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1. Basic notions and examples

Definition 1.1. (1) Let N be a (2n+ 1)-dimensional manifold, ξ ⊂ TN be a hyper-
plane distribution. We say ξ is a contact structure on N if for any p ∈ N , there
is a local defining 1-form α near p (i.e., ξ = kerα) such that dα|ξ is non-degenerate
(equivalently, α ∧ (dα)n 6= 0 near p). The pair (N, ξ) is called a contact manifold.
A contact structure ξ is called co-oriented if the line bundle TN/ξ is trivial and is
oriented. This condition is equivalent to the existence of a global defining 1-form α,
which is unique up to multiplication by a positive function. The 1-form α is called a
contact form associated to the contact structure ξ. A co-oriented contact structure
ξ (with a contact form α) is also canonically oriented by (dα)n, and determines a
canonical orientation on N by the volume form α ∧ (dα)n.

(2) Let ξ be a co-oriented contact structure on N , and α be a contact form associated
to ξ. The Reeb vector field is the vector field Rα on N uniquely determined by

iRαdα = 0, α(Rα) = 1.

Exercise: Let N be a (2n+ 1)-dimensional manifold where n is odd. Show that if
N admits a contact structure, then N must be orientable.

Exercise: Show that after passing to a double cover of N if necessary, every contact
structure on N can be made co-oriented.
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Example 1.2. (Euclidean spaces). Let x1, · · · , xn, y1, · · · , yn, z be the coordinates
on R2n+1. Then the hyperplane distribution ξ0 := kerα0, where

α0 = dz −
n∑
j=1

yjdxj

is a co-oriented contact structure on R2n+1, called the standard contact structure.
Let’s visualize ξ0 for the case of R3. Let x, y, z be the coordinates on R3. Then
α0 = dz − ydx. It is easily seen that

ξ0 =
⋃

(x,y,z)∈R3

{a∂y + b(∂x + y∂z)|a, b ∈ R}.

The associated Reeb vector field Rα0 = ∂
∂z .

Example 1.3. (1-jet bundles). Let L be a n-dimensional manifold, and let N :=
T ∗L× R be the 1-jet bundle over L. Then

α = dz − λ
is a contact form on N , where z is the coordinate on the R factor and λ is the canonical
1-form on the T ∗L factor. The associated Reeb vector field Rα = ∂

∂z .

Note that Example 1.2 is a special case of Example 1.3. The following exercise is
the general construction behind these two examples.

Exercise: Let (W,ω) be a symplectic manifold where ω = dλ. Let N := R ×W .
Show that α := dz + λ, where z is the coordinate on the R factor, is a contact form
on N . (Note a similar construction for N := S1 ×W .)

Example 1.4. (Principal S1-bundles). Let N be a circle bundle over Σ. Then for
any connection 1-form A ∈ Ω1(N ; iR) of the bundle, FA = dA descents to a 2-form
on Σ such that the first Chern class of the circle bundle π : N → Σ is represented by
iFA/2π. Now suppose that the first Chern class of the circle bundle π : N → Σ is
represented by a 2-form ω which is a symplectic structure on Σ. Then one can choose
a connection 1-form A such that FA = −2πiπ∗ω. We set

α := −iA.
Then α is a contact 1-form on N with dα = −2ππ∗ω. Note that the associated Reeb
vector field Rα is simply the vector field which generates the S1-action. One basic
example of the above construction is given by the Hopf fibration π : S2n+1 → CPn,
where the first Chern class is represented by the Kähler form of the Fubini-Study
metric on CPn.

Exercise: Let N be an oriented Seifert 3-manifold. Show that N admits a contact
structure ξ which is transversal to the fibers, invariant under the S1-action, and defines
a compatible orientation on N if and only if the Euler number of the Seifert fibration
on N is negative.

Example 1.5. (Space of contact elements) Let B be a n-dimensional manifold. A
contact element of B is a pair (b,Hb), where b ∈ B and Hb ⊂ TbB is a hyperplane.
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We let N be the space of contact elements of B. Then N is a naturally a (2n − 1)-
dimensional manifold, with a natural projection π : N → B sending (b,Hb) to b. The
fiber of π is diffeomorphic to RPn−1.

There is a natural (tautological) contact structure ξ on N , which is defined as
follows: for any p = (b,Hb) ∈ N , ξp ⊂ TpN is defined to be π−1

p,∗(Hb), where πp,∗ :
TpN → TbB is the differential of π : N → B at p. To see ξ is a contact structure,
we identify N naturally with P(T ∗B), the projectization of T ∗B, where (b,Hb) ∈ N
is identified with (b, [σb]) ∈ P(T ∗B). Here σb ∈ T ∗b B such that Hb = ker(σb), and
[σb] ∈ P(T ∗b B) is the corresponding element. With this understood, we regard ξ as a
hyperplane distribution of P(T ∗B). Now for any (b, [σb]) ∈ P(T ∗B), let q1, q2, · · · , qn
be local coordinates near b, let p1, p2, · · · , pn be the corresponding coordinates on the
cotangent spaces. Moreover, suppose σb = p1dq1 + p2dq2 + · · ·+ pndqn where p1 6= 0.
Then (q1, q2, · · · , qn, p2, · · · , pn) is a local coordinate system near (b, [σb]) where [σb] is
identified with dq1 + p2dq2 + · · ·+ pndqn. Then near (b, [σb]),

ξ = ker(dq1 + p2dq2 + · · ·+ pndqn),

from which it follows easily that ξ is a contact structure.

Exercise: In the above example,
(1) Show that the contact structure ξ on N is not co-oriented.
(2) For B = S2,T2, determine P(T ∗B) and describe the contact structure ξ on it.

Let (N, ξ) be a contact manifold. A diffeomorphism ψ ∈ Diff(N) is called a con-
tactomorphism if ψ preserves the hyperplane distribution ξ, i.e., ψ∗(ξ) = ξ. If ξ is
co-oriented, with a contact form α, then equivalently, ψ is a contactomorphism if there
is a smooth function h such that ψ∗α = ehα. A contact isotopy is a smooth family
ψt of contactomorphisms, t ∈ [0, 1], where ψ0 = id, ψ1 = ψ. In case ξ is co-oriented
with a contact form α, ψ∗tα = ehtα for a smooth family of functions ht.

Consider a time-dependent vector field Xt and suppose a smooth family of diffeo-
morphisms ψt is generated by Xt, i.e.,

d

dt
ψt = Xt ◦ ψt, ψ0 = id.

Lemma 1.6. Suppose ξ is co-oriented with contact form α. Then ψt is a contact
isotopy if and only if LXtα = gtα for some time-dependent smooth functions gt.

Proof. Suppose LXtα = gtα for some time-dependent smooth functions gt. Then

d

dt
ψ∗tα = ψ∗tLXtα = ψ∗t gt · ψ∗tα,

so that ψ∗tα = ehtα where ht =
∫ t

0 ψ
∗
sgsds. Hence ψt is a contact isotopy. Conversely,

if ψt is a contact isotopy with ψ∗tα = ehtα, then LXtα = gtα where gt = (ψ−1
t )∗ ddtht.

�

A vector field X on a contact manifold (N, ξ) is called a contact vector field
if LXα = gα for a contact form α associated to ξ, where g is a smooth function
on N . By Lemma 1.6, the (local) flow generated by a contact vector field X is a
(local) contact isotopy. Furthermore, the time-dependent vector field Xt generating



4 WEIMIN CHEN

any contact isotopy ψt is a contact vector field for each t. Note that the Reeb vector
field Rα is a contact vector field as LRαα = 0.

Lemma 1.7. Fix a contact form α. There is a 1-1 correspondence between contact
vector fields and smooth functions: for any smooth function H, the contact vector field
XH corresponding to H is given by

XH = H ·Rα + Y,

where Y ∈ ξ is uniquely determined by iY dα = −dH + Rα(H) · α. Furthermore,
LXHα = Rα(H) · α.

Note that Y is tangent to the level sets of H, i.e., iY dH = 0. Moreover, the Reeb
vector field Rα corresponds to H ≡ 1. The function H is called the Hamiltonian
associated to the contact vector field. Combining with Lemma 1.6, we note that any
contact isotopy ψt is given by a time-dependent Hamiltonian Ht.

Proof. First, it is straightforward to check that for any smooth function H, LXHα =
Rα(H) · α, which implies that XH is a contact vector field. On the other hand, let X
be any contact vector field. We may write X = H ·Rα + Y for some smooth function
H and Y ∈ ξ. Then LXα = gα gives

d(H) + iY dα = gα.

Applying both sides to Rα, we obtain g = Rα(H). It follows also that Y is determined
by iY dα = −dH +Rα(H)α. Consequently, X = XH . �

Exercise: Show that XH is the Reeb vector field associated to some contact form
if and only if H > 0 everywhere on N .

Let M be a complex manifold of complex dimension n, N ⊂M be a compact, real
co-dimension 1 submanifold. Let ρ : M → R be a smooth function such that N is a
regular level surface of ρ. We say N is strictly pseudoconvex if for any p ∈ N , there
are local holomorphic coordinates z1, z2, · · · , zn near p such that the n× n Hermitian

matrix ( ∂2ρ
∂zj∂z̄k

) is positive definite at p.

Lemma 1.8. Let N be a strictly pseudoconvex hypersurface of a complex manifold
M , and let ξ := TN ∩ J(TN) be the hyperplane distribution consisting of complex
tangents. Then ξ is a co-oriented contact structure on N .

Proof. Let α := −dρ◦J be the 1-form on M . Then α = −(∂ρ+ ∂̄ρ)◦J = −i(∂ρ− ∂̄ρ).

In local holomorphic coordinates z1, z2, · · · , zn, α = −i(
∑n

j=1
∂ρ
∂zj
dzj − ∂ρ

∂z̄j
dz̄j) so that

ω := dα = 2i
n∑

k,j=1

∂2ρ

∂zj∂z̄k
dzj ∧ dz̄k.

By the assumption that N is strictly pseudoconvex and the fact that N is compact,
it follows easily that ω is a Kähler form in a regular neighborhood of N .

