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1. Symplectic blowing up and symplectic cutting

In complex geometry the blowing-up operation amounts to replace a point in a
space by the space of complex tangent lines through that point. It is a local operation
which can be explicitly written down as follows.

Consider the blow-up of Cn at the origin. This is the complex submanifold of
Cn × CPn−1:

C̃n ≡ {((z1, z2, · · · , zn), [w1, w2, · · · , wn])|(z1, z2, · · · , zn) ∈ [w1, w2, · · · , wn]}.

Note that as a set C̃n = Cn \ {0} t CPn−1, with CPn−1 being the space of complex

tangent lines through the origin. CPn−1 ⊂ C̃n is called the exceptional divisor.
The projection onto the first factor Cn, which is called blowing-down, induces a bi-

holomorphism between C̃n \ CPn−1 and Cn \ {0}, collapsing the exceptional divisor
CPn−1 onto the origin 0 ∈ Cn. On the other hand, the projection onto the second

factor CPn−1 defines C̃n as a holomorphic line bundle, i.e., the so-called tautological
line bundle over CPn−1.

Blowing up is often used in resolving singularities of complex subvarieties. We give
some examples next to illustrate this.

Example 1.1. (1) Consider the complex curve C ≡ {(z1, z2) ∈ C2|z1z2 = 0}. It is
the union of two lines C1 = {z1 = 0} and C2 = {z2 = 0} which intersect transversely
at 0 ∈ C2. Let us consider the pre-image of the portion of C1, C2 in C2 \ {0} in the

blowup C̃2 of C2 at 0. It can be compactified into a complex curve C̃ in C̃2, which
1
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is a disjoint union of two smooth complex curves C̃1 and C̃2. The point here is that

since C1, C2 intersect transversely at 0 ∈ C2, the compactification C̃1 and C̃2 in C̃2

are obtained by adding two distinct points in the exceptional divisor CP1 ⊂ C̃2, which
parametrizes the complex lines through 0 ∈ C2. More concretely, note that

C̃1 = {(0, z), [0, 1]) ∈ C2 × CP1|z ∈ C},

and

C̃2 = {(z, 0), [1, 0]) ∈ C2 × CP1|z ∈ C}.

We call C̃1, C̃2 the proper transform of C1, C2 under the blowing up C̃2 → C2.
(2) Consider the complex curve C = {(z1, z2) ∈ C2|z2

1 = z3
2}. It is called a cusp

curve and is singular at 0 ∈ C2. The proper transform C̃ of C in the blowing up

C̃2 → C2 is identified with

C̃ = {(z3, z2), [z, 1]) ∈ C2 × CP1|z ∈ C}.

Note that C̃ is a smooth curve in C̃2 because the projection of C̃ onto the exceptional

curve CP1 ⊂ C̃2 is non-singular at z = 0. Note that C̃ intersects the exceptional
divisor CP1 at z = 0 with a tangency of order 2.

Exercise: Let p := [0, 0, · · · , 0, 1] ∈ CPn. We let π : CPn \ {p} → CPn−1 be
the map which sends [z0, z1, · · · , zn] to [z0, z1, · · · , zn−1], where CPn−1 ⊂ CPn via
[z0, z1, · · · , zn−1] 7→ [z0, z1, · · · , zn−1, 0]. Show that π : CPn \ {p} → CPn−1 can be
made into a holomorphic line bundle over CPn−1, which is isomorphic to the dual of
the tautological line bundle.

As a consequence, note that C̃n is diffeomorphic to the connected sum Cn#CPn.
More generally, we have

Theorem 1.2. Let X be an n-dimensional complex manifold. Then the blow up of

X at one point is an n-dimensional complex manifold X̃ which is diffeomorphic to
X#CPn.

Let (M,ω) be a symplectic manifold of dimension 2n, and let p ∈M be a point. We
would like to define a symplectic analog of blowing up of M at p. To this end, note
that topologically M#CPn can be obtained by removing a ball centered at p and then
collapsing the boundary S2n−1 along the fibers of the Hopf fibration S2n−1 → CPn−1.
We will show that there is a canonical symplectic structure on the resulting manifold
(depending on the “symplectic size” of the ball removed); this is a special case of the
so-called symplectic cutting due to E. Lerman, which we shall describe next.

Let (M,ω) be a symplectic manifold equipped with a Hamiltonian S1-action, and
let h : M → R be a moment map of the S1-action and let ε be a regular value of
h. For simplicity we assume that the S1-action on h−1(ε) is free; this condition is
unnecessary if one works with orbifolds. We introduce the following notations: we
denote by Mh>ε, Mh≥ε the pre-images of (ε,∞) and [ε,∞) under h : M → R, and

denote by Mh≥ε the manifold which is obtained by collapsing the boundary h−1(ε) of
Mh≥ε along the orbits of the S1-action.
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Theorem 1.3. (E. Lerman). There is a natural symplectic structure ωε on Mh≥ε such

that the restriction of ωε to Mh>ε ⊂Mh≥ε equals ω.

Proof. Consider the symplectic product (M×C, ω⊕ω0) and the Hamiltonian S1-action
on it given by

t · (m, z) = (t ·m, eitz), m ∈M, z ∈ C.
The moment map is H(m, z) = h(m)− 1

2 |z|
2.

Observe the following identification

H−1(ε) = {(m, z)|h(m) > ε, |z| =
√

2(h(m)− ε)} t {(m, 0)|h(m) = ε}
= Mh>ε × S1 t h−1(ε).

The theorem follows immediately from H−1(ε)/S1 = Mh>ε t h−1(ε)/S1 = Mh≥ε, and
that the symplectic structure ωε on H−1(ε)/S1 equals ω when restricted to the open
submanifold Mh>ε.

�

Let δ > 0 and let M = {(z1, z2, · · · , zn) ∈ Cn|
∑n

j=1 |zj |2 < δ} be the ball of radius√
δ in Cn centered at the origin. Given with the standard symplectic structure ω0, M

admits a Hamiltonian S1-action

t · (z1, z2, · · · , zn) = (e−itz1, e
−itz2, · · · , e−itzn),

which has a moment map h(z1, z2, · · · , zn) = 1
2

∑n
j=1 |zj |2. For any 0 < ε < δ

2 , ε is a

regular value of h such that the S1-action on h−1(ε) is free. The symplectic manifold
Mh≥ε is called the symplectic blowing up of M at 0 ∈ M (of size 2ε). Note that

h−1(ε)/S1 = CPn−1, which is embedded in Mh≥ε as a symplectic submanifold; it is the
symplectic analog of the exceptional divisor in the complex blowing up.

Exercise: Show that the normal bundle of the symplectic exceptional divisor CPn−1

in Mh≥ε is isomorphic to the tautological line bundle over CPn−1. Consequently,

Mh≥ε = M#CPn.

Symplectic blowing up of a general symplectic manifold can be defined by grafting
the above construction into the manifold. More precisely, let (M,ω) be a symplectic
manifold and let p ∈M be a point. By Darboux theorem, there exists a δ > 0 such that
a neighborhood of p inM is symplectomorphic to the standard symplectic ball of radius√
δ. By Theorem 1.3, since the symplectic structure ωε on the symplectic blow-up of

the standard symplectic ball of radius
√
δ equals the standard symplectic structure ω0

when restricted to the shell region {(z1, z2, · · · , zn) ∈ Cn|2ε <
∑n

j=1 |zj |2 < δ}, one

can graft it into the symplectic manifold (M,ω).
We remark that there are several other approaches to symplectic blowing up, each

with different advantages.

Example 1.4. Let M be the 4-dimensional symplectic ball of radius
√
δ with standard

symplectic structure ω0. Let C1, C2 be two embedded symplectic surfaces in M which
intersect at 0 ∈M such that in an open neighborhood of the closed ball of radius 2ε,
C1, C2 are given by complex lines. Under this assumption notice that in the symplectic
blowing up construction (i.e., the symplectic cutting), h−1(ε) intersects each of C1, C2
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at an orbit of the S1-action on h−1(ε), which collapses to a point in Mh≥ε. Thus

the proper transform C̃1, C̃2 of C1, C2 in the symplectic blowing up Mh≥ε are simply
the embedded symplectic surfaces obtained by removing a disc from C1, C2 and then
collapsing the boundary to a point lying in the symplectic exceptional divisor. Clearly,
the intersection of C1, C2 is resolved under the symplectic blowing up.

For the cusp curve C = {(z1, z2)|z2
1 = z3

2} ⊂ M , its proper transform C̃ in Mh≥ε
can be constructed, at least when ε > 0 is sufficiently small. It is again an embedded
symplectic disc intersecting the symplectic exceptional divisor at one point with a

tangency of order 2. The construction of C̃, however, is much more involved hence
the details are left out here.

The reversing operation, called symplectic blowing down, can be defined, at
least in low dimensions, i.e., 4 dimensions or 6 dimensions. More concretely, let M
be a 4-dimensional symplectic manifold, C ⊂ M be an embedded symplectic S2 with
C2 = −1. Then by the symplectic neighborhood theorem, a neighborhood of C in
M is symplectomorphic to a neighborhood of the symplectic exceptional divisor in a
symplectic blowing up. This allows us to remove C from M and then graft back a
symplectic 4-ball of appropriate size (with the standard symplectic structure ω0) into
M . (Topologically, this has the effect of collapsing C to a point.) Similarly, let M be
a 6-dimensional symplectic manifold, where CP2 is embedded in M as a symplectic
submanifold whose normal bundle is isomorphic to the tautological line bundle of CP2.
Then, by a highly nontrivial result that any symplectic structure on CP2 is equivalent
to a constant multiple of the Kähler form of the Fubini-Study metric, a neighborhood of
CP2 in M is again symplectomorphic to a neighborhood of the symplectic exceptional
divisor in a symplectic blowing up. We can then remove the CP2 from M and put
back a symplectic 6-ball of appropriate size.

We next discuss symplectic blowing up in the presence of a Hamiltonian torus
action. Let (M,ω) be a symplectic manifold with a Hamiltonian Tn-action, and let
µ : M → (tn)∗ be the moment map. Suppose ξ0 ∈ tn generates a circle T1 ⊂ Tn. Then
the induced S1-action on M has the moment map h = 〈µ, ξ0〉. Because the induced
S1-action commutes with the Tn-action, and both Mh>ε and h−1(ε) are Tn-invariant,
there is an induced Tn-action on Mh>εth−1(ε)/S1 = Mh≥ε, which is also Hamiltonian.

