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1. Basic notions and examples

1.1. Symplectic manifolds.

Definition 1.1. A symplectic structure on a smooth manifold M is a 2-form
ω ∈ Ω2(M), which is (1) nondegenerate, and (2) closed (i.e. dω = 0). The pair (M,ω)
is called a symplectic manifold.

Recall that a 2-form ω ∈ Ω2(M) is said to be nondegenerate if for every point
p ∈ M , ω(u, v) = 0 for all u ∈ TpM implies v ∈ TpM equals 0. The nondegeneracy
condition on ω is equivalent to the condition that M has an even dimension 2n and
the top wedge product

ωn ≡ ω ∧ ω · · · ∧ ω
is nowhere vanishing on M , i.e., ωn is a volume form. In particular, M must be
orientable, and is canonically oriented by ωn. The nondegeneracy condition is also
equivalent to the condition that M is almost complex, i.e., there exists an endomor-
phism J of TM such that J2 = −Id. The latter is homotopy theoretic in nature as it
means that the tangent bundle TM as a SO(2n)-bundle can be lifted to a U(n)-bundle
under the natural homomorphism U(n) → SO(2n). (More systematic discussion in
Section 2.) Note that this has nothing to do with the closedness of ω.
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The closedness of ω is a very important, nontrivial geometric or analytical condition.
For now, we simply observe that ω defines a deRham cohomology class [ω] ∈ H2(M),
which must be nonzero when M is closed. In fact in this case,

[ω]n ≡ [ω] ∪ [ω] · · · ∪ [ω] ∈ H2n(M)

must be nonzero, since [ω]n([M ]) =
∫
M ωn 6= 0. Now we give some natural examples

of symplectic manifolds.

Example 1.2. (Euclidean Spaces). The most basic examples are the Euclidean spaces
R2n equipped with the standard symplectic structure

ω0 = dx1 ∧ dy1 + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn.
Note that with R2n ≡ Cn under zj = xj + iyj , j = 1, 2 · · · , n,

ω0 =
i

2

n∑
j=1

dzj ∧ dz̄j .

Example 1.3. (Cotangent Bundles). Let L be a smooth manifold of dimension n and
M ≡ T ∗L be the cotangent bundle. There is a canonical symplectic structure on M
which has the form ω = −dλ.

The 1-form λ is defined as follows. Let π : M ≡ T ∗L→ L be the natural projection.
Then for any v ∈ M ≡ T ∗L, we have π∗ : T ∗π(v)L → T ∗vM . With this understood, λ

is defined by setting its value at v to be λ(v) ≡ π∗(v). (Note that v ∈ T ∗π(v)L, so that

λ(v) ≡ π∗(v) ∈ T ∗vM .)
Let q1, · · · , qn be local coordinates on L, and p1, · · · , pn be the corresponding coor-

dinates on the fibers, i.e, if a cotangent vector v =
∑n

j=1 pjdqj , then v has coordinates
p1, · · · , pn on the fiber. Together q1, · · · , qn and p1, · · · , pn form a system of local
coordinates on M ≡ T ∗L. In the above local coordinates, we claim λ =

∑n
j=1 pjdqj .

Accepting it momentarily, we see immediately that ω ≡ −dλ is a symplectic structure,
because ω =

∑n
j=1 dqj ∧ dpj in these coordinates.

To see the claim λ =
∑n

j=1 pjdqj , recall that the value of λ at v =
∑n

j=1 pjdqj equals

π∗(v) =
∑n

j=1 pjπ
∗(dqj) =

∑n
j=1 pjd(π ◦ qj). Since q1, · · · , qn are regarded as local

coordinates on M ≡ T ∗L, qj = π ◦ qj , and with this understood, v =
∑n

j=1 pjdqj has

coordinates q1, · · · , qn, p1, · · · , pn. This shows that λ =
∑n

j=1 pjdqj . It is interesting
to check that λ is characterized by the following property: for any 1-form σ on L,
which can be regarded as a section of the cotangent bundle π : M ≡ T ∗L → L, one
has σ∗λ = σ.

We remark that cotangent bundles form a fundamental class of symplectic man-
ifolds. These are the phase spaces in classical mechanics, with coordinates q and p
corresponding to position and momentum.

Example 1.4. (Orientable Surfaces). Let M be a 2-dimensional orientable manifold,
and let ω be any volume form on M . Then (M,ω) is a symplectic manifold because
in this case ω is automatically nondegenerate and closed.