With this understood, note that ξ = ker(α|TN ). On the other hand, dα = ω is
non-degenerate on ξ because ξ is complex linear and ω is Kähler. This shows that ξ
is a co-oriented contact structure on N .

�
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Exercise: Show that the sphere of radius r in Cn, for any r > 0, is a strictly
pseudoconvex hypersurface.

Let (M,ω) be a symplectic manifold, N ⊂ M be a compact hypersurface. We say
N is of contact type if there is a contact form α on N such that ω|TN = dα. As
an example, let N be a strictly pseudoconvex hypersurface of a complex manifold M .
Then N is of contact type with respect to the Kähler form ω := d(−dρ ◦ J) defined in
a regular neighborhood of N (cf. the proof of Lemma 1.8).

Let (M,ω) be a symplectic manifold. A 1-form λ on M is called a Liouville 1-
form if ω = dλ. A vector field X is called a Liouville vector field if LXω = ω.
The Liouville vector fields and Liouville 1-forms are in 1 − 1 correspondence by the
relation iXω = λ.

Example 1.9. Let (N, ξ) be a contact manifold where ξ is co-oriented, with a contact
form α. The symplectization of (N,α) is the symplectic manifold (R ×N, d(etα)),
where t is the coordinate on R. Note that for the Liouville 1-form λ = etα, the
corresponding Liouville vector field X = ∂

∂t .

Exercise: Let (M,ω) be a symplectic manifold, N ⊂M be a compact hypersurface.
(1) Show that if X is a Liouville vector field defined in a regular neighborhood of

N which is normal along N , then N is of contact type.
(2) Suppose N is of contact type. Show that there is a a Liouville vector field

defined in a regular neighborhood of N which is normal along N .
(3) Suppose N is of contact type. Show that a regular neighborhood of N is sym-

plectomorphic to a regular neighborhood of {0} ×N in a symplectization of N .

Exercise: Let N be a strictly pseudoconvex hypersurface of a complex manifold
M . Let ω, α be defined as in Lemma 1.8. Let X be the gradient vector field of the
function ρ with respect to the Hermitian metric associated to the Kähler form ω. Show
that X is the Liouville vector field corresponding to α. Moreover, the Reeb vector
field associated to the contact form α|TN is JX/||JX||2.

Exercise: Let (M,ω) be a symplectic manifold, X a Liouville vector field on M .
Suppose N1, N2 ⊂M are hypersurfaces transverse to X, such that there is a diffeomor-
phism ψ : N1 → N2 defined by following the flow lines of X. Show that ψ∗(ξ1) = ξ2,
where ξi, i = 1, 2, is the induced contact structure on Ni.

Exercise: Let (M,ω) be a symplectic manifold where ω = dλ, and let X be the
corresponding Liouville vector field, which we assume is complete. Let M∗ be the
complement of the zeroes of λ.

(1) Show that the flow of X generates a free, proper R-action on M∗.
(2) Let N := M∗/R be the quotient manifold. Show that λ determines a natural,

co-oriented contact structure ξ on N .
(3) Show that (M∗, ω) is symplectomorphic to a symplectization of (N, ξ).

Exercise: As an example of the above, consider M = T ∗B, with ω = dλ where λ
is the canonical 1-form on T ∗B. Then M∗ is the complement of the zero section.

(1) Show that the Liouville vector field X, where iXω = λ, is complete.
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(2) Prove that M∗/R is the associated sphere bundle S(T ∗B). Show that the contact
structure on S(T ∗B) is the pull-back of the canonical contact structure on P(T ∗B) in
Example 1.5 under the canonical double covering π : S(T ∗B)→ P(T ∗B).

Finally, we discuss submanifolds of contact manifolds.

Definition 1.10. Let (N, ξ) be a contact manifold, where dimN = 2n+1. Let L ⊂ N
be a submanifold. We say L is a contact submanifold if ξ|L ∩ TL is a contact
structure on L. We say L is an isotropic submanifold if TL ⊂ ξ. An isotropic
submanifold is called Legendrian if it has a dimension equaling to n = (dimN−1)/2.

Let α be an associated contact form (even locally defined). Then L ⊂ N is a contact
submanifold if and only if α|TL is a contact form on L, for any α. On the other hand,
if L ⊂ N is isotropic, then α|TL = 0, which implies dα|TL = 0 as well. In particular,
TL ⊂ ξ is an isotropic sub-bundle with respect to the symplectic form dα on ξ. It
follows that dimL ≤ 1

2 dim ξ = (dimN − 1)/2. So a Legendrian submanifold is an
isotropic submanifold of the maximal possible dimension.

Example 1.11. Let (N, ξ) be a contact manifold, where dimN = 2n+ 1. Let L ⊂ N
be a 1-dimensional submanifold. Then L is a contact submanifold if and only if
ξ ∩ TL = {0}, i.e., the tangent vectors of L are transverse to ξ. When N is a 3-
manifold, such a L is called a transverse knot or link (when L is closed).

Example 1.12. Let L be a n-dimensional manifold, and let N ≡ T ∗L × R be the
1-jet bundle over L. Then

α = dz − λ
is a contact form on N , where z is the coordinate on the R factor and λ is the canonical
1-form on the T ∗L factor. Then for any smooth function f : L→ R, the submanifold

Lf ≡ {(x, df(x), f(x))|x ∈ L} ⊂ N

is Legendrian.

Exercise: Let (N, ξ) be a contact manifold, where ξ is co-oriented with contact
form α. Let (M,ω) = (R×N, d(etα)) be the symplectization.

(1) Show that a submanifold L ⊂ N is a contact submanifold if and only if R × L
is a symplectic submanifold of (M,ω).

(2) Show that a submanifold L ⊂ N is an isotropic submanifold if and only if R×L
is an isotropic submanifold of (M,ω). In particular, L is Legendrian if and only if
R× L is Lagrangian.

2. Stability and neighborhood theorems

Definition 2.1. Let ξ0, ξ1 be two contact structures on N . We say ξ0, ξ1 are isomor-
phic if there is a diffeomorphism ψ ∈ Diff(N) such that ψ∗(ξ0) = ξ1. We say ξ0, ξ1

are homotopic through contact structures if there is a smooth family of contact
structures ξt, t ∈ [0, 1], such that ξt = ξ0 for t = 0 and ξt = ξ1 for t = 1. Finally,
we say ξ0, ξ1 are isotopic if there is an isotopy ψt, t ∈ [0, 1], such that ψ0 = id,
(ψ1)∗(ξ0) = ξ1.
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Clearly, isotopic contact structures are isomorphic, and are also homotopic through
contact structures. Our first theorem says that contact structures which are homotopic
through contact structures are isotopic.

Theorem 2.2. (Gray’s stability theorem). Let N be a compact, closed manifold and
suppose that αt is a smooth family of contact forms on N . Then there exist a smooth
family of ψt ∈ Diff(N) and a smooth family of nonvanishing fuctions ft on N such
that

ψ0 = id, ψ∗tαt = ftα0.

In particular, the smooth family of contact structures ξt ≡ kerαt are diffeomorphic
under ψt.

Proof. We shall obtain ψt by finding the corresponding vector fields Xt such that

d

dt
ψt = Xt ◦ ψt, ψ0 = id.

To this end, we differentiate both sides of ψ∗tαt = ftα0 and obtain

ψ∗t (
d

dt
αt + LXtαt) = gtψ

∗
tαt, where gt = f−1

t

d

dt
ft.

Hence we must find Xt and ht = gt ◦ ψ−1
t such that

d

dt
αt + LXtαt = htαt.

Let Yt be the Reeb vecter field associated to αt. Then the above equation has a unique
solution

ht = iYt
d

dt
αt, iXtdαt = −(

d

dt
αt)|kerαt , and Xt ∈ kerαt.

Gray’s stability theorem follows by integratingXt to obtain ψt. Note that ft is uniquely
determined from ht and ψt, with the initial value f0 = 1.

�

Next we present several neighborhood theorems in contact geometry.

Theorem 2.3. (Darboux theorem in contact geometry). Every contact structure is lo-
cally diffeomorphic to the standard contact structure on R2n+1, defined by the standard
contact form

α0 = dz −
n∑
j=1

yjdxj .

Proof. Let α be a contact form on N and q ∈ N be any point. Let ξ = kerα be the
corresponding contact structure, and Y be the Reeb vector field associated to α. We
fix a Riemannian metric near q, and let u1, u2, · · · , un, v1, v2, · · · , vn be a symplectic
basis of (ξq, dαq). Then we define a chart centered at q by

φ : R2n+1 → N : (x1, · · · , xn, y1, · · · , yn, z) 7→ expq(
n∑
j=1

(xjuj + yjvj) + zY ).
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By the nature of construction, we see that ker(φ∗α)0 = R2n × {0}, and the Reeb
vector field associated to φ∗α equals ∂z at 0 ∈ R2n+1, so that φ∗α = α0 at the origin
0. Moreover, note that d(φ∗α) = dα0 also holds at the origin.

We set α1 = φ∗α, and consider the smooth family of 1-forms αt ≡ α0 + t(α1 − α0)
near the origin 0 ∈ R2n+1. Since at the origin αt = α0, dαt = dα0 for all t ∈ [0, 1],
αt is a smooth family of contact forms in a neighborhhod of the origin. We apply
Moser’s argument as in the proof of previous theorem, and obtain vector fields Xt and
functions ht which are determined by conditions

ht = iYt
d

dt
αt, iXtdαt = −(

d

dt
αt)|kerαt , and Xt ∈ kerαt.

(Here Yt is the Reeb vecter field associated to αt.) Since d
dtαt = 0 at the origin, we

have ht(0) = 0 and Xt(0) = 0 for all t ∈ [0, 1]. The condition Xt(0) = 0 for all t
ensures that there exists a neighborhood of the origin such that the diffeomorphisms
ψt are defined on that neighborhood for all t ∈ [0, 1]. By construction ψ∗tαt = ftα0

for some nonvanishing ft, where ft(0) = 1 because ht(0) = 0 and ψt(0) = 0. It follows
immediately that the contact structure ξ = kerα is diffeomorphic to ξ0 = kerα0 by
the local diffeomorphism φ ◦ ψ1.