The corresponding moment map µε : Mh≥ε → (tn)∗ is induced from the restriction of
µ on Mh≥ε. Hence the image of µε in (tn)∗ is

µε(Mh≥ε) = µ(M) ∩ {ξ∗ ∈ (tn)∗|〈ξ∗, ξ0〉 ≥ ε}.
Example 1.5. (Equivariant blowing-up at a fixed point). Consider the standard
Hamiltonian T2-action on CP2 given by

(t1, t2) · [z0, z1, z2] = [z0, e
−it1z1, e

−it2z2]

which is considered in Example 4.15(1) of Section 4 of Part 1. Here we double the
symplectic form used in Example 4.15(1), and consequently the moment map becomes

µ([z0, z1, z2]) = (
|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2
),

and the image of µ is {(x1, x2) ∈ R2|x1 + x2 ≤ 1, x1, x2 ≥ 0}.
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Now consider the S1-action

t · [z0, z1, z2] = [z0, z1, e
itz2],

which has moment map h([z0, z1, z2]) = − |z2|2
|z0|2+|z1|2+|z2|2 . The symplectic cut CP2

h≥− 1
2

,

which is a symplectic blowing-up of CP2 at the fixed point [0, 0, 1], has an induced
Hamiltonian T2-action. The image of the corresponding moment map is

{(x1, x2) ∈ R2|x1 + x2 ≤ 1, x1 ≥ 0, 0 ≤ x2 ≤
1

2
}.

Note that this is the same as the image of the moment map in Example 4.15(4) in
Section 4 of Part 1 (a T2-action on a Hirzebruch surface). By Delzant’s classification
theorem, these two T2-actions are equivalent.

Example 1.6. Here we describe another application of symplectic cutting. Let π :
Y → Σ be a principal S1-bundle over a compact Riemann surface, and denote by E
the associated complex line bundle over Σ. We fix any 1-form α on Y such that iα is
a connection 1-form of the principal S1-bundle π : Y → Σ. We denote by κ the 2-form
on Σ such that π∗κ = −dα. Note that the de Rham cohomology class of κ equals
2πc1(E). Finally, we fix an area form σ on Σ.

Let M := Y × (−ε, ε), and consider ω := π∗(σ − tκ) + dt ∧ α, where t is the
coordinate on the interval (−ε, ε). It is easy to check that dω = 0, and moreover, ω is
non-degenerate when ε > 0 is sufficiently small.

Observe that the natural S1-action on M preserves ω. Furthermore, it is a Hamil-
tonian S1-action with a moment map h(y, t) = t, ∀y ∈ Y . With this understood, we
consider the symplectic cutting Mh≥0. It is easy to see that topologically, Mh≥0 is

diffeomorphic to a disc bundle of E. Moreover, Σ, embedded in Mh≥0 as the zero-
section, is a symplectic surface with normal bundle E. Finally, the symplectic form
on Mh≥0 restricts to the area form σ on Σ. With this understood, we remark that,

by the symplectic neighborhood theorem, Mh≥0 can serve as a model for the symplec-
tic structure of a neighborhood of any symplectic embedding of Σ into a symplectic
4-manifold with normal bundle E whose total area equals

∫
Σ σ.

Exercise: (Symplectic branched covering) LetM be a smooth 4-manifold, equipped
with a smooth Zn-action, such that the fixed-point set of the action consists of a
disjoint union of embedded surfaces B = ∪iBi, and the action is free in the complement
of B. Let π : M →M ′ be the quotient of the action. Clearly, M ′ is naturally a smooth
4-manifold. We denote by B′ the image of B in M ′. The map π : M → M ′ is called
a branched covering, with branch locus B′. When M is a complex surface and the
Zn-action is holomorphic, M ′ is naturally a (non-singular) complex surface, with B′

being a holomorphic curve in M ′, and vice versa.
Prove the following symplectic analog using the symplectic model in Example 1.6:
(1) Suppose ω is a symplectic form on M which is preserved by the Zn-action. Then

ω descends to a symplectic form ω′ on M ′ \ B′. Show that one can extend ω′ across
B′ to a symplectic form on M ′ such that B′ is a symplectic surface.

(2) Suppose ω′ is a symplectic form on M ′ such that B′ is a symplectic surface.
Then ω′ can be lifted to a symplectic form ω on M \ B, which is naturally invariant
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under the Zn-action. Show that ω can be extended across B to a symplectic form on
M , with respect to which the Zn-action is symplectic.

2. Symplectic fiber bundles

One of the early approaches for constructing compact closed symplectic manifolds
which go beyond the natural examples is through symplectic fiber bundles. This
construction is due to Thurston.

Let M , B be compact closed, connected smooth manifolds, π : M → B be a
smooth, surjective submersion. Then π is a locally trivial fibration, with each fiber
Fb := π−1(b), b ∈ B, diffeomorphic to a fixed manifold F , and M is called a fiber
bundle over B with fiber F . Moreover, there is an open cover {Uα} of B and a
collection of diffeomorphisms φα : π−1(Uα) → Uα × F such that π = pr1 ◦ φα, where
pr1 : Uα×F → Uα is the projection. The maps φα are called local trivializations. We
denote by φα(b) : Fb → F the restriction of φα to Fb followed by the projection onto
F . Then the maps φβα : Uα ∩ Uβ → Diff(F ) defined by φβα(b) = φβ(b) ◦ φα(b)−1 are
called the transition functions.

If F is an oriented manifold and each φβα(b) ∈ Diff+(F ), ∀b ∈ Uα ∩ Uβ, then M is
called an oriented fiber bundle. If F is a symplectic manifold with a symplectic form
σ, and for each pair α, β, φβα(b) ∈ Symp(F, σ), ∀b ∈ Uα ∩ Uβ, then M is called a
symplectic fiber bundle (or symplectic fibration). In this case, each fiber Fb has
an induced symplectic form σb = φα(b)∗(σ), which is clearly independent of the choice
of α as φβα(b) ∈ Symp(F, σ), ∀b ∈ Uα ∩ Uβ. Note that if we give F the canonical

orientation by the volume form σk, where 2k = dimF , then Symp(F, σ) ⊂ Diff+(F ),
i.e., a symplectic fiber bundle is necessarily an oriented fiber bundle.

Lemma 2.1. Let π : M → B be a fiber bundle with fiber F . Suppose there is a closed
2-form τ on M such that the restriction of τ to each fiber Fb is a symplectic form on
Fb, and that the base B is a symplectic manifold with a symplectic form β. Then for
large enough N > 0, the 2-form ωN ≡ τ +Nπ∗β is a symplectic structure on M .

Proof. Let 2m = dimM and 2n = dimB. Then dimF = 2m − 2n. Note that
(π∗β)k = 0 for any k > n. Hence

ωmN = Nn(
m!

(m− n)!n!
τm−n ∧ (π∗β)n +

n−1∑
l=0

N l−n m!

(m− l)!l!
τm−l ∧ (π∗β)l).

Since M is compact, the lemma follows easily from the fact that τm−n ∧ (π∗β)n is
a volume form on M . To see that τm−n ∧ (π∗β)n is a volume form, let p ∈ M be
any point and let b = π(p). Pick a basis v1, · · · , v2m−2n of TpFb and pick a basis
u1, · · · , u2n of TbB. Let u′i ∈ TpM be a lift of ui, i.e., π∗(u

′
i) = ui, i = 1, · · · , 2n. Then

v1, · · · , v2m−2n, u
′
1, · · · , u′2n form a basis of TpM . With this understood, we have

τm−n ∧ (π∗β)n(v1, · · · , v2m−2n, u
′
1, · · · , u′2n)

= ±τm−n(v1, · · · , v2m−2n) · (π∗β)n(u′1, · · · , u′2n)

= ±τm−n(v1, · · · , v2m−2n) · βn(u1, · · · , u2n)
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because π∗β(vj , ·) = β(π∗(vj), ·) = 0 for all j. Since the restriction of τ to Fb is a
symplectic form, τm−n(v1, · · · , v2m−2n) 6= 0, and since β is a symplectic form on B,
βn(u1, · · · , u2n) 6= 0 also. Hence

τm−n ∧ (π∗β)n(v1, · · · , v2m−2n, u
′
1, · · · , u′2n) 6= 0

and τm−n ∧ (π∗β)n is a volume form on M .
�

Exercise: Let π : M → B be a fiber bundle with fiber F . Suppose there is a closed
2-form τ on M such that the restriction of τ to each fiber Fb is a symplectic form on
Fb. Show that π : M → B is a symplectic fiber bundle.

For a symplectic fiber bundle, the existence of a closed 2-form τ as in Lemma 2.1
is equivalent to a cohomological condition as shown by the next lemma.

Lemma 2.2. Suppose π : M → B is a symplectic fiber bundle with fiber (F, σ). If
there exists a cohomology class a ∈ H2(M,R) such that i∗ba = [σb], where ib : Fb →M
is the inclusion, then there exists a closed 2-form τ ∈ Ω2(M) such that i∗bτ = σb,
∀b ∈ B, and [τ ] = a ∈ H2(M,R).

Proof. Pick a closed 2-form τ0 on M which represents a. Let {φα : π−1(Uα)→ Uα×F}
be a set of local trivializations where {Uα} is an open cover of B by balls. Let
σα ∈ Ω2(Uα × F ) be the pull-back of σ ∈ Ω2(F ) by the projection to F . Then
note that for any b ∈ B, i∗b(φ

∗
ασα) = σb. Since i∗ba = [σb], [τ0] = a, and each Uα is

contractible, we see that τ0 and φ∗ασα are cohomologous on π−1(Uα), therefore, there
exists a 1-form λα such that

φ∗ασα − τ0 = dλα, ∀α.

Pick a partition of unity {ρα} subordinate to {Uα}, i.e.,
∑

α ρα = 1 and suppρα ⊂ Uα.
We define

τ = τ0 +
∑
α

d((π ◦ ρα)λα).

Note that d((π ◦ ρα)λα) = d(π ◦ ρα) ∧ λα + (π ◦ ρα)dλα and i∗b(d(π ◦ ρα)) = 0. Hence

i∗bτ = i∗bτ0 +
∑
α

ρα(b)i∗b(dλα)

=
∑
α

ρα(b)i∗b(τ0 + dλα)

=
∑
α

ρα(b)i∗bφ
∗
ασα

=
∑
α

ρα(b)σb

= σb.