Example 1.5. (Kähler Manifolds). Let M be a complex manifold of dimension n, and
let h be a Hermitian metric on M . Then in a local complex coordinates z1, z2, · · · , zn,
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h may be written as h =
∑n

j,k=1 hjk̄dzj ⊗ dz̄k, where (hjk̄) is a n × n Hermitian

matrix, i.e., hjk̄ = h̄kj̄ . The associated 2-form to h is ω = i
∑n

j,k=1 hjk̄dzj ∧ dz̄k. With
this understood, h is called a Kähler metric if ω is closed. ω is clearly nondegenerate,
hence the underlying real manifold, also denoted by M , is a 2n-dimensional symplectic
manifold with a symplectic structure ω. Note that the nondegeneracy condition on ω
follows from the identity

ωn = in det(hjk̄) dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.
The complex projective spaces CPn and its complex submanifolds form a funda-

mental class of Kähler manifolds. There is a canonical Kähler metric on CPn, called
the Fubini-Study metric. In terms of the homogeneous coordinates z0, z1, · · · , zn of
CPn, the associated Kähler form of the Fubini-Study metric is

ω0 =
i

2π · (
∑n

κ=0 zκz̄κ)2

n∑
k=0

∑
j 6=k

(z̄jzjdzk ∧ dz̄k − z̄jzkdzj ∧ dz̄k).

(We point out that ω0 is normalized such that
∫
CPn ω

n
0 = 1.) Note that a complex

submanifold of CPn is naturally a Kähler manifold with the induced metric.
Another important class of Kähler manifolds is given by properly embedded complex

submanifolds of CN , which are called Stein manifolds.

Example 1.6. (Product of Symplectic Manifolds). Given two symplectic manifolds
(M1, ω1), (M2, ω2), the product M1×M2 is also symplectic with symplectic structures
π∗1ω1 ⊕ π∗2(±ω2). Here πi : M1 × M2 → Mi, i = 1, 2, and we canonically identity
T ∗(M1 ×M2) with π∗1(T ∗M1)⊕ π∗2(T ∗M2).

Example 1.7. Consider R2n with the standard symplectic structure ω0, and G = Z2n

the integral lattice, which acts freely on R2n by translations. The quotient is the (2n)-
dimensional torus T2n, with a standard symplectic structure. (Note that this example
can be also obtained by taking the n-fold product of the 2-torus T2.)

The following example is also of this sort, which gives the first example of a compact
closed, symplectic but non-Kähler manifold. (The example was known to Kodaira in
the 1950s and was rediscovered in the 1970s by Thurston.)

Example 1.8. (A Non-Kähler Manifold). Consider the group G = Z2 × Z2 with the
noncommutative group operation

(j′, k′) ◦ (j, k) = (j + j′, Aj′k + k′), Aj =

(
1 j2
0 1

)
,

where j = (j1, j2) ∈ Z2, and similarly for k. This group acts on R4 via

G→ Diff(R4) : (j, k) 7→ ρjk,

where ρjk(x, y) = (x + j, Ajy + k). One can verify easily that the action is free and
preserves the symplectic structure

ω = dx1 ∧ dx2 + dy1 ∧ dy2.

Hence the quotient M = R4/G is a symplectic manifold which is easily seen to be
compact closed.
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We will show that H1(M ;Z) = Z3 so that M is not a Kähler manifold. (Recall that
by the Hodge theory the odd dimensional Betti numbers of a closed Kähler manifold
must be even.) To see this, one first verifies that the commutator subgroup [G,G],
which consists of elements of the form aba−1b−1, a, b ∈ G, equals 0⊕ 0⊕ Z⊕ 0. Then
note that π1(M) = G and H1(M ;Z) = π1(M)/[π1(M), π1(M)]. Hence H1(M ;Z) =
G/[G,G] = Z3. This implies that the first Betti number of M equals 3, and that M
is not Kähler.

Topologically, M is a nontrivial T2 bundle over T2, or more precisely, M = S1 ×N
where N is the nontrivial T2 bundle over S1 defined as follows. Let x, y be the standard
coordinates on T2. Then N = [0, 1]× T2/ ∼, where (0, x, y) ∼ (1, x+ y, y).

A symplectomorphism of a symplectic manifold (M,ω) is a diffeomorphism ψ ∈
Diff(M) which preserves the symplectic structure

ω = ψ∗ω.

Note that a symplectomorphism is particularly a volume-preserving diffeomorphism
(hence is necessarily an orientation-preserving diffeomorphism), as one has ψ∗(ωn) =
(ψ∗ω)n = ωn. There is an abundance of symplectomorphisms on a symplectic mani-
fold. In fact, the group of symplectomorphisms, denoted by Symp(M,ω) or simply by
Symp(M), is an infinite dimensional Lie group, in contrast with the finite dimension-
ality of the isometry group of a Riemannian metric.