�

Let (N, ξ) be a contact manifold of dimension 2n + 1, where ξ is co-oriented, and
let L ⊂ N be a compact closed isotropic submanifold of dimension k, where k ≤ n.
We pick a contact form α, and denote by TL⊥ ⊂ ξ|L the symplectic orthogonal
complement of TL ⊂ ξ|L with respect to dα. We remark that TL⊥ depends only on
ξ, as if we change α to efα conformally, dα|ξ is changed conformally to efdα|ξ. Since

L is isotropic, TL ⊂ TL⊥. We set

CSNN (L) := TL⊥/TL,

which is called the conformal symplectic normal bundle of L in (N, ξ); it has a
conformal symplectic form depending only on ξ.

Let νL := TN |L/TL be the normal bundle of L in N . Then νL is a direct sum

νL = R(Rα)⊕ ξL/TL⊥ ⊕ CSNN (L),

where R(Rα) is the trivial line bundle over L with a preferred section Rα (the Reeb
vector field associated to the contact form α). There is a canonical identification
(depending on dα) γ : ξL/TL

⊥ → T ∗L given as follows: for any q ∈ L, Y ∈ ξq,
γ(Y ) = iY dα|TqL ∈ T ∗q L. Hence

νL = R(Rα)⊕ T ∗L⊕ CSNN (L).

Theorem 2.4. Let (Ni, ξi), i = 0, 1, be a (2n + 1)-dimensional contact manifold,
where ξi is co-oriented, and let Li ⊂ Ni be a compact closed isotropic submanifold of
dimension k ≤ n. Suppose there is an isomorphism Φ : CSNN0(L0) → CSNN1(L1)
of the conformal symplectic normal bundles, covering a diffeomorphism φ : L0 → L1.
Then this diffeomorphism φ extends to a contactomorphism ψ : N (L0) → N (L1) of
suitable neighborhoods N (Li) of Li such that the bundle maps dψ|CSNN0

(L0) and Φ are

bundle homotopic (as conformal symplectic normal bundle isomorphisms).
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Proof. We fix a contact form α0 for (N0, ξ0). This gives us the Reeb vector field Rα0

and a symplectic form dα0 on ξ0. Then we fix a dα0-compatible complex structure J0

of ξ0, also giving rise to a corresponding Hermitian metric on ξ0. With this understood,
we note that T ∗L0 can be identified with J0(TL0) ⊂ ξ0|L0 (see Lemma 3.5 in §3 of
Part 1), and CSNN0(L0) with (TL0 ⊕ J0(TL0))⊥ ⊂ ξ0|L0 , the symplectic orthogonal
complement of TL0⊕J0(TL0) in ξ0|L0 . Similarly, we fix a contact form α for (N1, ξ1),
a dα-compatible complex structure J of ξ1, such that Φ∗(dα) = dα0 on CSNN0(L0).

Then there is a bundle isomorphism Φ̃ : νL0 → νL1 covering φ : L0 → L1, such that

Φ̃(Rα0) = Rα, Φ̃ = J◦dφ◦J−1
0 on J0(TL0), and Φ̃ = Φ on (TL0⊕J0(TL0))⊥. Then via

appropriate exponential maps, we obtain a diffeomorphism φ′ between neighborhoods
of L0 and L1, covering φ : L0 → L1, such that dφ′ = Φ̃ : νL0 → νL1 . With this
understood, we set α1 := (φ′)∗α. Then it follows easily that

α1|TN0|L0
= α0|TN0|L0

, dα1|TN0|L0
= dα0|TN0|L0

.

(For the second equation, see the proof of Theorem 3.4 in §3 of Part 1.) For t ∈ [0, 1],
let αt = α0 + t(α1 − α0). Then

αt|TN0|L0
= α0|TN0|L0

, dαt|TN0|L0
= dα0|TN0|L0

, ∀t ∈ [0, 1].

In particular, since L0 is compact, there is a neighborhood of L0 such that αt is a
contact form for any t ∈ [0, 1]. Then as in the proof of Darboux theorem, let Yt be
the Reeb vecter field associated to αt. We determine functions ht and vector fields Xt

by the following equations

ht = iYt
d

dt
αt, iXtdαt = −(

d

dt
αt)|kerαt , and Xt ∈ kerαt.

Note that d
dtαt = 0 along L0, so that we have ht = 0 and Xt = 0 for all t ∈ [0, 1] along

L0. The fact that Xt = 0 for all t ∈ [0, 1] along L0 (and the fact that L0 is compact)
ensures that there is a regular neighborhood of L0 such that the diffeomorphisms
ψt generated by Xt are defined on that neighborhood for all t ∈ [0, 1]. Moreover,
ψ∗tαt = ftα0 for some positive functions ft, with ft ≡ 1 on L0. Then φ′ ◦ ψ1 is the
desired contactomorphism between suitable neighborhoods of L0 and L1.

�

Example 2.5. If L is a closed Legendrian submanifold of (N, ξ), then CSNN (L) =
{0}. By Theorem 2.4, a neighborhood of L in N has a standard model of contact
structures, depending only on the diffeomorphism class of L. More concretely, a
neighborhood of L in N is contactomorphic to a neighborhood of the zero section of
the 1-jet bundle of L, i.e., T ∗L×R with a contact structure defined by dz − λ, where
z is the coordinate on R and λ is the canonical 1-form on T ∗L.

More generally, let L be a closed isotropic submanifold of dimension k, where
k < n = 1

2(dimN − 1). Set l := n − k. Assume CSNN (L) is trivial. Then fix-

ing any identification of CSNN (L) with L×R2l, there is a contactomorphism from a
neighborhood of L in N to a neighborhood of L0 × {0} in T ∗L×R×R2l (L0 denotes
the zero section of T ∗L × R), where the contact structure on the latter is defined by

dz−λ+
∑l

j=1 xjdyj . (Here x1, · · · , xl, y1, · · · , yl are the standard coordinates of R2l.)
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Now let L ⊂ N be a contact submanifold of (N, ξ). Denote by η := ξ|L ∩ TL the
contact structure on L. Then η is a conformal symplectic sub-bundle of ξ|L, so we can
talk about its orthogonal complement η⊥ ⊂ ξ|L, which is also a conformal symplectic
sub-bundle of ξ|L. Clearly, η⊥ is isomorphic to the normal bundle of L in N . We let

CSNN (L) := η⊥,

and call it the conformal symplectic normal bundle of L in (N, ξ).

Theorem 2.6. Let (Ni, ξi), i = 0, 1, be a (2n+1)-dimensional contact manifold, where
ξi is co-oriented, and let (Li, ηi) ⊂ (Ni, ξi) be a compact closed contact submanifold
of dimension 2k + 1, k < n. Suppose there is an isomorphism Φ : CSNN0(L0) →
CSNN1(L1) of the conformal symplectic normal bundles, covering a contactomorphism
φ : (L0, η0) → (L1, η1). Then φ extends to a contactomorphism ψ : N (L0) → N (L1)
of suitable neighborhoods N (Li) of Li such that the bundle maps dψ|CSNN0

(L0) and Φ

are bundle homotopic (as conformal symplectic normal bundle isomorphisms).

Proof. We choose contact forms βi on Li such that ηi = kerβi, and β0 = φ∗β1. We
shall choose appropriate contact forms αi on Ni accordingly next.

First, we pick a contact form αi on Ni such that αi(Rβi) = 1 along Li, where Rβi
is the Reeb vector field of βi on Li. With this choice we note that αi|TLi = βi and
dαi|TLi = dβi. Next we choose a smooth function fi > 0 in a neighborhood of Li,
where fi ≡ 1 on Li, such that iRβid(fiαi) ≡ 0 on TNi|Li . This is equivalent to

iRβidfi · αi − dfi · iRβiαi + fi · iRβidαi = 0 on TNi|Li .

With fi ≡ 1 on Li and αi|TLi = βi, we obtain −dfi + iRβidαi = 0 on TNi|Li . To see
such a smooth function fi exists, we simply extend fi ≡ 1 along Li to a neighborhood
of Li, such that for any normal vector X of Li, dfi(X) = iRβidαi(X).

With the preceding understood, we replace αi by fiαi, which is still denoted by αi
for simplicity. Then Rαi = Rβi along Li. Finally, note that after scaling Φ if necessary,
we may assume Φ∗(dα1) = dα0. With these preparations, it follows that there is a
diffeomorphism φ′ between neighborhoods of L0 and L1, covering φ : L0 → L1, such
that (φ′)∗α1|TN0|L0

= α0|TN0|L0
, (φ′)∗dα1|TN0|L0

= dα0|TN0|L0
. Then

γt := α0 + t((φ′)∗α1 − α0), t ∈ [0, 1]

is a smooth family of contact forms in a neighborhood of L0, such that γt|TN0|L0
=

α0|TN0|L0
, dγt|TN0|L0

= dα0|TN0|L0
. As we argued before, this gives rise to a smooth

family of diffeomorphisms ψt defined in a neighborhood of L0, ψt = id on L0, such
that ψ∗t γt = ftγ0. Since γ0 = α0, γ1 = (φ′)∗α1, φ′ ◦ψ1 is the desired contactomorphism
between suitable neighborhoods of L0 and L1.

�

Example 2.7. Suppose L is a compact closed, connected contact submanifold of
dimension 1. Then the contact structure on L is trivially unique, and CSNN (L) is
a trivial bundle. With this understood, fixing any trivialization of CSNN (L), there
is a contactomorphism from a neighborhood of L to a neighborhood of S1 × {0} in
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S1 × R2n, where S1 × {0} in S1 × R2n is given the contact structure defined by

dz +

n∑
j=1

xjdyj .

Here z is the coordinate on S1 and x1, · · · , xn, y1, · · · , yn are the coordinates on R2n.

