. Symplectic 4-manifolds are prominent in the study of differential topology in dimension 4.

Reformulation of Xiao’s theorem: two issues

1. The automorphism group $\text{Aut}(X)$ needs to be replaced by a finite group G acting on X.

2. The "general type" condition – an appropriate substitute needed.
Our Goal: Generalizations of Xiao’s theorem to symplectic 4-manifolds, or even more generally, to smooth 4-manifolds.

A smooth, oriented 4-manifold \(X \) is called \textit{symplectic} if it admits a symplectic structure \(\omega \), i.e., a closed, non-degenerate 2-form, such that \(\omega^2 \) orients the manifold. Kähler surfaces are natural examples of symplectic 4-manifolds, with the Kähler form being the symplectic structure. Symplectic 4-manifolds are prominent in the study of differential topology in dimension 4.

Reformulation of Xiao’s theorem: two issues

1. The automorphism group \(\text{Aut}(X) \) needs to be replaced by a finite group \(G \) acting on \(X \).

2. The "general type" condition – an appropriate substitute needed.

Kodaira dimension of symplectic 4-manifolds: Let \((X, \omega)\) be a symplectic 4-manifold and let \((X_{\text{min}}, \omega_{\text{min}})\) be a symplectic minimal model of \((X, \omega)\). Then the Kodaira dimension \(\kappa(X, \omega)\) is defined as follows according to the following four possibilities:

\[
\kappa(X, \omega) = \begin{cases}
-\infty & \text{if } K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] < 0 \text{ or } K_{X_{\text{min}}}^2 < 0 \\
0 & \text{if } K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] = 0 \text{ and } K_{X_{\text{min}}}^2 = 0 \\
1 & \text{if } K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] > 0 \text{ and } K_{X_{\text{min}}}^2 = 0 \\
2 & \text{if } K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] > 0 \text{ and } K_{X_{\text{min}}}^2 > 0.
\end{cases}
\]

Theorem (Consequence of Taubes’ "SW=Gr"): \(\kappa(X, \omega)\) is well-defined, coincides with the complex version when \((X, \omega)\) is Kähler, and depends only on the diffeomorphism type of \(X\).

Kodaira dimension of symplectic 4-manifolds: Let \((X, \omega)\) be a symplectic 4-manifold and let \((X_{\text{min}}, \omega_{\text{min}})\) be a symplectic minimal model of \((X, \omega)\). Then the Kodaira dimension \(\kappa(X, \omega)\) is defined as follows according to the following four possibilities:

\[
\kappa(X, \omega) = \begin{cases}
-\infty & K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] < 0 \text{ or } K_{X_{\text{min}}}^2 < 0 \\
0 & K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] = 0 \text{ and } K_{X_{\text{min}}}^2 = 0 \\
1 & K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] > 0 \text{ and } K_{X_{\text{min}}}^2 = 0 \\
2 & K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] > 0 \text{ and } K_{X_{\text{min}}}^2 > 0.
\end{cases}
\]

Theorem (Consequence of Taubes' "SW=Gr"): \(\kappa(X, \omega)\) is well-defined, coincides with the complex version when \((X, \omega)\) is Kähler, and depends only on the diffeomorphism type of \(X\).

Kodaira dimension of symplectic 4-manifolds: Let (X, ω) be a symplectic 4-manifold and let $(X_{\text{min}}, \omega_{\text{min}})$ be a symplectic minimal model of (X, ω). Then the Kodaira dimension $\kappa(X, \omega)$ is defined as follows according to the following four possibilities:

$$
\kappa(X, \omega) = \begin{cases}
-\infty & K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] < 0 \text{ or } K_{X_{\text{min}}}^2 < 0 \\
0 & K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] = 0 \text{ and } K_{X_{\text{min}}}^2 = 0 \\
1 & K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] > 0 \text{ and } K_{X_{\text{min}}}^2 = 0 \\
2 & K_{X_{\text{min}}} \cdot [\omega_{\text{min}}] > 0 \text{ and } K_{X_{\text{min}}}^2 > 0.
\end{cases}
$$

Theorem (Consequence of Taubes' "SW=Gr"): $\kappa(X, \omega)$ is well-defined, coincides with the complex version when (X, ω) is Kähler, and depends only on the diffeomorphism type of X.