The nondegeneracy condition of a symplectic structure ω gives rise to the following
canonical isomorphism

TM → T ∗M : X 7→ iXω = ω(X, ·).

A vector field X is called symplectic if iXω is closed. The next result is one conse-
quence of the closedness of a symplectic structure, which shows that when M is closed,
the set of symplectic vector fields form the Lie algebra of the group Symp(M).

Proposition 1.9. Let (M,ω) be any symplectic manifold. If t 7→ ψt ∈ Diff(M) is a
smooth family of diffeomorphisms generated by a family of vector fields Xt via

d

dt
ψt = Xt ◦ ψt, ψ0 = id,

then ψt ∈ Symp(M) for every t iff Xt is a symplectic vector field for every t.

Proof. Recall Cartan’s formula for the Lie derivative

LXω = iXdω + d(iXω).

Now the closedness of ω, i.e., dω = 0, implies that

d

dt
ψ∗t ω = ψ∗t (LXtω) = ψ∗t (d(iXtω)),

which vanishes if and only if iXtω is closed. This proves that ψt ∈ Symp(M) for every
t iff Xt is a symplectic vector field for every t.

�
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There is a simple way to obtain symplectic vector fields, and therefore to obtain sym-
plectomorphisms, which shows their abundance. Let H be a smooth function (which
has a compact support if M is not closed). There is a vector field XH canonically
associated to H by the following equation

iXHω = dH.

The flow ψtH on M generated by XH , i.e.,

d

dt
ψtH = XH ◦ ψtH ,

is called a Hamiltonian flow. Note that XH is a symplectic vector field as iXHω,
being exact, is closed. Thus ψtH is a symplectomorphism for each t. The function H is
called the Hamiltonian function and the vector field XH is called the Hamiltonian
vector field.

More generally, a symplectomorphism ψ ∈ Symp(M) is called Hamiltonian if
there exists a smooth family of ψt ∈ Symp(M), t ∈ [0, 1], with ψ0 = id, ψ1 = ψ, such
that the corresponding (time-dependent) symplectic vector field Xt generating ψt is
Hamiltonian, i.e., the 1-form iXtω is exact for each t and has the form iXtω = dHt

for a time-dependent smooth function Ht on M . The function Ht is called a time-
dependent Hamiltonian function, and ψt is called an Hamiltonian isotopy.

Exercise: Consider the symplectic manifold (M,ω) where

M = {(x1, x2, x3) ∈ R3|x2
1 + x2

2 + x2
3 = 1},

and ω is the area form induced from the embedding M ⊂ R3. Show that the Hamil-
tonian flow on M associated to the “height” function

H(x1, x2, x3) ≡ x3

is the S1-action on M defined by the rotations about the x3-axis.

Further discussions about Hamiltonian S1-actions (and more generally, Hamiltonian
Tn-actions) will be given in Section 4.

1.2. Submanifolds of symplectic manifolds. Let (M,ω) be a symplectic manifold,
and let Q ⊂ M be a submanifold of M . Note that the tangent bundle TQ is a sub-
bundle of TM |Q. We set

TQω ≡
⋃
q∈Q
{u ∈ TMq|ω(u, v) = 0 ∀v ∈ TQq},

which is also a sub-bundle of TM |Q.

Definition 1.10. We say Q is isotropic if TQ ⊂ TQω, coisotropic if TQω ⊂ TQ,
symplectic if TQ ∩ TQω = {0}, and Lagrangian if TQ = TQω.

We remark that Q is symplectic iff the pull-back of ω to Q is a symplectic structure.
Moreover, Q is Lagrangian iff Q is isotropic and half-dimensional. (More discussion
in Section 2.) Amongst the four types of submanifolds of a symplectic manifold,
Lagrangian submanifolds form the most important class.
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Example 1.11. (Totally real submanifolds in a Kähler manifold). Let M be a Kähler
manifold of complex dimension n. A real n-dimensional submanifold Q is called totally
real if for every point q ∈ Q, TqQ ∩ J(TqQ) = {0}. A totally real submanifold
Q in a Kähler manifold is Lagrangian with respect to the Kähler form iff for each
q ∈ Q, TqQ and J(TqQ) are orthogonal with respect to the Kähler metric. When
n = 1, every symplectic 2-dimensional manifold is Kähler, and every real 1-dimensional
submanifold is Lagrangian and totally real. For higher dimensional examples, suppose
M is a complex submanifold of CPN , which is Kähler under the induced metric. Then
the fixed-point set of the anti-holomorphic involution zi 7→ z̄i in M (assuming M is
invariant under the involution), if nonempty, is a totally real, Lagrangian submanifold
of M .