Exercise: Let L be a compact closed submanifold of contact manifold (N, ξ) (here
ξ is assumed to be co-oriented), where L is an isotropic (resp. contact) submanifold.
Let jt : L → N , for t ∈ [0, 1], be a smooth family of smooth embeddings with
j0 = Id, such that each jt(L) is an isotropic (resp. contact) submanifold. Show
that there is a contact isotopy φt : (N, ξ) → (N, ξ), t ∈ [0, 1], with φ0 = Id, such
that φt|L = jt for each t, and φt is supported in a neighborhood of ∪tjt(L) in N .
(Hint: by the neighborhood theorems, Theorems 2.4 and 2.6, the submanifolds jt(L)
have contactmorphic regular neighborhoods. This fact makes it possible for us to first
extend the isotopy of embeddings jt to an isotopy of contact embeddings of a regular
neighborhood of L, which corresponds to a time-dependent Hamiltonian Ht defined on
a neighborhood of ∪tjt(L) in N . Simply extend Ht to N in a compactly supported way,
cf. Lemmas 1.6 and 1.7.)

3. Pseudoholomorphic curves in symplectizations

Let (M,ω) be a symplectic manifold, N := H−1(c) be a regular level surface of a
smooth function H : M → R. Recall that as a hypersurface, N is co-isotropic, i.e.,
TNω ⊂ TN , which generates a 1-dimensional foliation onN , called the characteristic
foliation on N . Note that the corresponding Hamiltonian vector field XH is tangent
to the characteristic foliation on N . A fundamental question in Hamiltonian dynamics
asks whether there is always a closed orbit of a Hamiltonian vector field; in particular,
whether the characteristic foliation on N always contains a closed orbit.

In 1978, Weinstein conjectured that if N is compact closed and is of contact type,
then the characteristic foliation on N must contain a closed orbit. There is an equiv-
alent formulation: let α be a contact form on N such that ω|TN = dα, then it is
easy to see that the Reeb vector field Rα is tangent to the characteristic foliation.
Thus Weinstein’s conjecture asserts that on a compact closed contact manifold, any
Reeb vector field admits a closed orbit. The pseudoholomorphic curve theory for sym-
plectizations of contact manifolds, introduced by Hofer, was designed to attack the
Weinstein conjecture on closed Reeb orbits.

For the rest of this section, let (M, ξ) be a compact closed (2n + 1)-dimensional
co-oriented contact manifold, let λ be an associated contact form. We shall denote
the Reeb vector field of λ by X. Then TM = RX ⊕ ξ. We let π : TM → ξ denote
the projection. Finally, we equip ξ with the symplectic form dλ, making it into a
symplectic vector bundle.

Fixing any dα-compatible complex structure J : ξ → ξ, we can canonically extend
it to any almost complex structure J̃ on W := R×M by J̃ |ξ = J and

J̃(
∂

∂t
) = X, J̃(X) = − ∂

∂t
,
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where t is the coordinate on the R-factor. Now let (S, j) be a compact closed Riemann
surface, Γ ⊂ S be a subset of finitely many points, called the punctures, and denote
by Ṡ = S \ Γ the corresponding punctured Riemann surface. We shall consider J̃-

holomorphic maps ũ = (a, u) : Ṡ →W = R×M , which obey

J̃ ◦ dũ = dũ ◦ j.

If z = s+ it is a local holomorphic coordinate on Ṡ, the above equation becomes

πus + J(u)πut = 0, as = λ(ut), at = −λ(us).

As shown in the following example, J̃-holomorphic maps are closely related to integral
curves of the Reeb vector field X.

Example 3.1. (1) Let x(t) be an integral curve of X which is periodic (i.e., a closed
orbit), and let T > 0 such that x(T ) = x(0). Let S1 = R/Z. Then the map ũ = (a, u) :

R× S1 → R×M , where a(s, t) = sT , u(s, t) = x(tT ), is J̃-holomorphic.
(2) Let x(t) be an integral curve of X, t ∈ R, which is not periodic. Let z = s+it ∈ C

be the holomorphic coordinate on C. Then the map ũ = (a, u) : C → R ×M , where

a(s, t) = s, u(s, t) = x(t), is J̃-holomorphic.

The type of J̃-holomorphic maps in Example 3.1(2) are obviously not desirable; in
particular, it is not even a proper map. In order to exclude these ill-behaved cases,
one needs to introduce a finite energy condition.

Let Σ be the set of smooth maps φ : R → [0, 1] such that φ′ ≥ 0. For each
φ ∈ Σ, we set λφ := φλ, where φ is considered as a function on R ×M and λ as

the pull-back 1-form on R ×M . With this understood, for any J̃-holomorphic map
ũ = (a, u) : Ṡ → R×M , we define the energy of ũ to be

E(ũ) = sup
φ∈Σ

∫
Ṡ
ũ∗dλφ.

Lemma 3.2. Let ũ = (a, u) be a J̃-holomorphic map and z = s + it be a local

holomorphic coordinate on the domain Ṡ. Then for any φ ∈ Σ,

ũ∗dλφ =
1

2
(φ′(a)(|as|2 + |at|2 + |λ(us)|2 + |λ(ut)|2) + φ(a)(|πus|2J + |πut|2J))ds ∧ dt,

where the norm |v|J := dλ(v, Jv)1/2, ∀v ∈ ξ. Consequently, E(ũ) ≥ 0 and ũ is
non-constant if and only if E(ũ) > 0.

Exercise: (1) Prove Lemma 3.2 and compute E(ũ) for the maps ũ in Example 3.1.
(2) Show that 0 ≤

∫
Ṡ u
∗dλ ≤ E(ũ).

Definition 3.3. A J̃-holomorphic map ũ : Ṡ → R ×M is called a (non-constant)

finite energy surface if 0 < E(ũ) < ∞. If there is a z0 ∈ Ṡ such that dũ(z0) 6= 0

and ũ−1(ũ(z0)) = {z0}, then ũ is called somewhere injective. The image C := ũ(Ṡ)
of a finite energy surface is called an unparametrized finite energy surface, and
ũ is called a parametrization of C if ũ is somewhere injective.

The following is a generalization of Corollary 5.4 in §5 of Part 2.



MATH 705: PART 3: ASPECTS OF CONTACT GEOMETRY 13

Proposition 3.4. Let ũ : Ṡ → R × M be any finite energy surface. There exist
a compact closed Riemann surface S′ with a finite set of punctures Γ′ ⊂ S′ and a
holomorphic map ψ : S → S′, with Γ′ = ψ(Γ), and a somewhere injective finite energy

surface ṽ : Ṡ′ → R×M such that ũ = ṽ ◦ ψ.

All the local properties discussed in §5 of Part 2 continue to hold in the current
setting, in particular, the removal of singularities (Theorem 5.6 in Part 2), which plays
a role in the classification of punctures of a finite energy surface.

Let z ∈ Γ be a given puncture. In a disc neighborhood of z in S, we introduce
coordinates (s, t) ∈ [c,+∞) × R/Z, and let ṽ(s, t) := ũ(e−2π(s+it)), and write ṽ =

(b, v) ∈ R×M . Then ṽ is J̃-holomorphic, which obeys

πvs + J(v)πvt = 0, bs = λ(vt), bt = −λ(vs).

Lemma 3.5. The limit lims→+∞
∫ 1

0 v
∗λ(s, ·) exists.

Proof. We have
∫ 1

0 v
∗λ(s, ·)−

∫ 1
0 v
∗λ(c, ·) =

∫
[c,s]×R/Z v

∗dλ by Stokes’ theorem. On the

other hand, v∗dλ = |πvs|2Jds ∧ dt and
∫

[c,s]×R/Z v
∗dλ ≤ E(ũ). It follows easily that∫ 1

0 v
∗λ(s, ·) is monotone and is bounded from above. The lemma follows immediately.

�

We denote the limit lims→+∞
∫ 1

0 v
∗λ(s, ·) by m(ũ, z), which is called the charge of

ũ at the puncture z ∈ Γ. We have the following basic result.

Theorem 3.6. Let ũ : Ṡ → R × M be a finite energy surface and z ∈ Γ a given
puncture, and ṽ(s, t) = ũ(e−2π(s+it)) = (b, v) ∈ R×M . Then the following hold true.

• If m(ũ, z) = 0, then the map ũ can be extended over z, i.e., z is a removable
puncture.
• If m(ũ, z) 6= 0, then for any sequence {sk} converging to +∞, there is a

subsequence, continuing to be denoted by {sk}, and an integral curve x(t) of the
Reeb vector field X, such that v(sk, t) → x(mt) in C∞-topology as k → +∞,
where m = m(ũ, z) and t ∈ R/Z.

• lims→+∞
b(s,t)
s = m(ũ, z), ∀t ∈ R/Z.

We remark that when m(ũ, z) 6= 0, the limit of v(sk, t) is a closed orbit of the Reeb
vector field, which is periodic of period T := |m(ũ, z)| > 0 (not necessarily the minimal
period). Moreover, if we write ũ = (a, u) ∈ R ×M , then a(w) → +∞ as w → z if
m(ũ, z) > 0, and a(w)→ −∞ as w → z if m(ũ, z) < 0. Without loss of generality, we
assume that there are no removable punctures. Then Γ = Γ+ t Γ−, where Γ+ (resp.
Γ−) is the set of punctures z with positive (resp. negative) charges m(ũ, z).

Moreover, assuming m := m(ũ, z) 6= 0. If the limiting periodic orbit x(t) (for some
sequence {sk}) is non-degenerate in the sense of Definition 3.8 below, then v(s, t) →
x(mt) in C∞-topology as s → +∞. In fact, the finite energy surface ũ converges to

the J̃-holomorphic cylinder ũ0 associated to the periodic orbit x(t), i.e., ũ0 = (a, u) :
R × S1 → R ×M , where a(s, t) = ms + c, u(s, t) = x(mt), exponentially fast as it
approaches to the puncture z ∈ Γ. This improved exponential decay convergence under
the non-degeneracy condition of the periodic orbits at the punctures z is important in
analyzing the structure of the moduli space of the finite energy surface ũ.
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Exercise: Show that Γ+ 6= ∅. (Hint: note that
∫
Ṡ u
∗dλ ≥ 0 and then apply

Theorem 3.6 and Stokes’ theorem.)