Weimin Chen
Hurwitz-type Theorems for Automorphisms of Smooth 4-manifolds
Question 1 (symplectic Hurwitz-Xiao): Let \((X, \omega)\) be a minimal symplectic 4-manifold with \(\kappa(X, \omega) = 2\), and let \(G\) be a finite group acting on \(X\) symplectically, i.e., preserving \(\omega\). Is there a universal constant \(c > 0\) such that

\[|G| \leq c \cdot c_1^2(K_X)? \]

Some evidence

Fact: Let \((X, \omega)\) be a symplectic 4-manifold, and suppose the circle group \(S^1\) embeds in the symplectomorphism group \(\text{Symp}(X, \omega)\). Then

\[\kappa(X, \omega) < 2. \]

(This follows from work of D. McDuff, Y. Karshon, and others.)
Question 1 (symplectic Hurwitz-Xiao): Let \((X, \omega)\) be a minimal symplectic 4-manifold with \(\kappa(X, \omega) = 2\), and let \(G\) be a finite group acting on \(X\) symplectically, i.e., preserving \(\omega\). Is there a universal constant \(c > 0\) such that

\[
|G| \leq c \cdot c_1^2(K_X)?
\]

Some evidence

Fact: Let \((X, \omega)\) be a symplectic 4-manifold, and suppose the circle group \(S^1\) embeds in the symplectomorphism group \(\text{Symp}(X, \omega)\). Then

\[
\kappa(X, \omega) < 2.
\]

(This follows from work of D. McDuff, Y. Karshon, and others.)
Question 1 (symplectic Hurwitz-Xiao): Let \((X, \omega)\) be a minimal symplectic 4-manifold with \(\kappa(X, \omega) = 2\), and let \(G\) be a finite group acting on \(X\) symplectically, i.e., preserving \(\omega\). Is there a universal constant \(c > 0\) such that

\[|G| \leq c \cdot c_1^2(K_X)? \]

Some evidence

Fact: Let \((X, \omega)\) be a symplectic 4-manifold, and suppose the circle group \(S^1\) embeds in the symplectomorphism group \(\text{Symp}(X, \omega)\). Then

\[\kappa(X, \omega) < 2. \]

(This follows from work of D. McDuff, Y. Karshon, and others.)

Question 2 (smooth Hurwitz-Xiao): Let X be a smooth 4-manifold which supports no smooth S^1-actions. Is there a constant $C > 0$ such that there are no smooth \mathbb{Z}_p-actions of prime order on X for $p > C$?

Remarks: 1. We will call such a constant C a Hurwitz-type bound for smooth \mathbb{Z}_p-actions. Besides its existence, it is also an interesting question as what structures of X, e.g., homology, homotopy, smooth structure, etc., a Hurwitz-type bound may depend on.

2. No Hurwitz-type bound exists for locally linear, topological \mathbb{Z}_p-actions on 4-manifolds (this follows from work of R. Fintushel and A. Edmonds).

Question 2 (smooth Hurwitz-Xiao): Let X be a smooth 4-manifold which supports no smooth S^1-actions. Is there a constant $C > 0$ such that there are no smooth \mathbb{Z}_p-actions of prime order on X for $p > C$?

Remarks: 1. We will call such a constant C a Hurwitz-type bound for smooth \mathbb{Z}_p-actions. Besides its existence, it is also an interesting question as what structures of X, e.g., homology, homotopy, smooth structure, etc., a Hurwitz-type bound may depend on.

2. No Hurwitz-type bound exists for locally linear, topological \mathbb{Z}_p-actions on 4-manifolds (this follows from work of R. Fintushel and A. Edmonds).

Question 2 (smooth Hurwitz-Xiao): Let X be a smooth 4-manifold which supports no smooth S^1-actions. Is there a constant $C > 0$ such that there are no smooth Z_p-actions of prime order on X for $p > C$?

Remarks: 1. We will call such a constant C a Hurwitz-type bound for smooth Z_p-actions. Besides its existence, it is also an interesting question as what structures of X, e.g., homology, homotopy, smooth structure, etc., a Hurwitz-type bound may depend on.