Finally, [τ ] = [τ0] = a ∈ H2(M,R), and the lemma is proved.
�
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In the following exercise, we give some conditions which ensure the existence of a
cohomological class a ∈ H2(M,R) in Lemma 2.2.

Exercise: Let π : M → B be a symplectic fiber bundle with fiber (F, σ). Let E
be the sub-bundle of TM defined as follows: for any p ∈ M , the fiber Ep = ker dπ :
TpM → Tπ(p)B. Prove that

(1) E is a naturally symplectic vector bundle.
(2) If c1(TF ) is a non-zero multiple of [σ], then there exists a cohomology class

a ∈ H2(M,R) such that i∗ba = [σb], where ib : Fb →M is the inclusion.

According to the general theory of fiber bundles, given an oriented fiber bundle
π : M → B with fiber F , where F is a symplectic manifold with an orientation-
compatible symplectic form σ, the question as whether π : M → B is a symplectic
fiber bundle with fiber (F, σ) boils down to the understanding of the homotopy type of
the space Diff+(F )/Symp(F, σ). In this regard, the situation when F is 2-dimensional
is particularly simple (and nice).

Lemma 2.3. Let F be a compact, closed, oriented surface. Then Diff+(F )/Symp(F, σ)
is contractible. Consequently, any oriented surface bundle over a smooth manifold is
a symplectic fiber bundle.

Proof. Let T be the space of orientation-compatible symplectic structures on F which
has the same total area of σ. Then T is contractible, with (σ′, t) 7→ (1 − t)σ′ + tσ,
where σ′ ∈ T and 0 ≤ t ≤ 1, being the contraction of T to the point σ ∈ T .

We will show that Diff+(F )/Symp(F, σ) is homeomorphic to T , from which the
lemma follows. To see this, we consider the action of Diff+(F ) on T by

g · σ′ = g∗(σ′), ∀g ∈ Diff+(F ), σ′ ∈ T.

The action is obviously continuous with respect to appropriate topology on the two
spaces. We claim it is transitive. To see this, let α0, α1 ∈ T be any two elements.
Then αt = (1 − t)α0 + tα1 ∈ T for 0 ≤ t ≤ 1, and [αt] = [α0] for all t. By Moser’s
stability theorem, there exists a smooth family of gt ∈ Diff+(F ) with g0 = id, such that
g∗tαt = α0. Particular, g∗1α1 = α0, so that the action of Diff+(F ) on T is transitive.
This implies that Diff+(F )/Symp(F, σ) is homeomorphic to T as Symp(F, σ) is the
isotropy subgroup at σ ∈ T .

�

In the case when F is 2-dimensional, the existence of a cohomological class a ∈
H2(M,R) in Lemma 2.2 has a simple criterion.

Lemma 2.4. Let π : M → B be an oriented surface bundle, which is a symplectic
fiber bundle with fiber (F, σ) by Lemma 2.3. There exists a cohomological class a ∈
H2(M,R) such that i∗ba = [σb] iff the fiber class [Fb] ∈ H2(M,R) is nonzero.

Proof. Suppose a cohomological class a ∈ H2(M,R) such that i∗ba = [σb] exists. Then
a([Fb]) = i∗ba([Fb]) = σb(Fb) 6= 0, which implies that [Fb] ∈ H2(M,R) is nonzero. On
the other hand, since H2(M ;R) = Hom(H2(M,R),R), if [Fb] ∈ H2(M,R) is nonzero,
there must exist an a ∈ H2(M,R) such that a([Fb]) 6= 0. With H2(F,R) = R, this
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implies that i∗ba = λ[σb] for some λ 6= 0. It is clear that λ is constant in b, and we

simply replace a by 1
λa.

�

Exercise: Let π : M → B be an oriented surface bundle such that the fiber F has
genus 6= 1. Show that the fiber class [Fb] ∈ H2(M,R) is nonzero.

We obtain the following corollary of Lemma 2.4.

Corollary 2.5. Let π : M → B be an oriented surface bundle over a symplectic man-
ifold, where the fiber class [Fb] ∈ H2(M,R) is nonzero. Then M admits a symplectic
structure such that each fiber is a symplectic submanifold. In particular, if the fiber F
has genus 6= 1, M admits a symplectic structure.

We remark that the above result is not necessarily true if the fiber F has genus 1,
as shown by the following example.

Example 2.6. Let H : S3 → CP1 be the Hopf fibration. Then π : S3 × S1 → CP1

defined by (x, t) 7→ H(x) is a T2-bundle over CP1. Note that

H2(S3 × S1) = H2(S3)⊗H0(S1)⊕H1(S3)⊗H1(S1) = 0

by the Kunneth formula, so that S3 × S1 can not be symplectic. In particular, the
fiber class is zero.

Example 2.7. (The Kodaira-Thurston Manifold, cf. Example 1.8, §1 of Part 1).
Consider the 4-manifold M = S1 × N where N is the nontrivial T2-bundle over S1

defined by N = [0, 1] × T2/ ∼, where (0, x, y) ∼ (1, x + y, y). Naturally M is a
T2-bundle over T2. We claim that the fiber class is nonzero in H2(M,R). This is
equivalent to say that the fiber class is nonzero in H2(N,R). But this follows from the
fact that N → S1 has a section [(t, 0, 0)], t ∈ [0, 1], which has a nonzero intersection
product with the fiber.

By Corollary 2.5, M is a symplectic manifold. M can not be Kähler, because
H1(M) = R3, which has an odd dimension. This is the first example of symplectic,
non-Kähler manifold discovered by Thurston.

Remark 2.8. Let π : M → B be an oriented surface bundle over a symplectic
manifold. It is possible that the fiber class [Fb] ∈ H2(M,R) is zero and M still
admits a symplectic structure. Of course in this case, the fibers can not be symplectic
submanifolds of M .

A particularly interesting case is when M is an oriented T2-bundle over T2. Such
bundles are completely classified topologically. It is known that all such bundles admit
a symplectic structure, even though some of them have a zero fiber class. (In fact in
this case, the fibers are actually Lagrangian tori in M .) It is also known that such
bundles M all have c1(TM) = 0. A symplectic 4-manifold M with c1(TM) = 0 is
called symplectic Calabi-Yau. There is a short list of known examples of symplectic
Calabi-Yau 4-manifolds, with oriented T2-bundles over T2 included. It is a challenging
problem to construct new examples of symplectic Calabi-Yau 4-manifolds, as well as
understanding the smooth classification of them.
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3. Symplectic normal connected sum

Recall the symplectic neighborhood theorem that the symplectic structure on a reg-
ular neighborhood of a compact symplectic submanifold is determined by the induced
symplectic structure on the symplectic submanifold and the isomorphism class of the
normal bundle as a symplectic vector bundle, or equivalently as a complex vector bun-
dle (cf. Theorem 3.3, §3 of Part 1). This theorem is the basis of a connected sum
construction in symplectic category, called the symplectic normal connected sum.
We note that such a connected sum construction is not available in the holomorphic
category. In fact, the symplectic normal connected sum construction is the major
technique of investigating the difference between the category of symplectic manifolds
and that of Kähler manifolds. The following theorem, due to R. Gompf, is a simple,
but an important, example.

Theorem 3.1. (Gompf, 1995) Every finitely presentable group is the fundamental
group of a compact symplectic 4-manifold.

It is known that every finitely presentable group is the fundamental group of a
compact 4-manifold. On the other hand, it was proved that there exist no algorithms
which can be used to classify all the finitely presentable groups. As a consequence,
we obtain the following complexity result about compact 4-manifolds: there exist no
algorithms which can be used to classify all the compact 4-manifolds (topological or
smooth). The above theorem of Gompf shows that the same holds for symplectic
4-manifolds. On the other hand, it is known that there are severe constraints on
the fundamental group of a Kähler surface. Gompf’s theorem shows that the set of
symplectic 4-manifolds is significantly larger than that of Kähler surfaces.

We shall focus our attention on a special case of symplectic normal connected sum,
which is called symplectic fiber sum. For j = 1, 2 let (Mj , ωj) be a symplectic
manifold of dimension 2n and let Qj ⊂ Mj be a compact symplectic submanifold of
dimension 2n−2 which has a trivial normal bundle. (For example, if Mj is a symplectic
fiber bundle over a compact Riemann surface, we could take Qj to be a fiber of Mj ,
hence the name symplectic fiber sum.)

By the symplectic neighborhood theorem, a regular neighborhood of Qj in Mj is
symplectomorphic to

(Qj ×B2(r0), ωj ⊕ dx ∧ dy)

for some r0 > 0, where B2(r0) = {(x, y) ∈ R2|x2 + y2 < r2
0}.

Now suppose there exists a symplectomorphism φ : (Q1, ω1) → (Q2, ω2). Then for
any 0 < r1 < r0, there is a symplectomorphism

Φ : (Q1 ×A(r1, r0), ω1 ⊕ dx ∧ dy)→ (Q2 ×A(r1, r0), ω2 ⊕ dx ∧ dy)

lifting φ, where A(r1, r0) = {(x, y) ∈ R2|r2
1 < x2 + y2 < r2

0}, which interchanges the
inner boundary and the outer boundary of A(r1, r0). To define Φ, we let r, θ be the
polar coordinates on B2(r0). Then dx∧dy = rdr∧dθ = du∧dθ where u = 1

2r
2. With

this understood, we define

Φ : (q, u, θ) 7→ (φ(q),
1

2
(r2

0 + r2
1)− u,−θ).
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We can construct a new symplectic manifold by taking out a regular neighborhood
of Q1, Q2 and gluing the complements via Φ:

(M1 \Q1 ×B2(r1)) t (M2 \Q2 ×B2(r1))/ ∼
where (q, u, θ) ∼ Φ(q, u, θ), (q, u, θ) ∈ Q1 ×A(r1, r0). We denote it by M1#Q1=Q2M2.

Remark 3.2. (1) The most useful case of this construction is when dimMj = 4. In
this case, Qj is an embedded symplectic surface with self-intersection Q2

j = 0. Note

that by Moser’s argument, there exists a symplectomorphism φ : (Q1, ω1)→ (Q2, ω2) if
and only if Q1, Q2 have the same genus, and the total areas

∫
Q1
ω1 =

∫
Q2
ω2. However,

the second condition is not essential because it can always be arranged by replacing
of one of ω1, ω2 with an appropriate multiple.