Corollary 3.7. (Hofer) For any compact closed contact manifold (M,λ), the Wein-
stein conjecture holds, i.e., there exists a closed Reeb orbit, if and only if there is a
finite energy surface in the symplectization of (M,λ).

In particular, in dimension three Hofer was able to establish the existence of finite
energy surfaces under the assumption that the contact structure ξ is overtwisted (see §4
for definition) or the contact 3-manifold M has π2(M) 6= 0, thus proving the Weinstein
conjecture in these cases.

The remaining part of this section is devoted to the structure of moduli spaces of
finite energy surfaces.

Let ψt be the family of maps generated by the Reeb vector field X, i.e., t ∈ R 7→
ψt ∈ Diff(M), be the corresponding R-action on M . Since LXλ = 0, it follows that
(ψt)∗ξ = ξ and ψ∗t dλ = dλ. Let x(t) be an integral curve of X, i.e., x(t) = ψt(x(0)),
∀t ∈ R. Recall that x(t) is called periodic if there is a T > 0 such that x(t+T ) = x(t)
for any t ∈ R. The (parametrized) closed curve {x(t)|0 ≤ t ≤ T} is called a periodic
orbit of X, where T is called its period. We remark that here T needs not to be
minimal; there is a minimal period T0 > 0 and T = kT0 for some k ∈ Z. Moreover,
the periodic orbit of period T is a k-fold cover of the periodic orbit of period T0.

Definition 3.8. A periodic orbit x(t) of period T > 0 is said to be non-degenerate
if the map (ψT )∗ : ξ|x(0) → ξ|x(T )=x(0) does not have 1 contained in its spectrum. The
contact form λ is called non-degenerate if every periodic orbit of its Reeb vector
field is non-degenerate.

Next we recall the notion of Conley-Zehnder index. For each integer n ≥ 1, we
let Σ(n) denote the set of continuous path Φ = Φ(t) ∈ Sp(2n), t ∈ [0, 1], such that
Φ(0) = Id and Φ(1) does not have 1 contained in its spectrum. Moreover, let G(n)
denote the set of continuous loops g = g(t) ∈ Sp(2n), t ∈ [0, 1], where g(0) = g(1) = Id.
For each g = g(t) ∈ G(n), we denote the Maslov index of g by µM (g). (Recall that
µM : π1(Sp(2n))→ Z is an isomorphism. ) The Conley-Zehnder index is characterized
in the following theorem.

Theorem 3.9. There exists a unique family of maps µ = µn : Σ(n)→ Z, where n ≥ 1
an integer, having the following properties:

• Homotopic paths in Σ(n) have the same index (i.e., the value under µ).
• For any g ∈ G(n), Φ ∈ Σ(n), µ(gΦ) = µ(Φ) + 2µM (g).
• µ(Φ−1) = −µ(Φ) for any Φ ∈ Σ(n), where Φ−1 = Φ(t)−1.
• µ(Φ0) = 1 where Φ0 = eπitId ∈ Σ(1).
• µn+m(Φ⊕Ψ) = µn(Φ) + µm(Ψ), where Φ ∈ Σ(n), Ψ ∈ Σ(m).

Example 3.10. In this example, we explain how to determine the Coney-Zehnder
index of a Φ ∈ Σ(1). Note that Φ = Φ(t) ∈ Sp(2), where Sp(2) consists of 2 × 2
matrices of determinant 1. Thus for Φ(1), there are two possibilities for its spectrum:
(1) a pair of complex numbers σ, σ̄ where |σ| = 1, (2) a pair of real numbers β, β−1,
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where β 6= 1. In case (1), Φ ∈ Σ(1) is called elliptic, and in case (2), Φ is called
positive hyperbolic (resp. negative hyperbolic) when β > 0 (resp. β < 0).

We shall change Φ through a homotopy of paths in Σ(1), such that Φ(1) = −Id when
it is elliptic, and Φ(1) = diag(β, β−1) when it is hyperbolic. With this understood,

recall that Φ(t) = P (t)Q(t) where P (t) = (Φ(t)Φ(t)T )1/2 and Q(t) ∈ U(1). It follows
easily that when Φ is elliptic, P (1) = Id and Q(1) = Φ(1) = −Id, and when Φ is
hyperbolic, P (1) = diag(|β|, |β|−1), so that Q(1) = −Id when β < 0 and Q(1) = Id
when β > 0. With this understood, the Conley-Zehnder index µ(Φ) equals the degree
of the loop detQ(t)2 in S1. We observe that µ(Φ) is an odd number when Φ is elliptic
or negative hyperbolic, and µ(Φ) is an even number when Φ is positive hyperbolic.

Now let x(t) be a periodic orbit of period T > 0 which is non-degenerate. For any
trivialization of (ξ, dλ)|x(t) as a symplectic vector bundle, we can associate x(t) with a
Conley-Zehnder index as follows. Observe that the trivialization of (ξ, dλ)|x(t) is given
by a smooth family of isomorphisms of symplectic vector spaces Ψ(t) : (ξ, dλ)|x(tT ) →
(R2n, ω0), t ∈ [0, 1], where Ψ(0) = Ψ(1). With this understood, we consider the
linearized Reeb flow around the periodic orbit Φ ∈ Σ(n), where Φ(t) = Ψ(t) ◦ (ψtT )∗ ◦
Ψ(0)−1, t ∈ [0, 1]. Note that Φ(1) = Ψ(0)◦(ψT )∗ ◦Ψ(0)−1 which is conjugate to (ψT )∗,
so that it does not have 1 contained in its spectrum. The Conley-Zehnder index of
x(t) with the trivialization Ψ is defined to be

µ(x(t),Ψ) := µ(Φ).

Exercise: Let Ψ,Ψ′ be two different trivializations of (ξ, dλ)|x(t). Show that

µ(x(t),Ψ′) = µ(x(t),Ψ) + 2µM (Ψ′(t)Ψ(t)−1).

Accordingly, a periodic orbit x(t) in a contact 3-manifold is called elliptic (resp.
negative hyperbolic, positive hyperbolic) if the linearized Reeb flow around x(t)
is elliptic (resp. negative hyperbolic, positive hyperbolic) as defined in Example 3.10.

Example 3.11. Consider C2 equipped with the standard symplectic structure ω0.
Let (ri, θi), i = 1, 2, be the polar coordinates on C2. Then

ω0 = r1dr1 ∧ dθ1 + r2dr2 ∧ dθ2.

Let Y := 1
2(r1

∂
∂r1

+ r2
∂
∂r2

), which is easily seen a Liouville vector field, with the
corresponding Liouville 1-form

λ := iY ω0 =
1

2
(r2

1dθ1 + r2
2dθ2).

For any fixed real numbers a1 > 0, a2 > 0, we consider smooth function

H(z1, z2) =
1

2
(a1r

2
1 + a2r

2
2).

The corresponding Hamiltonian vector field X = a1
∂
∂θ1

+ a2
∂
∂θ2

, where iXω0 = −dH.
Since Y is transversal to the regular level surfaces of H, λ restricts to a contact form
the level surfaces. Note that

λ(X) =
1

2
(a1r

2
1 + a2r

2
2) = H,
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so if we consider the level surface M := {H ≡ 1}, X is the Reeb vector field on M
associated to the contact form λ.

Next we examine the integral curves of X. For any c1 > 0, c2 > 0 such that
1
2(a1c

2
1 + a2c

2
2) = 1, we consider the torus Tc1,c2 := {r1 ≡ c1, r2 ≡ c2} in M . Clearly,

each Tc1,c2 is invariant under the flow of X. For any x0 ∈ Tc1,c2 , the integral curve
x(t) with x(0) = x0 is given by, in the coordinates (r1, θ1, r2, θ2),

x(t) = x0 + (0, a1, 0, a2)t.

It follows easily that x(t) is periodic with period T > 0 if and only if there are m,n ∈ Z,
m > 0, n > 0, such that a1T = 2πm, a2T = 2πn. Moreover, T is the minimal period
if m,n are relatively prime. In conclusion, we have

• If a1/a2 ∈ Q, then every integral curve x(t) on Tc1,c2 , for any c1, c2, is periodic
with the same minimal period independent of c1, c2.
• If a1/a2 is irrational, then the torus Tc1,c2 , for any c1, c2, does not contain any

periodic Reeb orbit.

We point out that when a1/a2 ∈ Q, each periodic orbit on the tori Tc1,c2 fails to be

non-degenerate. To see this note that the vector field Z := a2r2
∂
∂r1
− a1r1

∂
∂r2

along

Tc1,c2 lies in the contact structure ξ|Tc1,c2 . Moreover, LXZ = [X,Z] = 0, so that

(ψt)∗Z = Z for any t ∈ R, where ψt is the flow generated by X. It follows easily that
the map (ψT )∗ : ξ|x(0) → ξ|x(T )=x(0) has 1 contained in its spectrum, with Z|x(0) being
the corresponding eigenvector.

Finally, there are two integral curves of X, given by r1 = 0 and r2 = 0 respectively,
which are both closed Reeb orbits. It is easy to see that the minimal periods are 2π/a2,
2π/a1 respectively. Let x(t) be the periodic orbit given by r1 = 0 with period T =
2πk/a2 for some k ∈ Z. Note that the contact structure ξ|x(t) can be identified with

C × {x(t)} ⊂ C2, where (r1, θ1) is the polar coordinate on C. With this understood,

it is easy to see that (ψT )∗ : C → C is given by a rotation of angle 2π · a1ka2 . Thus

when a1k
a2

is not an integer, x(t) is non-degenerate. Similar discussions apply to the

periodic orbits given by r2 = 0. In particular, when a1/a2 is irrational, the Reeb vector
field X has only two isolated closed orbits, with all the associated periodic orbits (i.e.,
the orbits and their iterates) being non-degenerate. (In this case, the contact form
λ is non-degenerate.) Furthermore, the periodic orbits are all elliptic in the sense of
Example 3.10. We remark that when a1/a2 ∈ Q, the Reeb flow actually generates
a S1-action on M . We also observe that it is possible that a multiple cover (i.e., an
iterate) of a non-degenerate periodic Reeb orbit can become degenerate.