Example 1.12. (Lagrangian submanifolds in (R2n, ω0)). The n-dimensional spaces
defined by xj = constant, j = 1, · · · , n, or yj = constant, j = 1, · · · , n, are Lagrangian
submanifolds in (R2n, ω0). For a different type of examples, consider the n-torus
Tn ⊂ R2n, where we think (R2n, ω0) as a product of symplectic manifold (R2, ω0) and

Tn ≡ S1 × · · · × S1,

where the j-th copy of S1 is the unit circle {x2
j + y2

j = 1} in the j-th copy of R2. The

torus Tn is Lagrangian because (1) any 1-dimensional manifold in a 2-dimensional
symplectic manifold is Lagrangian, and (2) the product of Lagrangian submanifolds
in a product symplectic manifold is again Lagrangian.

Example 1.13. (Lagrangian submanifolds and symplectomorphisms). Let (M,ω) be
any symplectic manifold. Then in the product symplectic manifold (M×M,ω×(−ω)),
the diagonal ∆ ≡ {(x, x) ∈ M ×M |x ∈ M} is Lagrangian. More generally, for any
ψ ∈ Symp(M,ω), the gragh of ψ in M ×M ,

gragh(ψ) ≡ {(x, ψ(x)) ∈M ×M |x ∈M},
is a Lagrangian submanifold.

Example 1.14. (Lagrangian submanifolds in cotangent bundles). Let M ≡ T ∗L be
the cotangent bundle of L equipped with the canonical symplectic structure ω = −dλ.
(In local coordinates λ =

∑
j pjdqj and ω =

∑
j dqj ∧ dpj .) Clearly, the fibers of T ∗L

(defined by qj = constant,∀j) and the zero section L ⊂ T ∗L (defined by pj = 0, ∀j)
are Lagrangian submanifolds.

Next we consider submanifolds Qσ in M which is the graph of a 1-form σ on L,
regarded as a smooth section of T ∗L. Since Qσ is of half dimension of M , it follows
that Qσ is a Lagrangian submanifold if and only if the pull-back of ω to Qσ equals 0,
which is equivalent to the condition that the pull-back σ∗ω = 0. But

σ∗ω = σ∗(−dλ) = −d(σ∗λ) = −dσ,
which implies that Qσ is Lagrangian iff σ is closed.

Exercise: Suppose σ is a closed 1-form on L and Qσ is the corresponding La-
grangian submanifold in T ∗L. Let ψt ∈ Symp(T ∗L), t ∈ [0, 1], be an isotopy of
symplectomorphisms such that ψ0 = id and ψ1(L) = Qσ. Show that σ is an exact
1-form if ψt is an Hamiltonian isotopy.
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Exercise: Show that every 1-dimensional submanifold is isotropic and every co-
dimension 1 submanifold is coisotropic.

Exercise: Let Q be a coisotropic submanifold. Show that TQω ⊂ TQ is an inte-
grable distribution on Q.

2. Linear symplectic geometry

2.1. Symplectic vector spaces.

Definition 2.1. A symplectic vector space is a pair (V, ω) where V is a finite
dimensional real vector space and ω is a bilinear form which satisfies

• Skew-symmetry: for any u, v ∈ V ,

ω(u, v) = −ω(v, u).

• Nondegeneracy: for any u ∈ V ,

ω(u, v) = 0 ∀v ∈ V implies u = 0.

A linear symplectomorphism of a symplectic vector space (V, ω) is a vector
space isomorphism ψ : V → V such that

ω(ψu, ψv) = ω(u, v) ∀u, v ∈ V.

The group of linear symplectomorphisms of (V, ω) is denoted by Sp(V, ω).

Example 2.2. The Euclidean space R2n carries a standard skew-symmetric, nonde-
generate bilinear form ω0 defined as follows. For u = (x1, x2, · · · , xn, y1, y2, · · · , yn)T ,
u′ = (x′1, x

′
2, · · · , x′n, y′1, y′2, · · · , y′n)T ,

ω0(u, u′) =

n∑
i=1

(xiy
′
i − x′iyi) = −uTJ0u

′,

where J0 =

(
0,−I
I, 0

)
. (Here I is the n× n identity matrix.)

The group of linear symplectomorphisms of (R2n, ω0), which is denoted by Sp(2n),
can be identified with the group of 2n× 2n symplectic matrices. Recall a symplectic
matrix Ψ is one which satisfies ΨTJ0Ψ = J0. For the case of n = 1, a symplectic
matrix is simply a matrix Ψ with det Ψ = 1.