(2) The diffeomorphism type of the resulting manifold M1#Q1=Q2M2 depends on a
number of things. First, it depends on the identification of a regular neighborhood of
Qj to Qj ×B2(r0). Such identifications are parametrized by the so-called “framings”,
i.e., the set of trivializations of the trivial bundle Qj × R2 over Qj , which may be
identified with H1(Qj ;Z) (i.e., the set of homotopy classes of maps from Qj to S1).
Second, it depends on the isotopy class of φ : Q1 → Q2. For example, when Qj = T2

is a torus, the gluing data may be summarized into a 3× 3 matrix a b 0
c d 0
m n −1

 ,

where

(
a b
c d

)
∈ SL(2,Z) parametrizes the isotopy classes of symplectomorphisms

φ : T2 → T2 and (m,n) ∈ H1(T2;Z) = Z⊕ Z are the “framings”.
(3) Note that the symplectic fibre sum construction requires the existence of a

symplectomorphism A(r1, r0)→ A(r1, r0) of the annulus which interchanges the inner
and outer boundaries. There exist no higher dimensional analogs because such a
symplectomorphism could be used to glue two higher dimensional balls to obtain a
symplectic S2k for some k > 1, which we know does not exist. Thus the symplectic
fiber sum construction can only be performed along a symplectic submanifold of co-
dimension 2.

(4) Notice in the gluing regionQ1×A(r1, r0) in a symplectic fiber sumM1#Q1=Q2M2,
there is a free Hamiltonian S1-action which acts trivially on the Q1 factor and acts
as complex multiplication on the A(r1, r0) factor. Lerman’s symplectic cutting, when
applied in this setting, allows one to undo the symplectic fiber sum, i.e., producing
M1, M2 from M1#Q1=Q2M2. This is where the name “symplectic cutting” was coming
from, i.e., it gives an inverse of symplectic gluing.

In the remaining of this section we shall explain the basic ideas of the proof of
Gompf’s theorem (i.e. Theorem 3.1) with a simple example. A key ingredient is the
following fact.

Lemma 3.3. There exists a compact symplectic 4-manifold V with an embedded sym-
plectic torus T of self-intersection T 2 = 0 such that the complement of a regular
neighborhood of T in V is simply-connected.
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Proof. The manifold V will be the Kähler surface which is CP2 blown up at 9 points,
and T will be the proper transform of a smooth cubic curve in CP2.

More precisely, take two generic cubic polynomials P1, P2 such that the zeroes {P1 =
0}, {P2 = 0} ⊂ CP2 are smooth curves which intersect transversely at 9 distinct points.
For any λ = [a, b] ∈ CP1, the cubic curve {Pλ ≡ aP1 + bP2 = 0} ⊂ CP2 contains all of
the 9 points where P1, P2 intersect. Since for distinct λ, λ′ the cubic curves {Pλ = 0},
{Pλ′ = 0} are distinct, and since their intersection product is 9, it follows that {Pλ = 0}
and {Pλ′ = 0} intersect only at these 9 points, and furthermore, the intersection is
transversal. It follows that CP2 is the union of these cubic curves, and the complex
surface obtained by blowing up at these 9 points is a disjoint union of the proper
transform of these cubic curves in CP2, which is parametrized by CP1. A generic
member is a smoothly embedded torus of self-intersection 0. Since the blow up of an
algebraic surface is still an algebraic surface, we see in particular that V is Kähler.

To see that the complement of a regular neighborhood of T in V is simply-connected,
we use the Van-Kampen theorem. To this end, we denote by ν(T ) a regular neigh-

borhood of T in V . Then V is the union of the complement V \ ν(T ) and ν(T )

along a 3-torus ∂ν(T ). We pick a base point x0 ∈ ∂ν(T ). First, we observe that the
class of the meridian of T in π1(V \ ν(T ), x0) is zero because the meridian bounds
an embedded disc in V \ ν(T ). To see this, recall that V is CP2 blown up at 9
points where the family of cubic curves intersect transversely, and that T is the proper
transform of a fixed smooth cubic. In particular, the exceptional curve at any of the
blown up point intersects T transversely, so that the part of the exceptional curve in
V \ ν(T ) is an embedded disc bounded by the meridian of T . With this understood,

now observe that there is a homomorphism π1(ν(T ), x0)→ π1(V \ ν(T ), x0) such that

the natural homomorphism induced by inclusion π1(∂ν(T ), x0) → π1(ν(T ), x0) fol-
lowed by this homomorphism equals the natural homomorphism induced by inclusion
π1(∂ν(T ), x0) → π1(V \ ν(T ), x0). It follows from the Van-Kampen theorem that
there exists a homomorphism π1(V, x0) → π1(V \ ν(T ), x0), such that the natural
homomorphism induced by inclusion π1(V \ ν(T ), x0) → π1(V, x0) followed by this
homomorphism equals the identity on π1(V \ ν(T ), x0). This implies that V \ ν(T ) is
simply-connected because V is simply-connected.

�

Now suppose X is a symplectic 4-manifold with an embedded symplectic torus T ′

of self-intersection 0. Let Y ≡ V#T=T ′X be the symplectic fiber sum. Then by
Van-Kampen theorem, π1(Y, x0) is obtained from π1(X,x0) by setting the free loops
contained in T ′ null-homotopic, for any x0 ∈ X.

Example 3.4. In this example we will illustrate how to construct a compact symplec-
tic 4-manifold with fundamental group Z, using the symplectic fiber sum construction.
To this end, we consider the symplectic 4-manifold X, where X = S1 × S1 × S1 × S1.
The symplectic structure on X is ω = dθ1 ∧ dθ2 + dθ3 ∧ dθ4 + dθ2 ∧ dθ3, where θj ,
j = 1, 2, 3, 4, is the angular coordinate on the j-th copy of S1 in X. There are two
disjoint, embedded symplectic tori in X:

T1 = {1} × {1} × S1 × S1,
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and
T2 = {−1} × S1 × S1 × {1}.

The symplectic fiber sum Y = V#T≡T1X#T2=TV has a fundamental group which is
obtained from π1(X) by setting the j-th copy of S1 in X null-homotopic, for j = 2, 3, 4.
Clearly π1(Y ) = Z. We remark that Y can not be Kähler because the first Betti
number b1(Y ) = 1 which is odd.

The general version of symplectic normal connected sum is given in the following

Theorem 3.5. For j = 1, 2 let (Mj , ωj) be a symplectic manifold of dimension 2n
and let Qj ⊂ Mj be a compact symplectic submanifold of dimension 2n − 2 such
that there exists a symplectomorphism φ : (Q1, ω1) → (Q2, ω2). Moreover, for the
normal bundles, νQ1 is isomorphic to φ∗ν−1

Q2
as complex line bundles. Then for any

choice of isomorphism νQ1
∼= φ∗ν−1

Q2
, there is a regular neighborhood Nj of Qj, j =

1, 2, and a symplectomorphism Φ : (N1 \ Q1, ω1) → (N2 \ Q2, ω2), such that we can
symplectically glue (M1 \ Q1, ω1) and (M2 \ Q2, ω2) via Φ to form a new symplectic
manifold M1#Q1=Q2M2.

Exercise: Prove Theorem 3.5.
Hint: Use a model for (Nj , ωj), j = 1, 2, as in Example 1.6, §1.

4. Symplectic handlebodies and Weinstein manifolds

For the relevant material in contact geometry, see §1,§2 of Part 3.

Definition 4.1. Let (N±, ξ±) be compact closed contact manifolds of dimension 2n−1
with co-oriented contact structures, which induce the orientation of the respective
manifold. A symplectic cobordism from (N−, ξ−) to (N+, ξ+) is a compact 2n-
dimensional symplectic manifold (M,ω), canonically oriented by ωn, such that

• ∂M = N+ tN−, where N− stands for N− with reversed orientation.
• In a neighborhood of ∂M , there is a Liouville vector field X for ω, which is

transverse to ∂M , pointing inwards along N− and outwards along N+.
• The 1-form λ := iXω restricts to TN± as a contact form for ξ±.

We call (N−, ξ−) the concave boundary and (N+, ξ+) the convex boundary of the
symplectic cobordism. The cobordism (M,ω) is called a Liouville cobordism if the
Liouville vector field X is defined everywhere on M .

Exercise: Let N be a compact closed hypersurface in a symplectic manifold (M,ω).
Suppose Xi, i = 1, 2, are two Liouville vector fields defined in a neighborhood of N
which are both transverse to N . Show that the induced contact structures on N , i.e.,
ξi := ker(iXiω|TN ), are isotopic.

The above exercise shows that the specific choice of the Liouville vector field X in
Definition 4.1 is not relevant up to contact isotopy of the boundary.

Example 4.2. Let (N, ξ) be a compact closed contact manifold, α a contact form for
ξ. For any smooth functions h, k on N , consider the following subset in R×N ,

M := {(t, x) ∈ R×N |h(x) ≤ t ≤ k(x)}.
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Then (M,d(etα)) is a symplectic (in fact, Liouville) cobordism from (N, ξ) to itself.

The symplectic (resp. Liouville) cobordism relation is reflexive as shown above. It
is also transitive as show below.

Proposition 4.3. Let (M−, ω−) be a symplectic (resp. Liouville) cobordism from
(N−, ξ−) to (N, ξ), and (M+, ω+) be a symplectic (resp. Liouville) cobordism from
(N, ξ) to (N+, ξ+). Then there is a symplectic (resp. Liouville) cobordism from
(N−, ξ−) to (N+, ξ+), which topologically is obtained by gluing M− to M+ along the
boundary components N .

Proof. Let X± be a Liouville vector field defined in a neighborhood of ∂M± (resp.
everywhere in M±). Let α± := iX±ω±|TN be the induced contact forms for the
contact structure ξ on N . Then a neighborhood of N in M− is symplectomorphic
to ((−ε, 0] × N, d(etα−)), and a neighborhood of N in M+ is symplectomorphic to
([0, ε)×N, d(etα+)), with X± identified with ∂

∂t in the corresponding symplectization.