Exercise: For any a ∈ R, we denote by [a] ∈ Z the unique integer such that
a − 1 < [a] ≤ a. Consider the contact form λ in Example 3.11, where we assume
that a1/a2 is irrational. Let x(t) be a periodic orbit given by r1 = 0, whose period
equals k times of the minimal period for some k > 0. With the natural trivialization
of (ξ, dλ)|x(t) mentioned in Example 3.11, show that the Conley-Zehnder index of x(t)

equals 2[a1ka2 ] + 1.

Let C := ũ(Ṡ) be an unparametrized finite energy surface, ũ = (a, u) : Ṡ → R×M
be a parametrization of C. Let Γ = {zi} be the set of punctures, and for each i, let



MATH 705: PART 3: ASPECTS OF CONTACT GEOMETRY 17

xi = xi(t) be the periodic orbit of period Ti > 0 which is the limit of u at the puncture
zi. We assume all of xi are non-degenerate. We shall define the Conley-Zehnder index
of C, denoted by µ(C), as follows.

First, we denote by Ṡ a compatification of Ṡ obtained by adding a circle at each

puncture. Clearly, the map u : Ṡ → M can be extended to a map ū : Ṡ → M . With

this understood, we fix a trivialization Ψ of the symplectic vector bundle ū∗ξ → Ṡ. It
gives rise to a trivialization Ψi of ξ over each periodic orbit xi(t). We define

µ(C) :=
∑
zi∈Γ+

µ(xi(t),Ψi)−
∑
zi∈Γ−

µ(xi(t),Ψi).

Exercise: Show that µ(C) is well-defined, i.e., it is independent of the choices of
the parametrization ũ and the trivialization Ψ.

With the preceding understood, one can introduce an appropriate Banach space
J of almost complex structures J (and hence the almost complex structures J̃). We

let M be the set of pairs (C, J̃) where C is an unparametrized finite energy surface

which is J̃-holomorphic, J̃ ∈ J , and whose asymptotic limits at the punctures are
non-degenerate periodic orbits.

Theorem 3.12. The set M carries a structure of a separable Banach manifold such
that the map η : M→ J sending (C, J̃) to J̃ is a Fredholm map. Moreover, at each

(C, J̃) ∈M, the Fredholm index of η is given by

Ind (C) := µ(C) + (n− 2)(χ(S)−#Γ),

where n = 1
2(dimM − 1), and C is parametrized by a J̃-holomorphic map ũ : S \ Γ→

R×M . (χ(S) is the Euler characteristic of S and #Γ the number of punctures.)

Corollary 3.13. For a generic J̃ ∈ J , η−1(J̃) is a union of finiate dimensional

smooth manifolds. Moreover, for any C ∈ η−1(J̃) which is not a J̃-holomorphic cylin-
der associated to a periodic orbit of the Reeb vector field, the following holds:

Ind (C) := µ(C) + (n− 2)(χ(S)−#Γ) ≥ 1.

Note that the translations in the R-factor of R×M defines a R-action onM, whose
fixed points are precisely the J̃-holomorphic cylinders associated to a periodic orbit of
the Reeb vector field. The inequality follows from this fact.

4. Contact topology in dimension 3

4.1. Existence. It is a nontrivial question as if every closed, orientable 3-manifold
admits a contact structure.

Theorem 4.1. (Martinet) Every closed, orientable 3-manifold admits a co-orientable
contact structure.

Lemma 4.2. Let ξ0 be a co-orientable contact structure on a 3-manifold M0, let K be
a transverse knot in (M0, ξ0). Suppose M is a 3-manifold obtained from a Dehn surgery
along K. Then there is a co-orientable contact structure ξ on M , which coincides with
ξ0 off a neighborhood of K in M0.
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Proof. Pick a contact form α0 such that ξ0 = kerα0. Then by Theorem 2.6, there is
an identification of a regular neighborhood of K in M0 with S1×D(δ) for some δ > 0,
where D(δ) ⊂ R2 is the open disc of radius δ, such that over S1 ×D(δ),

ehα0 = dγ + r2dθ

for some smooth function h, where γ ∈ R/2πZ is the coordinate on the S1-factor, and
(r, θ) is the polar coordinate on D(δ). We extend h to the whole M0 and replace α0 by
the contact form ehα0, which is still denoted by α0 for simplicity. Then α0 = dγ+r2dθ
in the neighborhood S1 ×D(δ) of K.

The Dehn surgery amounts to removing the regular neighborhood S1 × D(δ) of
K in M0, and then gluing it back along the boundary T2 =: S1 × ∂D(δ) via some
diffeomorphism φ : T2 → T2, where

φ : (γ, θ) 7→ (qθ + nγ, pθ +mγ)

for some p, q,m, n ∈ Z with pn−mq = 1. (Note that the meridian {∗} × ∂D(δ) goes
to p times of the meridian {∗} × ∂D(δ) and q times of the longitude S1 × {∗}, so the
resulting 3-manifold M depends only on the integers p, q.)

We will consider contact 1-form α on S1 ×D(δ) of the form

α := f(r)dγ + g(r)dθ,

such that α = φ∗α0 = (n + mr2)dγ + (q + pr2)dθ near r = δ, and α = c(dγ + r2dθ)
for 0 ≤ r ≤ 1

2δ for some small constant c > 0. Note that α ∧ dα > 0 is equivalent
to fg′ − gf ′ > 0, which is equivalent to the ratio g/f being strictly increasing as
r increases. In particular, one can obtain such a 1-form α by connecting the point
(n+mδ2, q+pδ2) ∈ R2 to the point (c, 1

2cδ
2) ∈ R2 by a smooth curve (f(r), g(r)), which

runs clockwise around the origin as r decreases from δ to 1
2δ. With this understood,

we obtain a contact form on M which equals α0 on the M0 part and equals α on
S1 ×D(δ). The contact structure ξ = kerα.

�

Recall that every closed, orientable 3-manifold can be obtained from S3 via a se-
quence of Dehn surgeries, and note that S3 admits a contact structure, Theorem 4.1
follows immediately if one can show that every knot is isotopic to a transverse knot.

Lemma 4.3. Every knot is isotopic to a transverse knot.

Proof. There are two steps for the proof. For Step 1, we show every knot admits a
C0-approximation by a Legendrian knot, which is clearly isotopic to the original knot.

Let K be the knot. We cover K by finitely many Darboux charts (cf. Theorem
2.3), over which the contact structure can be identified with the standard contact
structure on R3, defined by the contact form α0 = dz + xdy. The C0-approximation
of K is then obtained by constructing a C0-approximation over each Darboux chart
by a Legendrian curve.

With this understood, note that a parametrized curve γ(s) in R3, where γ(s) =
(x(s), y(s), z(s)), is Legendrian if and only if z′(s) + x(s)y′(s) = 0, or if y′(s) 6= 0,

x(s) = −z
′(s)

y′(s)
= −dz

dy
.
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The projection of γ(s) under (x, y, z) 7→ (y, z) is called the front projection. Then
it follows easily that any smooth curve in the yz-plane, which is immersed with only
transverse self-intersections and no vertical tangent lines, except at finitely many cusp
points, where at each cusp point, the curve can be parametrized by

(∗) (y(s), z(s)) = (λs2 + b,−λ(
2

3
s3 + as2) + c), λ 6= 0, −ε < s < ε,

is the front projection of a smoothly embedded Legendrian curve in R3. Note that in
the model of a cusp point in (∗), the point above the cusp point, i.e., (x(0), y(0), z(0)),
can be chosen to be any point (a, b, c) in R3. Moreover, the x-coordinate of the
Legendrian curve is given by x(s) = s + a. Note also that the cusp points occur
at exactly the images of the Legendrian curve where the y-coordinate has a local
maximum or a local minimum under the front projection.

Now given any smooth curve γ(s) = (x(s), y(s), z(s)), we pick a C0-approximation
of (y(s), z(s)) by an immersed curve (ỹ(s), z̃(s)), with only transverse self-intersections
and no vertical tangent lines, with finitely many cusp points modeled as in (∗) above,

such that the lifting x-coordinate under the front projection, i.e., − z̃′(s)
ỹ′(s) , is C0-close

to x(s). Then the corresponding Legendrian curve is a C0-approximation of γ(s).
For Step 2, we show that any Legendrian knot K admits a C∞-approximation by

a transverse knot. To this end, note that by Theorem 2.4, a neighborhood of K can
be modeled by (S1 ×D(δ), ξ), with ξ = kerα, where, with θ ∈ S1, (x, y) ∈ D(δ),

α = cos θdx− sin θdy,

with K being identified with S1 × {0}. Then for any 0 < r < δ, the knots

γ±(θ) = (θ,±r sin θ,±r cos θ), θ ∈ S1,

are transverse; note that α(γ′±(θ)) = ±r. In particular, γ+ is a positive transverse
knot and γ− is a negative transverse knot.

�

4.2. Overtwisted contact structures and homotopy classes of 2-plane fields.

Definition 4.4. Let M be a closed, orientable 3-manifold, ξ be an co-orientable
contact structure on M . Let ∆ ⊂ M be a smoothly embedded disc. We say ∆ is an
overtwisted disc if for any p ∈ ∂∆, ξp = Tp∆. In particular, ∂∆ is a Legendrian knot
in M . The contact structure ξ is called overtwisted if there exists an overtwisted
disc in M . Otherwise, ξ is called tight.

Example 4.5. Consider the contact structure ξ on S1 ×D(δ) in the proof of Lemma
4.2, which is defined by a contact form α of the following form:

α = f(r)dγ + g(r)dθ.