2. No Hurwitz-type bound exists for locally linear, topological Z_p-actions on 4-manifolds (this follows from work of R. Fintushel and A. Edmonds).

Question 2 (smooth Hurwitz-Xiao): Let X be a smooth 4-manifold which supports no smooth S^1-actions. Is there a constant $C > 0$ such that there are no smooth \mathbb{Z}_p-actions of prime order on X for $p > C$?

Remarks: 1. We will call such a constant C a Hurwitz-type bound for smooth \mathbb{Z}_p-actions. Besides its existence, it is also an interesting question as what structures of X, e.g., homology, homotopy, smooth structure, etc., a Hurwitz-type bound may depend on.

2. No Hurwitz-type bound exists for locally linear, topological \mathbb{Z}_p-actions on 4-manifolds (this follows from work of R. Fintushel and A. Edmonds).
Theorem (Chen, 2011) Let X be a compact complex surface with $b_2^+(X) > 0$ which does not admit any smooth S^1-actions. Then for any holomorphic Z_p-actions of prime order on X, the order p obeys

$$p \leq C := c \cdot (1 + b_1(X) + b_2(X) + |\text{Tor } H_2(X)|),$$

where $c > 0$ is a universal constant.

Theorem (Chen, 2011) For any prime number $p > 3$, there is a symplectic 4-manifold X_p with the following properties:
- X_p is homeomorphic to $CP^2 \# 9(-CP^2)$;
- X_p supports no smooth S^1-actions;
- X_p admits a symplectic Z_p-action.

Remarks: There exists a symplectic structure ω_p on X_p with $[\omega_p] \in H^2_{dR}(X_p)$ integral, such that $K_{X_p} \cdot [\omega_p] \geq 2p - 1$.
Theorem (Chen, 2011) Let X be a compact complex surface with $b_2^+(X) > 0$ which does not admit any smooth S^1-actions. Then for any holomorphic Z_p-actions of prime order on X, the order p obeys

$$p \leq C := c \cdot (1 + b_1(X) + b_2(X) + |\text{Tor } H_2(X)|),$$

where $c > 0$ is a universal constant.

Theorem (Chen, 2011) For any prime number $p > 3$, there is a symplectic 4-manifold X_p with the following properties:

- X_p is homeomorphic to $CP^2 \# 9(-CP^2)$;
- X_p supports no smooth S^1-actions;
- X_p admits a symplectic Z_p-action.

Remarks: There exists a symplectic structure ω_p on X_p with $[\omega_p] \in H^2_{dR}(X_p)$ integral, such that $K_{X_p} \cdot [\omega_p] \geq 2p - 1$.

Theorem (Chen, 2011) Let X be a compact complex surface with $b_2^+(X) > 0$ which does not admit any smooth S^1-actions. Then for any holomorphic Z_p-actions of prime order on X, the order p obeys

$$p \leq C := c \cdot (1 + b_1(X) + b_2(X) + |\text{Tor } H_2(X)|),$$

where $c > 0$ is a universal constant.

Theorem (Chen, 2011) For any prime number $p > 3$, there is a symplectic 4-manifold X_p with the following properties:

- X_p is homeomorphic to $CP^2 \# 9(-CP^2)$;
- X_p supports no smooth S^1-actions;
- X_p admits a symplectic Z_p-action.

Remarks: There exists a symplectic structure ω_p on X_p with $[\omega_p] \in H^2_{dR}(X_p)$ integral, such that $K_{X_p} \cdot [\omega_p] \geq 2p - 1$.
Theorem (Chen, 2011): Let (X, ω) be a symplectic 4-manifold with $b_2^+(X) > 1$ and $[\omega] \in H^2_{dR}(X)$ integral, such that X is either non-minimal, or $\chi(X) \neq 0$, or $\text{sign}(X) \neq 0$. Then there exists a universal constant $c > 0$ such that for any symplectic \mathbb{Z}_p-action of prime order on (X, ω), the order p has the following bound:

$$p \leq c \cdot (1 + b_1^2(X) + b_2^2(X)) \cdot (K_X \cdot [\omega])^2.$$

Remarks:

1. The above bound is weaker than the one in the symplectic Hurwitz-Xiao (i.e., Question 1), but it is valid under a weaker assumption.