On the other hand, there is a smooth function h on N such that α+ = ehα−. We
pick a constant C such that h(x) > C for any x ∈ N . Then we scale the symplectic
form ω− to eCω−. With the new symplectic structure on M−, a neighborhood of N
is symplectomorphic to ((−ε+ C,C]×N, d(etα−)). Let

W := {(t, x) ∈ R×N |C ≤ t ≤ h(x)}.
Then we obtain a symplectic (resp. Liouville) cobordism (M,ω) by gluing (M−, e

Cω−),
(W,d(etα−)), and (M+, ω+) along the corresponding boundaries.

�

Exercise: Let α1, α2 be contact forms on N such that α2 = ehα1 for some smooth
function h on N . Show that for any a < b, the map φ : ((a, b) × N, d(etα2)) →
(R×N, d(etα1)) where φ(t, x) = (t+ h(x), x) is a symplectomorphism onto its image.

By Morse theory, each smooth cobordism can be decomposed into a sequence of
elementary cobordisms, where an elementary cobordism is one obtained by attaching
a handle to a trivial cobordism. It turns out that the handle attaching operation can
be extended to the symplectic category, which is due to Weinstein.

We first recall the topological version of handle attaching. Let N be a compact
closed (n− 1)-dimensional smooth manifold. Let the (k− 1)-dimensional sphere Sk−1,
where k ≥ 1, be smoothly embedded in N with a trivial normal bundle. Then fixing
any trivialization of the normal bundle, which means fixing any specific identification of
a neighborhood of Sk−1 ⊂ N with Sk−1×Dn−k, we glue a n-dimensional k-handle, i.e.,
Dk×Dn−k, to [−1, 0]×N by identifying Sk−1×Dn−k ⊂ ∂(Dk×Dn−k) = Sk−1×Dn−k∪
Dk×Sn−k−1 with the neighborhood Sk−1×Dn−k of Sk−1 in {0}×N . After smoothing
off the corners, the resulting n-dimensional manifold M has boundary {−1}×N tN ′,
and is called an elementary cobordism from N to N ′. Note that topologically, N ′

is obtained from N by surgery, i.e., removing a neighborhood Sk−1 × Dn−k of Sk−1

in N and then gluing back Dk × Sn−k−1 along the boundary Sk−1 × Sn−k−1. The
k-dimensional disc Dk × {0} is called the core of the handle, the (n− k)-dimensional
disc {0} ×Dn−k is called the co-core, and the (k − 1)-dimensional sphere Sk−1 ⊂ N
is called the attaching sphere, and the (n− k− 1)-dimensional sphere {0}× Sn−k−1
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is called the belt sphere of the handle. We remark that this operation requires that
the attaching sphere Sk−1 ⊂ N has a trivial normal bundle, and it depends and is
determined by the trivialization of the normal bundle.

In order to extend the construction to the symplectic category, we first describe
the relevant symplectic geometry for a 2n-dimensional k-handle. To this end, consider
R2n which is given with the standard symplectic structure

ω0 = dx1 ∧ dy1 + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn.
Consider the Morse function

f(x1, x2, · · · , xn, y1, y2, · · · , yn) =
k∑
j=1

(−1

2
y2
j + x2

j ) +
1

4

n∑
j=k+1

(y2
j + x2

j ).

With respect to the standard Euclidean metric, the gradient vector of f is given by

X :=

k∑
j=1

(−yj
∂

∂yj
+ 2xj

∂

∂xj
) +

1

2

n∑
j=k+1

(yj
∂

∂yj
+ xj

∂

∂xj
).

It is easy to check that LXω0 = ω0, i.e., X is also a Liouville vector field. We will
consider level surfaces of f : H− := f−1(−1) and H+ := f−1(1). Since X is transverse
to H− and H+, each of H−, H+ has an induced, co-oriented contact structure, to be
denoted by ξ− and ξ+ respectively. Let α−, α+ be the corresponding contact forms.

The stable manifold Ek− is the k-dimensional subspace

Ek− := {x1 = x2 = · · · = xn = yk+1 = · · · = yn = 0}.

Note that Ek− is an isotropic submanifold and the Liouville vector field X is tangent

to Ek−. Consequently, the ascending sphere Sk−1 = Ek−∩H− is isotropic in the contact
manifold (H−, ξ−). Recall from §2 of Part 3 that the normal bundle of an isotropic
submanifold L of a contact manifold N has a canonical decomposition

νL = R(Rα)⊕ T ∗L⊕ CSNN (L),

where Rα is the Reeb vector field and CSNN (L) is the conformal symplectic normal
bundle of L in N . In the present case, note that R(Rα)⊕T ∗L is spanned by { ∂

∂xj
|j =

1, 2, · · · , k}, and CSNN (L) is spanned by { ∂
∂xj

, ∂
∂yj
|j = k + 1, · · · , n}.

To describe the symplectic handle, we begin by fixing an arbitrarily small regular
neighborhood U− of the isotropic (k−1)-sphere Sk−1 = Ek−∩H− in H−. The boundary

∂U− = Sk−1× S2n−k−1. Let Σ = R× ∂U− be the (2n− 1)-dimensional submanifold of
R2n which is obtained by moving ∂U− along the flow of the Liouville vector field X.
Then the symplectic handle is the region bounded by H−, H+ and Σ.

Now let (N, ξ) be a (2n−1)-dimensional contact manifold, L ⊂ N an isotropic (k−
1)-dimensional sphere with a trivial conformal symplectic normal bundle CSNN (L).
As L is a sphere, R(Rα) ⊕ T ∗L has a natural trivialization, so any trivialization of
CSNN (L) determines a trivialization of the normal bundle νL in N , which is part of
the data to be fixed in the (topological) handle attaching or surgery operation as we
recalled earlier. Let α be a contact form associated to ξ, which is given as part of
the data in the setup. We shall describe how to attach a symplectic 2n-dimensional
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k-handle to the trivial symplectic cobordism ([−1, 0] × N, d(etα)) with L ⊂ {0} × N
being the attaching sphere.

By Theorem 2.4 of §2, Part 3, for any trivialization of CSNN (L), there is a regular
neighborhood U− of the ascending sphere Sk−1 = Ek− ∩ H− in H− and a regular
neighborhood U of L in {0} × N , and a contactomorphism φ : U → U− sending L
diffeomorphic to Sk−1. Then there is a smooth function h on U such that φ∗α− = ehα.
We extend h to the entire manifold N , which is still denoted by h for simplicity. By
scaling α by an appropriate positive constant as we did in the proof of Proposition
4.3, we may assume h(x) > 0, ∀x ∈ N .

Now we fix a smaller regular neighborhood U ′ of L such that its closure U ′ ⊂ U ,
and we set A := U \U ′. Let A− := φ(A) ⊂ U−. There is a smooth map ψ : A− → H+

which is defined by moving the points of A− along the flow lines of the Liouville vector
field X until hitting H+. Then ψ∗α+ = ek0α− for some smooth function k0 > 0 on
A−. We let k = k0 ◦ φ be the pull-back of k0 to A. We extend k to a positive smooth
function on the entire N and still denote it by k for simplicity.

We let M be the following subset of the symplectization (R×N, d(etα)):

M := {(t, x)| − 1 ≤ t ≤ h(x) + k(x) if x ∈ N \ U ′, and − 1 ≤ t ≤ h(x) if x ∈ U ′}.

Let V := {(t, x)|h(x) ≤ t ≤ h(x) + k(x), x ∈ A} ⊂ M and let W be the region
in the symplectic handle which consists of the flow lines of the Liouville vector field
X starting from points in A−. Then φ : A → A− induces a symplectomorphism
Φ : V → W by mapping the flow lines of ∂

∂t in V to the corresponding flow lines
of the Liouville vector field X in W . With this understood, the symplectic handle
attaching operation is done by gluing M and the symplectic handle via Φ. The result
is a Liouville cobordism (P, ω) from (N, ξ) to a contact manifold (N ′, ξ′), where N ′ is a
manifold diffeomorphic to the surgery of N along L. We call (N ′, ξ′) the corresponding
contact surgery of (N, ξ).

In fact, the Liouville cobordism (P, ω) above is an example of the so-called Weinstein
cobordism, as it possesses an additional structure of a Morse function.

Definition 4.4. A Weinstein cobordism (M,ω,X, φ) is a Liouville cobordism
(M,ω,X) with a Morse function φ : M → R which is constant on ∂M , such that
the Liouville vector field X is gradient-like for φ, i.e.,

iXdφ ≥ δ(|X|2 + |dφ|2)

holds for some δ > 0. (Here |X| is the norm of X with respect to some Riemannian
metric on M and |dφ| is the dual norm of dφ.) A Weinstein domain is a Weinstein
cobordism with empty concave boundary.

A Weinstein manifold (W,ω,X, φ) is a symplectic manifold (W,ω) with a com-
plete Liouville vector field X and an exhausting Morse function φ, such that X is
gradient-like for φ. A Weinstein manifold is called finite type if the Morse function
has only finitely many critical points.

For either a Weinstein cobordism or a Weinstein manifold, the triple (ω,X, φ) is
called a Weinstein structure.

For further discussions about Weinstein manifolds, see [2].
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5. Gromov’s theory of J-holomorphic curves

5.1. Basic elements of J-holomorphic curve theory. Let (M,ω) be a compact
closed symplectic manifold of dimension 2n, and let J ∈ J (M,ω) be an ω-compatible
almost complex structure. Let gJ(·, ·) ≡ ω(·, J ·) be the corresponding hermitian metric
(i.e. J-invariant Riemannian metric) on M .

Let (Σ, j) be a Riemann surface (not necessarily compact) with complex structure
j. A smooth map u : Σ → M is called a (J, j)-holomorphic map (or simply a
J-holomorphic map) if du ◦ j = J ◦ du, or equivalently,

∂̄J(u) ≡ 1

2
(du+ J ◦ du ◦ j) = 0.

The equation ∂̄J(u) = 0 is a first order, non-linear equation of Cauchy-Riemann
type. We give a description of it in a local coordinate system. Let z0 ∈ Σ be any
point and let p = u(z0) ∈ M be its image in M under u. Supppose s + it is a local
holomorphic coordinate centered at z0 and φ : U → R2n is a local chart centered at
p ∈M . Set φ ◦ u = (u1, · · · , u2n)T . Then

∂̄J(u) =
1

2
((∂su

j) + J(u1, · · · , u2n)(∂tu
j))ds+

1

2
((∂tu

j)− J(u1, · · · , u2n)(∂su
j))dt,

and ∂̄J(u) = 0 is equivalent to

(∂su
j) + J(u1, · · · , u2n)(∂tu

j) = 0.