Note that the vector field ∂
∂r ∈ ξ. Thus in order to visualize the contact structure

ξ, we consider its intersection with a family of tori Tr parametrized by r, where
Tr := S1 × ∂D(r). The intersection ξ ∩ TTr generates a foliation of Tr by Legendrian
curves, and it is easy to see that in the coordinate (θ, γ), the Legendrian curves on Tr
has a constant slope −g(r)/f(r). It follows that as we move towards the core of the
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solid torus S1 ×D(δ), i.e., as r decreases to 0, the Legendrian curves on Tr will twist
by turning around counter-clockwise. Moreover, note that the Legendrian curves on
Tr will become meridians, i.e., of slope 0, if and only if g(r) = 0. In particular, if there
is a r0 > 0 such that g(r0) = 0, then the intersection ({∗} × D(δ)) ∩ Tr0 bounds an
overtwisted disc ∆ := {∗} ×D(r0) in the contact manifold (S1 ×D(δ), ξ).

One can change the contact structure ξ by adding one or more full twists to the
Legendrian curves on Tr as r decreases to 0. (Such a twist is called a Lutz twist.) It

is clear that the resulting contact structure, denoted by ξ̃, is always overtwisted. More
concretely, ξ̃ is a contact structure defined by a contact form α̃ = f̃(r)dγ + g̃(r)dθ,

where the functions f̃(r), g̃(r) are chosen such that the curve (f̃(r), g̃(r)) runs one or
more full rounds around the origin clockwise than the curve (f(r), g(r)) as r ↓ 0.

Theorem 4.6. (Eliashberg) The set of co-oriented overtwisted contact structures up
to contact isotopy is in one to one correspondence with the set of homotopy classes of
oriented 2-plane fields, where the correspondence sends each contact structure to the
underlying 2-plane field.

The set of homotopy classes of oriented 2-plane fields on a closed, oriented 3-
manifold M can be easily described. The basic fact is that M has trivial tangent
bundle. After fixing an identification TM = M × R3, where R3 is oriented, each
oriented 2-plane field on M determines a map from M to S2, sending x ∈ M to the
oriented unit vector in R3 perpendicular to the 2-plane at x. Consequently, the set of
homotopy classes of oriented 2-plane fields on M is identified with the set of homotopy
classes of maps from M to S2. For example, the set of homotopy classes of oriented
2-plane fields on S3 is identified with π3(S2) = Z.

Example 4.7. We consider the standard contact structure ξ0 on S3, where S3 ⊂ C2

and ξ0 := TS3 ∩ J(TS3) is the field of complex tangency. We shall determine the map
F : S3 → S2 which corresponds to ξ0.

To this end, we fix a trivialization of TS3 as follows. We identify S3 with the Lie
group of unit quaternions under C2 = H with (z1, z2) = z1+z2j. Then the left-invariant
vector fields X1, X2, X3, where for any p = (z1, z2) ∈ S3, X1(p) = (iz1,−iz2), X2(p) =
(−z2, z1), and X3(p) = (iz2, iz1), defines a trivialization of TS3, and X1, X2, X3 is a
positively oriented global frame with respect to the orientation on S3.

Now let a, b, c ∈ R such that aX1(p) + bX2(p) + cX3(p) ∈ ξ0|p. This happens if and
only if J(aX1(p) + bX2(p) + cX3(p)) ∈ TpS3, which means aX1(p) + bX2(p) + cX3(p)
is orthogonal to the vector p ∈ S3. This condition can be expressed as

(|z2|2 − |z1|2)a+ (iz1z̄2 − iz2z̄1)b− (z1z̄2 + z2z̄1)c = 0.

Equivalently, 2Re(z1z̄2)c+ 2Im(z1z̄2)b+ (|z1|2 − |z2|2)a = 0. Now observe that, with
|z1|2+|z2|2 = 1, the vector (2Re(z1z̄2), 2Im(z1z̄2), |z1|2−|z2|2) is a unit vector. Finally,
(2Re(z1z̄2), 2Im(z1z̄2), |z1|2 − |z2|2) is orthogonal to ξ0|p, thus we can define the map
F : S3 → S2 by

F (z1, z2) = (2Re(z1z̄2), 2Im(z1z̄2), |z1|2 − |z2|2).

In order to understand the map F : S3 → S2, we observe F (λz1, λz2) = F (z1, z2)
for any λ ∈ S1, which implies that F factors through the Hopf fibration H : S3 → CP1
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to a map F̄ : CP1 → S2. With this understood, note that F̄ ([1 : 0]) = (0, 0, 1), so
we shall consider next the case F̄ ([z1 : z2]) where z2 6= 0. For any 0 < r ≤ 1, let

(z1, z2) = (
√

1− r2eiθ, r), and identify CP1 \ {[1 : 0]} with C by sending [z1 : z2] to

z = ρeiθ, where ρ =
√

1−r2
r . Then under this identification,

F̄ (ρeiθ) = (
2ρ cos θ

1 + ρ2
,
2ρ sin θ

1 + ρ2
,
ρ2 − 1

1 + ρ2
),

which is the inverse of the stereographic projection. Hence in conclusion, the map
F : S3 → S2 is given by the Hopf fibration after identifying CP1 with S2 canonically.
(Note that the Hopf fibration defines a generator of π3(S2) = Z.)

In contrast to overtwisted contact structures, the existence and classification of tight
contact structures are much more subtle. The standard contact structure ξ0 on S3 is
tight, and it is known that ξ0 is the only tight contact structure on S3.

4.3. Symplectic fillings. A fundamental fact is that fillable contact structures on a
closed 3-manifold are always tight.

Definition 4.8. Let ξ be a co-oriented contact structure on a closed 3-manifold M .
(1) Let W be a compact complex surface with boundary. We say that W is a

holomorphic filling of (M, ξ) if M = ∂W is a strictly pseudoconvex boundary of W
(i.e. there exists a real smooth function ρ defined near M such that M is a regular
level surface, with ρ being increasing along the outward normals of M , and the Levi
form of ρ is positive definite), and ξ = TM ∩ J(TM). In this case, (M, ξ) is called
holomorphically fillable. Furthermore, W is called a Stein filling if W is a Stein
domain (i.e., the function ρ is a globally defined, strictly plurisubharmonic function
on W ), and in this case, (M, ξ) is called Stein fillable.

(2) Let (W,ω) be a compact symplectic 4-manifold with ∂W = M . We say that
(W,ω) is a strong symplectic filling of (M, ξ) if there is a Liouville vector field X
defined near M pointing outward, such that the 1-form α := iXω|M is a contact form
defining ξ. In this case, (M, ξ) is called strongly (symplectically) fillable. More
generally, if ω|ξ > 0, then (W,ω) is called a weak symplectic filling of (M, ξ), and
(M, ξ) is called weakly (symplectically) fillable.

Remark 4.9. It is known that (M, ξ) is holomorphically fillable if and only if it is
Stain fillable (possibly by different compact complex surfaces with boundary). On
the other hand, (M, ξ) is Stain fillable if and only if it is the (contact) boundary of a
Weinstein domain (cf. Definition 4.4 in §4 of Part 2).

Exercise: Let (W,ω) be a strong symplectic filling of both (M, ξ1) and (M, ξ2).
Show that ξ1, ξ2 are contact isotopic.

The following inclusions are easy to see:

{Stein fillable} ⊂ {strongly fillable} ⊂ {weakly fillable} ⊂ {tight}.
It is also known that each of the above inclusions is a proper subset. However, when
M is a rational homology sphere, strongly fillable and weakly fillable are equivalent
(see Prop. 4.11 below). It is also known that there are closed, orientable 3-manifolds
which do not admit any tight contact structures.
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Example 4.10. (1) The standard contact structure ξ0 on S3 is both holomorphically
fillable and strongly (symplectically) fillable, by the unit 4-ball.

(2) Let Σ be a compact Riemann surface, M be the S1-bundle associated to π :
T ∗Σ → Σ, naturally embedded in T ∗Σ as a compact hypersurface. Note that if
Σ = S2, then M = RP3, and for Σ = T2, M = T3.

Let ω = −dλ be the standard symplectic structure on T ∗Σ, where λ is the canonical
1-form on T ∗Σ. Consider the Liouville vector field X associated to −λ, i.e., iXω = −λ.
Then X is transversal to M . To see this, note that in a local coordinate system x1, x2

on Σ, λ = y1dx1 + y2dx2, and ω = dx1 ∧ dy1 + dx2 ∧ dy2. With this understood,
X = y1

∂
∂y1

+ y2
∂
∂y2

, which shows that X is transversal to M . Let ξ := ker(iXω|M ) be

the contact structure on M , and let W ⊂ T ∗Σ be the compact domain bounded by
M . Then (W,ω) is a strong symplectic filling of (M, ξ).

In fact, (W,ω) is actually a Weinstein domain, so (M, ξ) is even Stein fillable. To
see this, we fix a Riemannian metric 〈, 〉 on Σ, and pick a Morse function f : Σ→ R.

Let ∇f be its gradient vector. Let X̃ be the Liouville vector field associated to the
1-form −λ + εdF , where F : T ∗Σ → R is defined by F = λ(∇f), and ε > 0 is chosen

sufficiently small. Then X̃ is transversal to M , and is gradient-like with respect to the
Morse function φ : T ∗Σ→ R, where for any v ∈ T ∗Σ, φ(v) := ||v||2 + ρ(v) · (εf(π(v)))
for some cut-off function ρ defined on a small neighborhood of the zero-section in T ∗Σ.

Proposition 4.11. (Eliashberg) Let (W,ω) be a weak symplectic filling of (M, ξ).
Suppose the de Rham cohomology class [ω|M ] = 0. Then there is a symplectic form ω′

on W and a contact structure ξ′ on M , such that (1) (W,ω′) is a strong symplectic
filling of (M, ξ′), (2) ξ′ is contact isotopic to ξ.