Let (V, ω) be any symplectic vector space, and let W ⊂ V be any linear subspace.
The symplectic complement of W in V is defined and denoted by

Wω = {v ∈ V |ω(v, w) = 0, ∀w ∈W}.

A subspace W is called isotropic if W ⊂Wω, coisotropic if Wω ⊂W , symplectic
if W ∩Wω = {0}, and Lagrangian if W = Wω.

Lemma 2.3. (1) dimW + dimWω = dimV , (2) (Wω)ω = W .
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Proof. Define ιω : V → V ∗ by ιω(v) : w 7→ ω(v, w), ∀v, w ∈ V , where V ∗ is the
dual space of V . Since ω is nondegenerate, ιω is an isomorphism. Now observe that
ιω(Wω) = W⊥ where W⊥ ⊂ V ∗ is the annihilator of W , i.e.,

W⊥ ≡ {v∗ ∈ V ∗|v∗(w) = 0 ∀w ∈W}.
Part (1) follows immediately from the fact that

dimW + dimW⊥ = dimV.

Part (2) follows easily from W ⊂ (Wω)ω and the equations

dimW = dimV − dimWω = dim(Wω)ω

which are derived from (1). �

Exercise: Show that if W ⊂ V is isotropic, then ω induces a symplectic structure
on the quotient space Wω/W . Similarly, if W ⊂ V is coisotropic, then ω induces a
symplectic structure on W/Wω.

Lemma 2.4. For any symplectic vector space (V, ω), there exists a basis of V , denoted
by u1, u2, · · · , un, v1, v2, · · · , vn, such that

ω(uj , uk) = ω(vj , vk) = 0, ω(uj , vk) = δjk.

(Such a basis is called a symplectic basis.) In particular, dimV = 2n is even.

Proof. We prove by induction on dimV . Note that dimV ≥ 2.
When dimV = 2, the nondegeneracy condition of ω implies that there exist u, v ∈ V

such that ω(u, v) 6= 0. Clearly u, v are linearly independent so that they form a basis
of V since dimV = 2. We can replace v by an appropriate nonzero multiple so that the
condition ω(u, v) = 1 is satisfied. Hence the theorem is true for the case of dimV = 2.

Now suppose the theorem is true when dimV ≤ m − 1. We shall prove that it
is also true when dimV = m. Again the nondegeneracy condition of ω implies that
there exist u1, v1 ∈ V such that u1, v1 are linearly independent and ω(u1, v1) = 1. Set
W ≡ span(u1, v1). Then we claim that (Wω, ω|Wω) is a symplectic vector space. It
suffices to show that ω|Wω is nondegenerate. To see this, suppose w ∈ Wω such that
ω(w, z) = 0 for all z ∈ Wω. We need to show that w must be zero. To this end, note
that W ∩Wω = {0}, so that V = W ⊕Wω by (1) of the previous lemma. Now for
any z ∈ V , write z = z1 + z2 where z1 ∈W and z2 ∈Wω. Then ω(w, z1) = 0 because
w ∈ Wω and ω(w, z2) = 0 by z2 ∈ Wω and the assumption on w. Hence ω(w, z) = 0,
and therefore w = 0 by the nondegeneracy condition of ω on V .

Note that dimWω = dimV − 2 ≤ m − 1, so that by the induction hypoth-
esis, there is a symplectic basis u2, · · · , un, v2, · · · , vn of (Wω, ω|Wω). It is clear
that u1, u2, · · · , un, v1, v2, · · · , vn is a symplectic basis of (V, ω), and the lemma is
proved. �

The following two immediate corollaries are left as exercises.

Exercise: Let ω be any skew-symmetric bilinear form on V . Show that ω is
nondegenerate if and only if dimV = 2n is even and

ωn = ω ∧ · · · ∧ ω 6= 0.
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Exercise: Let (V, ω) be any symplectic vector space. Show that there exists an
n > 0 and a vector space isomorphism φ : R2n → V such that

ω0(z, z′) = ω(φz, φz′), ∀z, z′ ∈ R2n.

Consequently, Sp(V, ω) is isomorphic to Sp(2n).

Exercise: (Space of Lagrangians) Let L(n) denote the set of Lagrangian subspaces
of (R2n, ω0). Let Λ ⊂ R2n be any n-dimensional subspace.