If J is integrable and (u1, · · · , u2n) is coming from a local holomorphic coordinate
system (z1, · · · , zn) with zj = uj+iuj+n, j = 1, · · · , n, then J(u1, · · · , u2n) is constant
in u1, · · · , u2n and equals the matrix

J0 =

(
0 −I
I 0

)
where I denotes the n × n identity matrix. In this case, ∂̄J(u) = 0 becomes the
Cauchy-Riemann equations

∂su
j − ∂tuj+n = 0, ∂su

j+n + ∂tu
j = 0, j = 1, · · · , n.

Hence when J is integrable, J-holomorphic maps are simply the usual holomorphic
maps. On the other hand, it is easy to see that for a general J , the linearization of the
non-linear equation ∂̄J(u) = 0 is a zero-th order perturbation of the Cauchy-Riemann
equations.

Local properties. We shall next list several relevant local analytical properties of
J-holomorphic maps.

Let u, v : Σ → M be two smooth maps and let z0 ∈ Σ be a point. We say that
u, v agree to the infinite order at z0 if u(z0) = v(z0) = p0, and there is a local chart
centered at p0, φ : U → R2n, such that all partial derivatives of the R2n-valued function
φ ◦ u− φ ◦ v vanish at z0.

Proposition 5.1. (Unique continuation). If u, v : Σ → M are two J-holomorphic
maps which agree to the infinite order at a point z0 ∈ Σ, then u ≡ v in the connetced
component of Σ which contains z0.
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Let u : Σ→M be a J-holomorphic map. A point z ∈ Σ is called a critical point
if du(z) = 0. Correspondingly the image u(z) ∈ M is called a critical value. We
remark that u is locally an embedding at any point which is not a critical point. To
see this, we suppose du(z) 6= 0 for some z ∈ Σ. Let u(z) = p and let s+ it be a local
holomorphic coordinate centered at z. Then du(z) 6= 0 means that either ∂su(z) ∈
TpM or ∂tu(z) ∈ TpM is non-zero. But u is J-holomorphic so that ∂su+J(u)∂tu = 0,
which implies that both ∂su(z), ∂tu(z) ∈ TpM are non-zero. Hence u is locally an
embedding near z.

Lemma 5.2. A critical point of a non-constant J-holomorphic map is isolated. In
particular, a non-constant J-holomorphic map from a compact Riemann surface has
only finitely many critical points.

Lemma 5.3. Let Ω ⊂ C be an open neighborhood of 0 ∈ C and let u, v : Ω → M be
J-holomorphic maps such that

u(0) = v(0), du(0) 6= 0.

Moreover, assume that there exist sequences zn, wn ∈ Ω such that

u(zn) = v(wn), lim
n→∞

zn = lim
n→∞

wn = 0, wn 6= 0.

Then there exists a holomorphic function φ : Bε(0)→ Ω defined in some neighborhood
of 0 ∈ C such that φ(0) = 0 and

v = u ◦ φ.

Lemmas 5.2 and 5.3 have the following consequence.

Corollary 5.4. Let u : Σ→M be a non-constant J-holomorphic map from a compact
Riemann surface. Then there exists a compact Riemann surface Σ′ and a non-constant
J-holomorphic map v : Σ′ →M such that in the complement of finitely many points, v
is an embedding onto its image. Moreover, there exists a biholomorphism or branched
covering map φ : Σ→ Σ′ such that

u = v ◦ φ.

The map v in the above corollary is called simple and the map u is called multiply
covered if deg(φ) > 1. The image C ≡ Im v is called a J-holomorphic curve in M ,
and the map v : Σ′ → M is called a parametrization of C. We call C a rational
J-holomorphic curve if Σ′ = S2.

Exercise: (Carleman Similarity Principle) A key analytic fact in local properties
of J-holomorphic curves is the following: Let D ⊂ C be the unit disc |z| ≤ 1. Then
the ∂̄-operator ∂̄ : L1,p(D,C) → Lp(D,C) is surjective, where 1 < p < ∞. Here
∂̄u = us + iut, where z = s + it. In fact, for any g ∈ Lp(D,C), the Cauchy Integral
Formula defines

f :=
1

2πi

∫
D

g(w)

w − z
dw ∧ dw̄,

which obeys f ∈ L1,p(D,C) and ∂̄f = g.
Now suppose w ∈ L1,p(D,C), p > 2, obeys the equation

∂̄w −A(z)w = 0,
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where in A(z)w, w is regarded as a vector in R2 under C = R2, and A(z) is a 2 × 2
matrix whose entires are L∞ functions on D. Show that there is a u ∈

⋂
p>1 L

1,p(D,C)

(note in particular, u ∈ C0,α(D,C) for any 0 < α < 1), such that

w = euf

for some holomorphic function f on D.

Hint: consider the function g on D, where g(z) := A(z)w(z)
w(z) if w(z) 6= 0 and g(z) = 0

if w(z) = 0. Then g ∈ L∞(D,C). In particular, g ∈ Lp(D,C) for any p > 1. On the
other hand, note that g(z)w = A(z)w.

Let u : Σ → M be a smooth map, where Σ is given a complex structure j, M is
given a J ∈ J (M,ω). We denote by gJ the associated hermitian metric on M . In
order to define the energy of the map u, we fix a Kähler metric h on Σ, and with h
and gJ , the norm |du| is well-defined. We define the energy of u to be

E(u) ≡
∫

Σ
|du|2dvolΣ.

An important fact about E(u) is that even though the energy density |du|2 may
depend on the choice of the Kähler metric h on Σ, the energy E(u) depends only on
the complex structure j, i.e., E(u) is invariant under comformal transformations on
the domain of u.

The following energy identity can be easily derived

E(u) =

∫
Σ
|∂̄J(u)|2dvolΣ +

∫
Σ
u∗ω,

which has the following important consequence. (This is where the closedness of ω
plays a real role.)

Proposition 5.5. J-holomorphic maps are the absolute minima of the energy func-
tional E(u) amongst the smooth maps u which carry a fixed homology class in M . In
particular, J-holomorphic maps are harmonic maps, and the energy of a J-holomorphic
map depends only on the homology class it carries, and a J-holomorphic map must be
constant if it carries a trivial homology class.

Finally, we mention the following important local analytical property of J-holomorphic
maps.

Theorem 5.6. (Removal of singularities) Let D ⊂ C be the unit disc containing 0
and let u : D \ {0} → M be a J-holomorphic map such that E(u) <∞. Then u may
be extended to a J-holomorphic map û : D →M with û|D\{0} = u.

Next we consider the moduli space of J-holomorphic maps. For simplicity, we shall
assume Σ = S2. In this case, the complex structure j is unique, and the group of
biholomorphisms of Σ is the group of Möbius trnsformations G = PSL(2,C):

z 7→ az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1.
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Fix a non-zero homology class 0 6= A ∈ H2(M ;Z). We consider the space of J-
holomorphic maps

M(A, J) = {u : S2 →M |u is J-holomorphic and u∗[S2] = A},
and the subspace of M(A, J) consisting of simple J-holomorphic maps

M∗(A, J) = {u : S2 →M |u is J-holomorphic and simple, and u∗[S2] = A}.
Note that the group G = PSL(2,C) acts on M(A, J) via reparametrization

φ · u = u ◦ φ−1, ∀φ ∈ G, u ∈M(A, J),

which is free when restricted on the subspaceM∗(A, J). We denote the quotient space

by M̃(A, J) and M̃∗(A, J) respectively. Note that M̃∗(A, J) is exactly the space of
J-holomorphic curves C such that the homology class of C is A. We remark that
when A is a primitive class, i.e., A is not an integral multiple of another integral class,
M(A, J) =M∗(A, J).

Compactness. One of the fundamental issues concerning the moduli spaces is com-
pactness. Note that the group G = PSL(2,C) acts freely on M∗(A, J) and G is
not a compact group. Hence the moduli space of J-holomorphic maps M(A, J) and
M∗(A, J) can not be compact, and one could best hope that the quotient spaces

M̃(A, J) and M̃∗(A, J) are compact. However, this is also not true in general, as
illustrated in the following example.

Example 5.7. Consider a family of holomorphic curves of degree 2 in CP2 parametrized
by 0 6= λ ∈ C

Cλ = {[z0, z1, z2]|λz2
0 = z1z2} ∈ M̃∗(2[CP1], J0).

Here [CP1] ∈ H2(CP2;Z) is the class of a line, and J0 is the complex structure of CP2.
As λ→ 0, Cλ converges to a union of two lines

C0 = {[z0, z1, z2]|z1z2 = 0} = {[z0, 0, z2]} ∪ {[z0, z1, 0]}
which intersect transversely at [1, 0, 0]. It is known that C0 can not be the image of a

holomorphic map u : S2 → CP2, hence C0 does not lie in M̃(2[CP1], J0). This shows

that both M̃(2[CP1], J0) and M̃∗(2[CP1], J0) are non-compact.

The phenomenon illustrated in the above example is called bubbling, i.e., during
the limiting process as λ→ 0, the holomorphic curves Cλ split off a (non-constant) J-
holomorphic 2-sphere which carries strictly less energy than the original curves. The
bubbling phenomenon is the primary cause of non-compactness of moduli space of
J-holomorphic curves, and when Σ = S2 as what we currently consider, it is the only

cause. In other words, if there is no bubbling, the space M̃(A, J) is compact.
Next we mention a simple criterion which ensures compactness. Recall that a ho-

mology class B ∈ H2(M ;Z) is called spherical if it may be represented by a map
from S2 into M . Suppose the symplectic manifold (M,ω) contains no spherical classes
B such that

0 < ω(B) < ω(A).

Such a condition has two consequences: (1) every element u ∈ M(A, J) is sim-
ple because otherwise the image of u represents a spherical class B satisfying 0 <
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ω(B) < ω(A), this gives M∗(A, J) = M(A, J), (2) there is no bubbling for elements

in M̃(A, J) because a split-off J-holomorphic 2-sphere would represent a spherical
class B satisfying 0 < ω(B) < ω(A). This gives rise to the following simple version of
the Gromov Compactness Theorem.

Theorem 5.8. (Gromov). Suppose there are no spherical classes B such that

0 < ω(B) < ω(A).

Then for any compact subset W ∈ J (M,ω) (given with C∞-topology), ∪J∈WM̃(A, J)
is compact with respect to the C∞-topology.