2. The symplectic Hurwitz-Xiao (i.e. Question 1) is still open: the examples of symplectic 4-manifolds (X_p, ω_p) mentioned earlier do not give counterexamples because $\kappa(X_p, \omega_p) = 1$, and furthermore, these examples show that the condition $\kappa(X, \omega) = 2$ is necessary.
Theorem (Chen, 2011): Let \((X, \omega)\) be a symplectic 4-manifold with \(b^+_2(X) > 1\) and \([\omega] \in H^2_{dR}(X)\) integral, such that \(X\) is either non-minimal, or \(\chi(X) \neq 0\), or \(\text{sign}(X) \neq 0\). Then there exists a universal constant \(c > 0\) such that for any symplectic \(Z_p\)-action of prime order on \((X, \omega)\), the order \(p\) has the following bound:

\[
p \leq c \cdot (1 + b^2_1(X) + b^2_2(X)) \cdot (K_X \cdot [\omega])^2.
\]

Remarks: 1. The above bound is weaker than the one in the symplectic Hurwitz-Xiao (i.e., Question 1), but it is valid under a weaker assumption.

2. The symplectic Hurwitz-Xiao (i.e. Question 1) is still open: the examples of symplectic 4-manifolds \((X_p, \omega_p)\) mentioned earlier do not give counterexamples because \(\kappa(X_p, \omega_p) = 1\), and furthermore, these examples show that the condition \(\kappa(X, \omega) = 2\) is necessary.
Theorem (Chen, 2011): Let (X, ω) be a symplectic 4-manifold with $b_2^+(X) > 1$ and $[\omega] \in H_{dR}^2(X)$ integral, such that X is either non-minimal, or $\chi(X) \neq 0$, or $\text{sign}(X) \neq 0$. Then there exists a universal constant $c > 0$ such that for any symplectic \mathbb{Z}_p-action of prime order on (X, ω), the order p has the following bound:

$$p \leq c \cdot (1 + b_1^2(X) + b_2^2(X)) \cdot (K_X \cdot [\omega])^2.$$

Remarks: 1. The above bound is weaker than the one in the symplectic Hurwitz-Xiao (i.e., Question 1), but it is valid under a weaker assumption.

2. The symplectic Hurwitz-Xiao (i.e. Question 1) is still open: the examples of symplectic 4-manifolds (X_p, ω_p) mentioned earlier do not give counterexamples because $\kappa(X_p, \omega_p) = 1$, and furthermore, these examples show that the condition $\kappa(X, \omega) = 2$ is necessary.
Theorem (Chen, 2014) For each integer $n > 1$, there is a smooth 4-manifold X_n which has the following properties.

- X_n has the same integral homology, intersection form and Seiberg-Witten invariant as the Kodaira-Thurston manifold;
- X_n supports no smooth S^1-actions;
- X_n admits a smooth Z_n-action.

Remarks: 1. The Kodaira-Thurston manifold is the smooth 4-manifold $S^1 \times M^3$, where $M^3 = [0, 1] \times T^2 / \sim$ with $(0, x, y) \sim (1, x + y, y)$. It is a complex non-Kähler surface, and furthermore, it is a symplectic 4-manifold. In particular, it has nonzero Seiberg-Witten invariant.

2. From the construction, we know that the fundamental group $\pi_1(X_n)$ gets more and more complicated as $n \to \infty$.
Theorem (Chen, 2014) For each integer $n > 1$, there is a smooth 4-manifold X_n which has the following properties.

- X_n has the same integral homology, intersection form and Seiberg-Witten invariant as the Kodaira-Thurston manifold;
- X_n supports no smooth S^1-actions;
- X_n admits a smooth Z_n-action.

Remarks: 1. The Kodaira-Thurston manifold is the smooth 4-manifold $S^1 \times M^3$, where $M^3 = [0, 1] \times T^2/\sim$ with $(0, x, y) \sim (1, x + y, y)$. It is a complex non-Kähler surface, and furthermore, it is a symplectic 4-manifold. In particular, it has nonzero Seiberg-Witten invariant.