(1) Show that Λ ∈ L(n) iff J0(Λ) is orthogonal to Λ.
(2) Let u1, u2, · · · , un be an orthonormal basis of Λ, and write (u1, · · · , un) =(
X
Y

)
where X,Y are n× n matrices. Show that X + iY ∈ U(n) iff Λ ∈ L(n).

(3) Show that L(n) can be identified with U(n)/O(n), induced by Λ 7→ X + iY .
(4) Let Λt ∈ L(n) be any loop of Lagrangian subspaces, and let Ut ∈ U(n) be any

path which is a lifting of Λt. Show that det(U2
t ) is a loop in S1, which depends only

on the loop Λt. The degree of det(U2
t ) is called the Maslov index of Λt.

(5) Show that the Maslov index defines an isomorphism of π1(L(n)) to Z.

A complex structure on a (finite dimensional) real vector space V is an automor-
phism J : V → V such that J2 = −id. A Hermitian structure on (V, J) is an inner
product g on V which is J-invariant, i.e., g(Jv, Jw) = g(v, w), for all v, w ∈ V . Let
J be a complex structure on V . Then V becomes a complex vector space by defining
the complex multiplication by

C× V → V : (x+ iy, v) 7→ xv + yJv.

Definition 2.5. Let (V, ω) be a symplectic vector space. A complex structure J on
V is called ω-compatible if

• ω(Jv, Jw) = ω(v, w) for all v, w ∈ V ,
• ω(v, Jv) > 0 for any 0 6= v ∈ V .

We denote the set of ω-compatible complex structures by J (V, ω). Note that
J (V, ω) is nonempty: let u1, u2, · · · , un, v1, v2, · · · , vn be a symplectic basis of (V, ω),
then J : V → V defined by Jui = vi, Jvi = −ui is a ω-compatible complex struc-
ture. Finally, for any J ∈ J (V, ω), gJ(v, w) ≡ ω(v, Jw), ∀v, w ∈ V , is a (canonically
associated) Hermitian structure on (V, J).

Lemma 2.6. Suppose dimV = 2n. Then for any J ∈ J (V, ω), there is a vector space
isomorphism φJ : R2n → V such that

φ∗Jω = ω0, φ∗JJ ≡ φ−1
J ◦ J ◦ φJ = J0.

Moreover, φ∗J : J ′ 7→ φ−1
J ◦ J ′ ◦ φJ identifies J (V, ω) with J (R2n, ω0).

Proof. Consider the canonical Hermitian structure gJ(v, w) ≡ ω(v, Jw), ∀v, w ∈ V ,
and extend gJ to V ×C complex linearly. Recall that V ×C = V1,0 ⊕ V0,1 where V1,0,
V0,1 are the (+i)-eigenspace and (−i)-eigenspace of J . The projection of (V, J) to V1,0

is an isomorphism of complex vector spaces.
Let (e1, e2, · · · , en, f1, f2, · · · , fn) be any basis of V where Jek = fk, Jfk = −ek for

each k, and let zk := 1
2(ek − ifk), z̄k := 1

2(ek + ifk) be the projections of ek to V1,0,



10 WEIMIN CHEN

V0,1 respectively. Then

gJ(zk, z̄l) =
1

2
(ω(ek, fl)− iω(ek, el)).

Set uk := 1√
2
ek for each k. It follows easily that if z1, z2, · · · , zn is a unitary ba-

sis of (V1,0, gJ), then u1, u2, · · · , un, Ju1, Ju2, · · · , Jun is a symplectic basis of (V, ω).
Furthermore, if we define φJ : R2n → V , where

φJ : (x1, x2, · · · , xn, y1, y2, · · · , yn) 7→
n∑
i=1

(xiui + yiJui),

then it is obvious that φ∗Jω = ω0 and φ∗JJ = J0. Moreover, the verification that

φ∗J : J ′ 7→ φ−1
J ◦ J ′ ◦ φJ identifies J (V, ω) with J (R2n, ω0) is straightforward. �

Note that under the natural inclusion of GL(n,C) in GL(2n,R), U(n) lies in Sp(2n).

Theorem 2.7. The space J (R2n, ω0) is naturally identified with the homogeneous
space Sp(2n)/U(n). Moreover, there is a canonically defined smooth map

H : Sp(2n)/U(n)× [0, 1]→ Sp(2n)/U(n)

such that H(x, 0) = x, H(x, 1) = ∗ for any x ∈ Sp(2n)/U(n), H(∗, t) = ∗ for any
t ∈ [0, 1], where ∗ denote the orbit of the identity matrix I ∈ Sp(2n) in Sp(2n)/U(n).
In particular, Sp(2n)/U(n) (and J (R2n, ω0) as well) is contractible.