The full version of the Gromov Compactness Theorem states that the moduli space
of J-holomorphic curves carrying a fixed homology class can be suitably compactified.
This is where the closedness of ω plays a real role, cf. Proposition 5.5.

Fredholm theory. Finally, we discuss the Fredholm theory of J-holomorphic maps,
which allows us to analyze the topological structure of the moduli spaces.

Fix a sufficiently large integer l > 0, we consider the Banach manifold

B ≡ {u : S2 →M |u is a C l-map and u∗[S2] = A}
and the Banach bundle E → B, where the fiber over u ∈ B is

Eu ≡ {v|v is a C l−1-section of Hom(TS2, u∗TM)→ S2 such that v ◦ j = −J ◦ v}.
The Banach bundle E → B has a natural smooth section s : B → E defined by

s : u 7→ (u, ∂̄J(u)).

By the elliptic regularity of the equation ∂̄J(u) = 0, any C l-solution is automatically a
smooth solution, so that the moduli space of J-holomorphic maps M(A, J) is simply
the zero loci of s, i.e.,

s−1(zero-section) =M(A, J).

A crucial fact is that s : B → E is a Fredholm section, which means that the
linearization of ∂̄J(u) for each u ∈ B, Du : TuB → Eu, is a Fredholm operator
between the Banach spaces. This has the following implication on the topological
structure of the moduli space M(A, J).

• For any open subset U ⊂ M(A, J), if Du : TuB → Eu is onto for any u ∈ U ,
then U is a canonically oriented, finite dimensional smooth manifold whose
dimension is given by the index of Du, which can be computed via the Atiyah-
Singer index theorem in the following formula

Index Du = 2n(1− gS2) + 2c1(TM) ·A.
Here 2n = dimM and gS2 = 0 is the genus of S2. Such a J is called regular
(with respect to U). (We remark that the same holds true if one allows J to
vary in an oriented finite dimensional space.)

When J is integrable, the operator Du : TuB → Eu is simply the ∂̄-operator ∂̄ :
Ω0(CP1, V ) → Ω0,1(CP1, V ) where V = u∗TM is a holomorphic vector bundle over

CP1. The cokernel of Du is simply the Dolbeault cohomology group H0,1

∂̄
(CP1, V ),

which by Kodaira-Serre duality is isomorphic to the space of holomorphic sections of



22 WEIMIN CHEN

V ∗⊗K. Here V ∗ is the dual of V and K is the canonical bundle of CP1. The following
lemma follows immediately from vanishing theorems of holomorphic vector bundles.

Lemma 5.9. Suppose J is integrable and V = u∗TM → CP1 is a holomorphic vector
bundle of non-negative curvature tensor. Then Du is onto.

In general, using the Sard-Smale theorem one has

Theorem 5.10. There exists an open, dense subset Jreg(A) ⊂ J (M,ω) of second
Bair category such that for any J ∈ Jreg(A), J is regular with respect to M∗(A, J),
so that M∗(A, J) is a smooth manifold of dimension

dimM + 2c1(TM) ·A.
Moreover, for any J1, J2 ∈ Jreg(A), there exists a path Jt ∈ J (M,ω) connecting J1, J2

such that
∪tM∗(A, Jt)

is an oriented smooth manifold with boundary which is the disjoint union ofM∗(A, J1)
and M∗(A, J2).

5.2. The non-squeezing theorem and Gromov invariant. As one of the first
applications of J-holomorphic curve theory, we describe the proof of the following
non-squeezing theorem, where B2n(R) denotes the closed ball of radius R in R2n

which is equipped with the standard symplectic structure ω0.

Theorem 5.11. (Gromov, 1985). There exist no symplectic embeddings B2n(1) →
B2(r)× R2n−2 if r < 1.

Proof. Suppose to the contrary, there exists an symplectic embedding ψ : B2n(1) →
B2(r) × R2n−2 for some r < 1. Fix any ε > 0, we consider B2(r) as a subset of S2

which is given a symplectic form σ with total area πr2 + ε. On the other hand, since
ψ(B2n(1)) is compact, its projection into the R2n−2 factor is contained in an open ball
of radius λ centered at the origin. Let T 2n−2 be the torus which is R2n−2 modulo the
lattice {(x1, · · · , x2n) ·λ|xj ∈ Z}, which inherits a natural symplectic form ω0. We set
M = S2×T 2n−2, which is given with the product symplectic structure ω = σ⊕ω0. With
this understood, note that there is a symplectic embedding ψ : (B2n(1), ω0)→ (M,ω).
We set p0 = ψ(0) where 0 ∈ B2n(1) is the origin.

Lemma 5.12. For any J ∈ J (M,ω), there exists a ratinal J-holomorphic curve C
which contains p0 and carries the homology class [S2 × {pt}].

Assuming Lemma 5.12 momentarily, the proof of Theorem 5.11 goes as follows. Note
that there is a J ∈ J (M,ω) such that the pull-back almost complex structure ψ∗J is
the standard complex structure J0 on B2n(1). Let C be the rational J-holomorphic
curve which contains p0 and carries the homology class [S2 × {pt}]. We set C ′ ≡
ψ−1(C) ⊂ B2n(1). Then C ′ is a holomorphic curve in B2n(1) containing the origin.
Particularly, C ′ is a minimal surface, and by the theory of minimal surfaces, the area
of C ′ is at least the area of the flat plane contained in B2n(1), which equals π. This
gives rise to the following inequalities

π ≤ Area(C ′) =

∫
C′
ω0 =

∫
ψ(C′)

ω ≤
∫
C
ω =

∫
S2
σ = πr2 + ε.
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Let ε → 0, we obtain π ≤ πr2, which contradicts the assumption r < 1. This proves
the non-squeezing theorem.

�

The basic idea behind the proof of Lemma 5.12 is the so-called Gromov invari-
ant, which is the “number” of rational J-holomorphic curves (counted with signs)
for a given J , that carries a given homology class and satisfies a certain topological
constraint. (Such a count of J-holomorphic curves is supposed to be independent of
the choice of J .) Lemma 5.12 basically says that the Gromov invariant which counts
the number of rational J-holomorphic curves carrying a homology class [S2 × {pt}]
and passing through a given point in M is non-zero.

We shall next explain how to define such a Gromov invarint in the current context,
and explain why the Gromov invariant is non-zero.

To this end, we set A = [S2 × {pt}] ∈ H2(M ;Z). Since ω = σ ⊕ ω0 is a product
symplectic structure, c1(TM) = c1(TS2) + c1(TT 2n−2), so that

c1(TM) ·A = c1(TS2) ·A = 2.

By Theorem 5.10, there is an open, dense subset of second Bair category Jreg(A) ⊂
J (M,ω), such that for any J ∈ Jreg(A), the space M∗(A, J) is an oriented smooth
manifold of dimension

dimM + 2c1(TM) ·A = 2n+ 4.

In the present case, since A is a generator of H2(M,Z) = Z, there are no spherical
classes B such that 0 < ω(B) < ω(A), so that by Theorem 5.8,M(A, J) =M∗(A, J),

and the quotient space M̃(A, J) is compact, which is an oriented smooth manifold of
dimension

dimM̃(A, J) = dimM∗(A, J)− dim PSL(2,C) = 2n+ 4− 6 = 2n− 2.

Denote PSL(2,C) by G, and setM(A, J)×G S2 ≡ (M(A, J)× S2)/G where G acts
on M(A, J) × S2 via φ · (u, z) = (u ◦ φ−1, φ(z)). Then M(A, J) ×G S2 is a compact,

oriented smooth manifold of dimension 2n, which is a S2-bundle over M̃(A, J). The
evaluation map

ev :M(A, J)×G S2 →M, [(u, z)] 7→ u(z)

is a smooth map between two compact, oriented smooth manifolds of the same dimen-
sion. The degree of ev, which is the image of the fundamental class ofM(A, J)×G S2

under ev∗ : H2n(M(A, J) ×G S2;Z) → H2n(M ;Z) = Z, can be geometrically inter-
preted as a count with signs of the points in the pre-image ev−1(p) for any generic

point p ∈M . On the other hand,M(A, J)×GS2 as a S2-bundle over M̃(A, J) may be

regarded as the space of rational J-holomorphic curves C ∈ M̃(A, J) with a marked
point z ∈ S2 in the de-singularization of C. Thus the degree of ev is a count with signs
of the number of rational J-holomorphic curves with a marked point, which carry the
homology class A and pass through a given generic point p ∈M at the marked point.
The Gromov invariant involved in the current problem is defined to be the degree
of the evaluation map ev : M(A, J) ×G S2 → M . Note that the Gromov invariant
is independent of the choice of J ∈ Jreg(A). This is because by Theorem 5.10, for
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any J1, J2 ∈ Jreg(A), there exists a path Jt ∈ J (M,ω) connecting J1, J2 such that
∪tM(A, Jt) is an oriented smooth manifold with boundary which is the disjoint union
of M(A, J1) and M(A, J2). It follows that ∪tM(A, Jt)×G S2 is a cobordism between
M(A, J1) ×G S2 and M(A, J2) ×G S2, hence the degree of ev is the same for J1, J2.
This shows that the Gromov invariant is independent of the choice of J ∈ Jreg(A).

In order to show that the Gromov invariant is non-zero, we consider a special
J ∈ Jreg(A). Let j, J0 be the complex structure on S2 and T 2n−2 respectively, and
let J = j × J0 be the product which lies in J (M,ω).

For any u ∈ M(A, J), since J = j × J0, the map pr ◦ u : S2 → T 2n−2, where
pr : M → T 2n−2 is the projection, is J0-holomorphic. But pr ◦ u carries a trivial
homology class, hence by Proposition 5.5, pr ◦ u is a constant map. This shows that
any u ∈ M(A, J) has the form u : z 7→ (φ(z), x) for some φ ∈ G = PSL(2,C) and
x ∈ T 2n−2.

There are two consequences of this fact: (1) For any u ∈M(A, J), u∗TM is isomor-
phic as a holomorphic vector bundle to TS2 ⊕ E where E is a trivial bundle of rank
n− 1. By Lemma 5.9, Du is onto for any u ∈M(A, J), so that J ∈ Jreg(A). (2) The
correspondence u 7→ (φ, x) gives an identification of M(A, J) with G × T 2n−2, and

hence M̃(A, J) with T 2n−2 andM(A, J)×G S2 with S2× T 2n−2 = M . It follows that
the evaluation map ev :M(A, J)×G S2 → M is a diffeomorphism, and the degree of
ev is ±1. This proves that the Gromov invariant is non-zero.