2. From the construction, we know that the fundamental group $\pi_1(X_n)$ gets more and more complicated as $n \to \infty$.
Theorem (Chen, 2014) For each integer \(n > 1 \), there is a smooth 4-manifold \(X_n \) which has the following properties.

- \(X_n \) has the same integral homology, intersection form and Seiberg-Witten invariant as the Kodaira-Thurston manifold;
- \(X_n \) supports no smooth \(S^1 \)-actions;
- \(X_n \) admits a smooth \(Z_n \)-action.

Remarks: 1. The Kodaira-Thurston manifold is the smooth 4-manifold \(S^1 \times M^3 \), where \(M^3 = [0, 1] \times T^2 / \sim \) with \((0, x, y) \sim (1, x + y, y)\). It is a complex non-Kähler surface, and furthermore, it is a symplectic 4-manifold. In particular, it has nonzero Seiberg-Witten invariant.

2. From the construction, we know that the fundamental group \(\pi_1(X_n) \) gets more and more complicated as \(n \to \infty \).
Continuous Symmetry versus Discrete Symmetry

Dimension $n = 3$:

Theorem (Freedman -Yau, 1983, Kojima, 1984): Let M be an orientable, compact closed 3-manifold which does not admit any S^1-action. Then the order of any finite group G acting smoothly on M is bounded by a constant depending only on M.

Remarks: The case of Haken manifolds, which is the key ingredient, was due to Freedman-Yau. Kojima proved the theorem under the assumption of Thurston’s Geometrization Conjecture, which is now resolved.
Continuous Symmetry versus Discrete Symmetry

Dimension \(n = 3 \):

Theorem (Freedman -Yau, 1983, Kojima, 1984): Let \(M \) be an orientable, compact closed 3-manifold which does not admit any \(S^1 \)-action. Then the order of any finite group \(G \) acting smoothly on \(M \) is bounded by a constant depending only on \(M \).

Remarks: The case of Haken manifolds, which is the key ingredient, was due to Freedman-Yau. Kojima proved the theorem under the assumption of Thurston’s Geometrization Conjecture, which is now resolved.
Continuous Symmetry versus Discrete Symmetry

Dimension $n = 3$:

Theorem (Freedman - Yau, 1983, Kojima, 1984): Let M be an orientable, compact closed 3-manifold which does not admit any S^1-action. Then the order of any finite group G acting smoothly on M is bounded by a constant depending only on M.

Remarks: The case of Haken manifolds, which is the key ingredient, was due to Freedman-Yau. Kojima proved the theorem under the assumption of Thurston’s Geometrization Conjecture, which is now resolved.
Dimensions $n > 4$:

Theorem (Assadi-Burghelea, 1981) Let Σ^n be an exotic n-sphere. Then the connected sum with the n-torus, $T^n \# \Sigma^n$, does not admit any smooth S^1-actions.

Construction: Let Σ^n be an exotic n-sphere of order $d > 1$, and let $X = T^n \# \Sigma^n$ be the smooth n-manifold, which supports no smooth S^1-actions. For any prime number $p \equiv 1 \pmod{d}$, we have

$$X \cong T^n \# p\Sigma^n,$$

which shows that X admits a smooth, free \mathbb{Z}_p-action. Note that by Dirichlet’s theorem, there are infinitely many prime numbers p satisfying the congruence relation $p \equiv 1 \pmod{d}$.

Weimin Chen

Hurwitz-type Theorems for Automorphisms of Smooth 4-manifolds
Theorem (Assadi-Burghelea, 1981) Let Σ^n be an exotic n-sphere. Then the connected sum with the n-torus, $T^n \# \Sigma^n$, does not admit any smooth S^1-actions.

Construction: Let Σ^n be an exotic n-sphere of order $d > 1$, and let $X = T^n \# \Sigma^n$ be the smooth n-manifold, which supports no smooth S^1-actions. For any prime number $p \equiv 1 \pmod{d}$, we have

$$X \cong T^n \# p \Sigma^n,$$

which shows that X admits a smooth, free \mathbb{Z}_p-action. Note that by Dirichlet’s theorem, there are infinitely many prime numbers p satisfying the congruence relation $p \equiv 1 \pmod{d}$.