Proof. There is a canonical left action of Sp(2n) on J (R2n, ω0): for any ψ ∈ Sp(2n),
J ∈ J (R2n, ω0), we define ψ · J := ψ ◦ J ◦ ψ−1. Then Lemma 2.6 implies that the
action of Sp(2n) on J (R2n, ω0) is transitive. The isotropy subgroup at J0 is clearly
U(n), which implies the identification of J (R2n, ω0) with Sp(2n)/U(n).

It remains to construct the map H. First of all, for any ψ ∈ Sp(2n), ψT is also in
Sp(2n), so that ψψT is a symmetric, positive definite symplectic matrix. We will show
that (ψψT )α is also a symplectic matrix for any real number α > 0.

To this end, we decompose R2n = ⊕λVλ where Vλ is the λ-eigenspace of ψψT , and
λ > 0. Then note that for any z ∈ Vλ, z′ ∈ Vλ′ , ω0(z, z′) = 0 if λλ′ 6= 1. Our claim
that (ψψT )α is a symplectic matrix for any real number α > 0 follows easily from this
observation.

Now for any ψ ∈ Sp(2n), we decompose ψ = PQ where P = (ψψT )1/2 is symmetric
and Q ∈ O(2n). Note that Q = ψP−1 ∈ Sp(2n) ∩O(2n) = U(n), which shows that ψ

and P = (ψψT )1/2 are in the same orbit in Sp(2n)/U(n). With this understood, we
define

H : (ψ · U(n), t) 7→ (ψψT )(1−t)/2 · U(n), ψ ∈ Sp(2n), t ∈ [0, 1].

�

Recall that for any J ∈ J (V, ω), there is a canonically associated Hermitian struc-
ture (i.e. a J-invariant inner product) gJ(·, ·) ≡ ω(·, J ·). The next theorem shows that
one can construct ω-compatible complex structures from inner products on V . Let
Met(V ) denote the space of inner products on V .
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Theorem 2.8. There exists a canonically defined map r : Met(V ) → J (V, ω) such
that

r(gJ) = J, r(ψ∗g) = ψ∗r(g)

for all J ∈ J (V, ω), g ∈ Met(V ), and ψ ∈ Sp(V, ω).

Proof. For any given g ∈ Met(V ), we define A : V → V by

ω(v, w) = g(Av,w), ∀v, w ∈ V.

Then the skew-symmetry of ω implies that A is g-skew-adjoint. It follows that P ≡
−A2 is g-self-adjoint and g-positive definite. Set Q ≡ P 1/2, which is also g-self-adjoint
and g-positive definite.

We define the map r by g 7→ Jg ≡ Q−1A. Then J2
g = Q−1AQ−1A = Q−2A2 = −I

is a complex structure. To check that Jg is ω-compatible, note that

ω(Q−1Av,Q−1Aw) = g(AQ−1Av,Q−1Aw) = −g(v,Aw) = ω(v, w), ∀v, w ∈ V,

ω(v,Q−1Av) = g(Av,Q−1Av) > 0 ∀0 6= v ∈ V
because Q−1 is g-self-adjoint and g-positive definite.

Finally, for any ψ ∈ Sp(V, ω), replacing g with ψ∗g changes A to ψ−1Aψ, and
therefore changes Q to ψ−1Qψ. This implies r(ψ∗g) = ψ∗r(g). If g = gJ , then A = J
and Q = I, so that r(gJ) = J .

�

Exercise: For any ψ ∈ Sp(2n), the decomposition ψ = PQ, where P = (ψψT )1/2

and Q ∈ U(n), allows us to define the so-called Maslov index of a loop in Sp(2n).
More precisely, for any loop ψ(t) ∈ Sp(2n), we decompose ψ(t) = P (t)Q(t), and define
the Maslov index of ψ(t) to be the degree of the loop detQ(t) in S1. Show that two
loops in Sp(2n) are homotopic if and only if they have the same Maslov index.

2.2. Symplectic vector bundles.

Definition 2.9. A symplectic vector bundle over a smooth manifold M is a pair
(E,ω), where E →M is a real vector bundle and ω is a smooth section of E∗∧E∗ such
that for each p ∈M , (Ep, ωp) is a symplectic vector space. (Here E∗ is the dual of E.)
The section ω is called a symplectic bilinear form on E. Two symplectic vector
bundles (E1, ω1), (E2, ω2) are said to be isomorphic if there exists an isomorphism
φ : E1 → E2 (which is identity over M) such that φ∗ω2 = ω1.