Proof of Lemma 5.12.

Note that the non-vanishing of Gromov invariant only implies immediately that for
any J ∈ Jreg(A), and for any generic point p ∈M , there exists a J-holomorphic curve

C ∈ M̃(A, J) such that p ∈ C. This is different from the claim in Lemma 5.12 that
in fact such a J-holomorphic curve exists for any J ∈ J (M,ω) and any point p ∈ M
(in particular, p0 ∈M).

To get around of this, we use the Gromov Compactness Theorem, Theorem 5.8. We
pick a sequence of Jn ∈ Jreg(A), since Jreg(A) is dense in J (M,ω), which converges to
J ∈ J (M,ω) in C∞-topology, and we pick a sequence of generic points pn converging
to p0 ∈ M , such that for each n, there exists a Jn-holomorphic curve Cn such that

pn ∈ Cn. By Theorem 5.8, a subsequence of {Cn} converges to a C ∈ M̃(A, J) such
that p0 = limn→∞ pn ∈ C. This proves Lemma 5.12.

2

5.3. J-holomorphic curves in dimension 4. The J-holomorphic curve theory in
dimension 4 is particularly more powerful because there are additional tools which
allow one to analyse the singularies of a J-holomorphic curve. On the other hand,
the existence of certain types of J-holomorphic curves actually can be derived from
the underlying differential topology of the symplectic 4-manifold, due to the deep
analytical work of Cliff Taubes.

Let (M,J) be an almost complex 4-manifold, and let C ⊂ M be a J-holomorphic
curve parametrized by a simple J-holomorphic map u : Σ → M . The following
theorem gives a criterion, amongst other things, for the embeddedness of C.
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Theorem 5.13. (Adjunction Inequality). Let gΣ be the genus of Σ. Then the inequal-
ity

1

2
(C2 − c1(TM) · C) + 1 ≥ gΣ

holds with equality if and only if C is embedded.

In particular, a rational J-holomorphic curve must be embedded if it is homologous
to an embedded rational J-holomorphic curve. This explains why the singular curve
C0 in Example 5.7 can not be the image of a holomorphic map u : S2 → CP2.

Example 5.14. (Algebraic curves in CP2). For notations we denote by [CP1] the
generator of H2(CP2;Z) which is the class of a line. Using Poincaré duality, we identify
H2(CP2;Z) with H2(CP2;Z).

We first consider non-singular algebraic curves in CP2. Let C be a line in CP2.
Then C2 = 1, and

1

2
(C2 − c1(TCP2) · C) + 1 = 0,

which implies that c1(TCP2) = 3 · [CP1].
Now let Cd be any non-singular algebraic curve of degree d. Then C2

d = d2 and
c1(TCP2) · Cd = 3d. This gives rise to the following genus formula for Cd:

genus (Cd) =
1

2
(C2

d − c1(TCP2) · Cd) + 1 =
1

2
(d− 1)(d− 2).

Next we consider a singular algebraic curve, the cusp curve

C0 = {[z0, z1, z2] ∈ CP2|z3
1 = z0z

2
2}.

C0 is of degree 3 and has a cusp singularity at [1, 0, 0]. The left-hand side of the
adjunction inequality for C0 is

1

2
(C2

0 − c1(TCP2) · C0) + 1 =
1

2
(32 − 3 · 3) + 1 = 1.

Since C0 is singular, C0 can only be parametrized by a holomorphic map from a genus

zero Riemann surface, i.e., S2, so C0 belongs to M̃∗(3[CP1], J0). On the other hand,
C0 is the limit of a family of non-singular cubic curves (λ 6= 0)

Cλ = {[z0, z1, z2] ∈ CP2|z3
1 = z0z

2
2 + λz3

0}

as λ → 0. We remark that this also represents a certain kind of non-compactness
phenomenon in the Gromov Compactness Theorem.

As an application of Theorem 5.13, we prove the following non-existence result.

Proposition 5.15. For a generic almost complex structure J , there exist no rational
J-holomorphic curves C such that C2 ≤ −2, and there exist at most embedded rational
J-holomorphic curves C with C2 = −1.

Proof. Suppose C is a rational J-holomorphic curve such that C2 ≤ −2. Then the
adjunction inequality implies that

c1(TM) · C ≤ C2 + 2 ≤ −2 + 2 = 0.
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On the other hand, for a generic almost complex structure J (cf. Theorem 5.10),
the space M∗([C], J) is a smooth manifold of dimension 4 + 2c1(TM) · C ≤ 4. Since
G = PSL(2,C) is 6-dimensional and acts on M∗([C], J) freely if it is non-empty, we
see that M∗([C], J) must be at least 6-dimensional. This proves that for a generic
almost complex structure, there exist no rational curves C with C2 ≤ −2. The proof
for the case of C2 = −1 is similar and we leave the details to the reader.

�

The above proposition shows that in a symplectic 4-manifold, the only interest-
ing rational J-holomorphic curves are those with non-negative self-intersection. Be-
cause if J is taken generic, the only rational J-holomorphic curves with negative
self-intersection are the embedded ones with self-intersection −1. By the symplectic
neighborhood theorem, the symplectic 4-manifold can be symplectically blown down
along these (−1)-curves, and the resulting symplectic 4-manifold does not have any
rational J-holomorphic curves with negative self-intersection for a generic J . A sym-
plectic 4-manifold is called minimal if it contains no embedded symplectic 2-spheres
with self-intersection −1 (i.e., it can not be symplectically blown down).

The following theorem is useful in analysing the intersection of two distinct J-
holomorphic curves.

Theorem 5.16. (Positivity of Intersection) Let C,C ′ be two distinct J-holomorphic
curves in a compact almost complex 4-manifold. Then the intersection of C,C ′ consists
of at most finitely many points. Moreover, the intersection product

C · C ′ =
∑

p∈C∩C′
kp

where kp ∈ Z+, and kp = 1 if and only if both C,C ′ are embedded near p and the
intersection at p is transverse.

In particular, C · C ′ ≥ 0, and if C · C ′ = 0, then C,C ′ are disjoint. If C · C ′ = 1,
then C,C ′ intersect at exactly one point and the intersection must be transverse.

Suppose C is an embedded rational J-holomorphic curve with C2 = 0, and suppose
C ′ is another rational J-holomorphic curve which is homologous to C. Then on the
one hand, the adjunction inequality implies C ′ must also be embedded, and on the
other hand, the positivity of intersection implies that C,C ′ must be disjoint. Thus if
the moduli space of such rational curves has a positive dimension, they may be used
to fill up the whole manifold. In order to do this, we need the following regularity
criterion for J .

Lemma 5.17. Suppose C is an immersed rational J-holomorphic curve in an al-
most complex 4-manifold (M,J) such that c1(TM) · C > 0. Then for any simple
J-holomorphic map u : S2 → M parametrizing C, the linearization Du of ∂̄J(u) = 0
is onto.

We combine these tools to give a proof of the following structural theorem of sym-
plectic 4-manifolds which contain an embedded rational curve of self-intersection 0.

Theorem 5.18. Let (M,ω) be a symplectic 4-manifold which contains an embedded
symplectic 2-sphere C with C2 = 0. Suppose that M contains no spherical classes B
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such that 0 < ω(B) < ω(C). Then M must be diffeomorphic to a S2-bundle over a
surface.

Proof. Pick a J ∈ J (M,ω) such that C is J-holomorphic (cf. Proposition 2.16, §2 of

Part 1). Then by the adjunction inequality every element in M̃∗([C], J) is embedded,
and since

c1(TM) · C = C2 + 2 = 2 > 0,

by Lemma 5.17, the space M∗([C], J) is an oriented smooth manifold of dimension

dimM + 2c1(TM) · C = 4 + 2 · 2 = 8.

Consequently, M̃∗([C], J) is an oriented surface, which is compact by Theorem 5.8.

With this understood, M is diffeomorphic to the S2-bundle over M̃∗([C], J) via

ev :M∗([C], J)×G S2 →M, [(u, z)] 7→ u(z),

where G = PSL(2,C).
�

Suppose in the above theorem, M contains another embedded symplectic 2-sphere
C ′ such that C ′ · C ′ = 0, which intersects with C transversely and positively at
a single point. Then one can arrange J ∈ J (M,ω) such that both C,C ′ are J-
holomorphic. Suppose furthermore that there are also no spherical classes B such

that 0 < ω(B) < ω(C ′), then M̃∗([C ′], J) is precisely the space of J-holomorphic
sections of M∗([C], J) ×G S2 under ev. It is easily seen that in this case there is a
diffeomorphism ψ : S2×S2 →M such that the 2-spheres ψ(S2×{pt}) and ψ({pt}×S2)
are symplectic in M . This fact was exploited in the proof of the following theorem.

Theorem 5.19. (Gromov-Taubes). For any symplectic structure ω on CP2, there is
a diffeomorphism ψ : CP2 → CP2 such that ψ∗ω is a multiple of the standard Fubini-
Study form ω0.

The proof of Theorem 5.19 consists of two steps. Step 1, which is due to Taubes
and uses his deep work on Seiberg-Witten theory of symplectic 4-manifolds, asserts
that there exists an embedded symplectic 2-sphere C with C2 = 1. The complement
CP2 \ ν(C) of a regular neighborhood of C is a homotopy 4-ball W with ∂W = S3

(Van-Kampen plus Mayer-Vietoris). By the symplectic neighborhood theorem, the
symplectic form ω equals the standard symplectic form on R4 in a regular neighbor-
hood of ∂W , which is identified with {x ∈ R4|δ0 − ε < ||x||2 ≤ δ0} for some δ0 and
ε > 0.

Step 2: (Gromov). There exists a symplectomorphism B4(δ0)→W which is identity
near the boundaries.

The proof of Step 2 goes as follows. Pick a large enough polydisc D2 × D2 ⊂ R4

which contains B4(δ0), and embedded D2 × D2 into S2 × S2 via some embedding
D2 ⊂ S2. Then one removes B4(δ0) from S2 × S2 and then glues back W . Call the
resulting symplectic 4-manifold M . Apply the remarks following Theorem 5.18 to M
(for details see [4], pages 314-319).
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