Proof. We fix a parametrization of a small neighborhood of M in W by (1− ε, 1]×M
as follows: let ξ⊥ ⊂ TW |M be the symplectic complement of ξ with respect to ω.
Since ω|M > 0 on ξ, we have TW |M = ξ ⊕ ξ⊥; in particular, we can pick an outward
normal vector field v ∈ ξ⊥. We use v to identify a small neighborhood of M in W
with (1− ε, 1]×M such that v = ∂

∂t on M .
Next we fix a contact form α of ξ. Since (W,ω) is a weak symplectic filling of (M, ξ),

by choosing ε > 0 small enough, ω|{t}×M > 0 on ξ for any t ∈ (1− ε, 1]. Consequently,
there is a smooth family of smooth functions ft > 0 on M such that ω|{t}×M = ftdα
when restricted to ξ. Set α̃ = ftα, which is regarded as a 1-form on (1 − ε, 1] ×M .
Then on (1− ε, 1]×M

ω = dM α̃+ α̃ ∧ β1(t) + gdt ∧ α̃+ dt ∧ β2(t),

for some β1(t), β2(t) ∈ Ω1(M) and a smooth function g, where dM is the exterior
differential on M . Note that β2(t) = 0 at t = 1 as ∂

∂t = v ∈ ξ⊥. Consequently,

ω ∧ ω|M = 2g|M · (dM α̃ ∧ dt ∧ α̃)|M > 0,

which implies that g > 0 as long as we choose ε > 0 small.
Now pick a smooth function ρ : [1− ε, 1]→ R such that ρ(t) ≥ 0, ρ′(t) ≥ 0, ρ(t) = 0

near t = 1− ε and ρ(t) = 1 near t = 1. For any constant C > 0, we let

ω′ := ω + Cd(ρα̃).
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Then it is easy to check that ω′ ∧ ω′ > 0 (here we use the fact that g > 0 and β2(t) is
small near t = 1, so that ω ∧ d(ρα̃) ≥ 0).

Since [ω|M ] = 0, there is a 1-form γ on M such that ω|M = dγ. Then notice that
ω′|M = d(γ + Cα̃|M ), and for large C > 0, the 1-form γ + Cα̃|M is a contact form.
We set ξ′ := ker(γ + Cα̃|M ). Then (W,ω′) is a strong symplectic filling of (M, ξ′).
Furthermore, λs := sγ + Cα̃|M , s ∈ [0, 1], is a smooth family of contact forms, which
gives rise to a contact isotopy between ξ and ξ′. This finishes the proof.

�

4.4. Open book decompositions. Let M be a closed, oriented 3-manifold. An
open book decomposition of M , denoted by (B, π), consists of the following data:
B = tiBi is an oriented link in M (called the binding), and π : M \ B → S1 is a
fibration with the following property, i.e., for each i, if we fix a regular neighborhood Ni

of Bi in M , then for each θ ∈ S1, the fiber π−1(θ) (called a page) intersects with each
torus ∂Ni in a longitude λi. The longitude λi determines an identification of Ni with
S1×D2. The restriction of π to M\tiNi defines it as a fiber bundle over S1 whose fibers
are diffeomorphic to a compact Riemann surface with boundary Σ. There is a 1 : 1
correspondence between the components of ∂Σ and the components of B = tiBi. We
assume that the boundary orientation of ∂Σ matches with the orientation of B under
this correspondence. With the orientation of M , Σ determines a co-orientation, which
orients the base S1 of the fibration π. This allows us to identify S1 with [0, 1]/0 ∼ 1.
Finally, the identification of Ni with S1 × D2 induces an identification of ∂Ni with
S1 × S1, which determines a trivialization of the fiber bundle π : M \ tiNi → S1 on
the boundary of M \ tiNi. It follows that

M \ tiNi = Σ× [0, 1]/(x, 1) ∼ (h(x), 0)

for some diffeomorphism h : Σ→ Σ such that h = Id on ∂Σ. Moreover, h is uniquely
determined up to isotopy rel ∂Σ. It is easy to see that one can completely recover the
3-manifold M and the open book decomposition (B, π) from the data (Σ, h).

Example 4.12. (1) Consider M = S3 ⊂ C2, oriented as the boundary of the unit
ball, and the function f(z1, z2) = z1z2. Let B = S3 ∩ f−1(0), which consists of two
components Bi = {zi = 0}, where i = 1, 2. The map π : M \ B → S1 defined by
π(z1, z2) = f(z1, z2)/|f(z1, z2)| is an open book decomposition of M .

For each eiθ ∈ S1, the page π−1(eiθ) is an annulus. An explicit parametrization
(as oriented surfaces) is given by φθ : (0, 1) × S1 → π−1(eiθ), sending (r, eit) to

(reit,
√

1− r2ei(θ−t)). Note that from this parametrization, it is easily seen that the
orientation of B is given by the natural orientation as unit circles Bi ⊂ C.

In order to see the monodromy map, we consider the S1-action on S3, defined by
λ · (z1, z2) = (λz1, λz2). Note that π(λ · (z1, z2)) = λ2π(z1, z2). It follows easily that
the flow of the S1-action is transverse to the pages π−1(eiθ), and the return map is
given by the multiplication by λ = −1. Since the flow of the S1-action moves in the
positive direction of the binding B, the monodromy h is given by a right-handed Dehn
twist of the annulus [ε, 1− ε]× S1.

Similarly, one can consider the function g(z1, z2) = z1z̄2 instead. The binding
B = S3 ∩ g−1(0) still consists of two components Bi = {zi = 0}, i = 1, 2. In this case,
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an oriented parametrization of the pages is given by (r, eit) 7→ (rei(θ−t),
√

1− r2e−it).
Note that with this parametrization, the orientation of B1 is given by the complex
orientation as the unit circle in C, but B2 is given with the opposite orientation. The
flow of the S1-action λ · (z1, z2) = (λz1, λ

−1z2) is transverse to the pages, and the
return map is given again by the multiplication by λ = −1. However, since the flow of
the S1-action is in the opposite direction of the binding components, the monodromy
h is given by a left-handed Dehn twist of the annulus [ε, 1− ε]× S1 this time.

(2) Let M = S3 ⊂ C2, oriented as the boundary of the unit ball, and let f(z1, z2) =
z2

1 − z3
2 . The binding B = S3 ∩ f−1(0) is a (2, 3)-torus knot, parametrized by

(r1e
3it, r2e

2it), where r2
1 = r3

2 and r2
1 + r2

2 = 1. Consider the S1-action on M = S3

given by λ · (z1, z2) = (λ3z1, λ
2z2). Then f(λ · (z1, z2)) = λ6f(z1, z2). It follows easily

that the flow of the S1-action is transverse to the pages of the open book decompo-
sition π = f/|f | : M \ B → S1, with the return map given by the multiplication of
λ = exp(2πi/6). Note that the return map acts on B as the translation t 7→ t+ π/3.
It follows that the page Σ of π : M \ N → S1 is T2 with a disc removed, and the
monodromy h : Σ → Σ is a periodic diffeomorphism of order 6, composed with a
twisting near its boundary undoing the translation t 7→ t+ π/3 (so h = Id near ∂Σ).

Definition 4.13. Let ξ be a co-oriented contact structure on M , and let (B, π) be
an open book decomposition on M . We say that ξ is supported by (B, π) if there is
a contact form α associated to ξ such that dα > 0 on the pages π−1(θ) and α > 0 on
the binding B.

Exercise: Show that the standard contact structure ξ0 on S3 is supported by the
first open book decomposition in Example 4.12(1) and it is also supported by the open
book decomposition in Example 4.12(2).

Theorem 4.14. (1) Let (B, π) be an open book decomposition of M . Then there is
a contact structure ξ on M such that ξ is supported by (B, π). Moreover, any two
contact structures supported by (B, ξ) are contact isotopic.

(2) (Giroux) Let ξ be a co-oriented contact structure on M . Then there is an open
book decomposition (B, π) which supports ξ.

Part (1) of Theorem 4.14 gives an alternative proof for the existence of contact
structures on a closed orientable 3-manifold, as it is known that every closed oriented
3-manifold admits an open book decomposition. On the other hand, it is possible to
characterize contact structures in terms of an open book decomposition that supports
the contact structure. For example, it is known that a contact structure is Stein fillable
if and only if it is supported by an open book decomposition whose monodromy map
is the product of finitely many right-handed Dehn twists.

Example 4.15. Let M be the link of an isolated normal surface singularity (X,x).
Then the plane field of complex tangency on M defines a contact structure, which
is known to be Stein fillable. The diffeomorphism type of M depends only on the
topological type of the singularity, but there could be different analytical structures
for the singularity. It turns out that the contact structures defined by different analytic
structures are all contactomorphic; this contact structure is called the Milnor fillable
contact structure on M .
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The idea of proof is to consider holomorphic functions f on X which vanishes at x
and is nonsingular on X \ {x}. For any such f , the map π := f/|f | : M \ f−1(0)→ S1

defines an open book decomposition which supports the contact structure on M (called
a Milnor open book). With this understood, one can show that for any analytic
structure of the singularity, there is a Milnor open book which is isomorphic to a
canonical open book on M . Then the claim follows from Theorem 4.14(1).

In the case where M is a Seifert manifold such that the Euler number of the Seifert
fibration e(M) < 0, then M can be realized as the link of a weighted homogeneous
singularity (X,x). There is a holomorphic C∗-action on (X,x), inducing the S1-action
on M . The Milnor fillable contact structure on M coincides with the S1-invariant
contact structure on M (cf. Example 1.4 and the exercise following it).

References

[1] Ana Cannas da Silva, Lectures on Symplectic Geometry, Lect.Notes in Math. 1764.
[2] D.L. Dragnev, Fredholm Theory and Transversality for Noncompact Pseudoholomorphic Maps in
Symplectizations, Communications on Pure and Applied Math. Vol. LVII (2004), 726-763.

[3] H. Geiges, An Introduction to Contact Topology, Cambridge Studies in Advanced Math. 109.
[4] H. Hofer, Pseudoholomorphic curves in symplectizations with application to the Weinstein conjec-
ture in dimension three, Invent. Math. 114 (1993), no. 3, 515-565.

[5] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford Mathematical Mono-
graphs.

University of Massachusetts, Amherst.
E-mail: wchen@math.umass.edu