Dimensions $n > 4$:

Theorem (Assadi-Burghelea, 1981) Let Σ^n be an exotic n-sphere. Then the connected sum with the n-torus, $T^n \# \Sigma^n$, does not admit any smooth S^1-actions.

Construction: Let Σ^n be an exotic n-sphere of order $d > 1$, and let $X = T^n \# \Sigma^n$ be the smooth n-manifold, which supports no smooth S^1-actions. For any prime number $p \equiv 1 \pmod{d}$, we have

$$X \cong T^n \# p \Sigma^n,$$

which shows that X admits a smooth, free \mathbb{Z}_p-action. Note that by Dirichlet’s theorem, there are infinitely many prime numbers p satisfying the congruence relation $p \equiv 1 \pmod{d}$.

Dimension $n = 4$:

Question 2’: Let X be a simply connected smoothable 4-manifold with even intersection form and non-zero signature. Is there a constant $C > 0$ depending only on the homeomorphism type of X, such that for any smoothable Z_p-actions of prime order on X, the order p satisfies $p \leq C$?

Remarks: By a theorem of Atiyah-Hirzebruch, a simply connected 4-manifold with even intersection form and non-zero signature does not support any smoothable S^1-actions.

Question 1: Let (X, ω) be a minimal symplectic 4-manifold with $\kappa(X, \omega) = 2$, and let G be a finite group acting on X symplectically, i.e., preserving ω. Is there a universal constant $c > 0$ such that

$$|G| \leq c \cdot c_1^2(K_X)?$$
Dimension $n = 4$:

Question 2’: Let X be a simply connected smoothable 4-manifold with even intersection form and non-zero signature. Is there a constant $C > 0$ depending only on the homeomorphism type of X, such that for any smoothable \mathbb{Z}_p-actions of prime order on X, the order p satisfies $p \leq C$?

Remarks: By a theorem of Atiyah-Hirzebruch, a simply connected 4-manifold with even intersection form and non-zero signature does not support any smoothable S^1-actions.

Question 1: Let (X,ω) be a minimal symplectic 4-manifold with $\kappa(X,\omega) = 2$, and let G be a finite group acting on X symplectically, i.e., preserving ω. Is there a universal constant $c > 0$ such that

$$|G| \leq c \cdot c_1^2(K_X)?$$
Dimension $n = 4$:

Question 2’: Let X be a simply connected smoothable 4-manifold with even intersection form and non-zero signature. Is there a constant $C > 0$ depending only on the homeomorphism type of X, such that for any smoothable \mathbb{Z}_p-actions of prime order on X, the order p satisfies $p \leq C$?

Remarks: By a theorem of Atiyah-Hirzebruch, a simply connected 4-manifold with even intersection form and non-zero signature does not support any smoothable S^1-actions.

Question 1: Let (X, ω) be a minimal symplectic 4-manifold with $\kappa(X, \omega) = 2$, and let G be a finite group acting on X symplectically, i.e., preserving ω. Is there a universal constant $c > 0$ such that

$$|G| \leq c \cdot c_1^2(K_X)?$$
Dimension \(n = 4 \):

Question 2’: Let \(X \) be a **simply connected** smoothable 4-manifold with even intersection form and non-zero signature. Is there a constant \(C > 0 \) depending only on the homeomorphism type of \(X \), such that for any smoothable \(\mathbb{Z}_p \)-actions of prime order on \(X \), the order \(p \) satisfies \(p \leq C \)?

Remarks: By a theorem of Atiyah-Hirzebruch, a simply connected 4-manifold with even intersection form and non-zero signature does not support any smoothable \(S^1 \)-actions.

Question 1: Let \((X, \omega) \) be a **minimal** symplectic 4-manifold with \(\kappa(X, \omega) = 2 \), and let \(G \) be a finite group acting on \(X \) symplectically, i.e., preserving \(\omega \). Is there a universal constant \(c > 0 \) such that

\[
|G| \leq c \cdot c_1^2(K_X)
\]
The End

Thank You!

Weimin Chen
Hurwitz-type Theorems for Automorphisms of Smooth 4-manifolds