The standard constructions in bundle theory carry over to the case of symplec-
tic vector bundles. For example, for any smooth map f : N → M and symplectic
vector bundle (E,ω) over M , the pull-back (f∗E, f∗ω) is a symplectic vector bundle
over N . In particular, for any submanifold Q ⊂ M , the restriction (E|Q, ω|Q) is a
symplectic vector bundle over Q. Let F be a sub-bundle of E such that for each
p ∈M , (Fp, ωp|Fp) is a symplectic vector space. Then (F, ω|F ) is naturally a symplec-
tic vector bundle. We call F (or (F, ω|F )) a symplectic sub-bundle of (E,ω). The
symplectic complement of F is the sub-bundle

Fω ≡ ∪p∈MF
ωp
p = ∪p∈M{v ∈ Ep|ωp(v, w) = 0, ∀w ∈ Fp},
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which is naturally a symplectic sub-bundle of (E,ω). Note that as a real vector bundle,
Fω is isomorphic to the quotient bundle E/F .

Given any symplectic vector bundles (E1, ω1), (E2, ω2), the symplectic direct sum
(E1⊕E2, ω1⊕ω2) is naturally a symplectic vector bundle. With this understood, note
that for any symplectic sub-bundle F of (E,ω), one has

(E,ω) = (F, ω|F )⊕ (Fω, ω|Fω).

Example 2.10. Let (M,ω) be a symplectic manifold. Note that ω as a 2-form on
M is a smooth section of Ω2(M) ≡ T ∗M ∧ T ∗M . The nondegeneracy condition on ω
implies that (TM,ω) is a symplectic vector bundle. Note that the closedness of ω is
irrelevant here.

Suppose Q is a symplectic submanifold of (M,ω). Then TQ is a symplectic sub-
bundle of (TM |Q, ω|Q). The normal bundle νQ ≡ TM |Q/TQ of Q in M is also nat-
urally a symplectic sub-bundle of (TM |Q, ω|Q) by identifying νQ with the symplectic
complement TQω of TQ. Notice the symplectic direct sum

TM |Q = TQ⊕ νQ.

Definition 2.11. Let (E,ω) be a symplectic vector bundle over M . A complex
structure J of E, i.e., a smooth section J of Aut(E) → M such that J2 = −I, is
said to be ω-compatible if for each p ∈M , Jp is ωp-compatible, i.e., Jp ∈ J (Ep, ωp).
The space of all ω-compatible complex structures of E is denoted by J (E,ω).

Example 2.12. Let (M,ω) be a symplectic manifold. Then a complex structure of
TM is simply what we call an almost complex structure on M . An almost complex
structure J on M is said to be ω-compatible if J ∈ J (TM,ω). In this context,
we denote J (TM,ω), the set of ω-compatible almost complex structures on M , by
J (M,ω). Notice that the closedness of ω is irrelevant here.

In what follows, we will address the issue of classification of symplectic vector bun-
dles up to isomorphisms, and determine the topology of the space J (E,ω).

Lemma 2.13. Let (E,ω) be a symplectic vector bundle over M of rank 2n.
(1) There exists an open cover {Ui} of M such that for each i, there is a symplectic

trivialization φi : (E|Ui , ω|Ui)→ (Ui×R2n, ω0). In particular, the transition functions
φji(p) ≡ φj ◦ φ−1

i (p) ∈ Sp(2n) for each p ∈ Ui ∩ Uj, and E becomes a Sp(2n)-vector
bundle. Conversely, any Sp(2n)-vector bundle is a symplectic vector bundle, and their
classification up to isomorphisms is identical.

(2) Any Sp(2n)-vector bundle over a smooth manifold admits a lifting to a U(n)-
vector bundle, which is unique up to isomorphisms (as U(n)-vector bundles). Con-
sequently, for any J1, J2 ∈ J (E,ω), the complex vector bundles (E, J1), (E, J2) are
isomorphic. (In other words, every symplectic vector bundle has a underlying complex
vector bundle structure unique up to isomorphisms.)

Proof. For any p ∈ M , one can prove by induction as in Lemma 2.4 (with a para-
metric version) that there exists a small neighborhood Up of p and smooth sections
u1, u2, · · · , un, v1, v2, · · · , vn of E over Up such that for each q ∈ Up,

u1(q), u2(q), · · · , un(q), v1(q), v2(q), · · · , vn(q)
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form a symplectic basis of (Eq, ωq). Part (1) follows immediately from this by defining
φp : (E|Up , ω|Up)→ (Up × R2n, ω0) to be the inverse of

(q, (x1, x2, · · · , xn, y1, y2, · · · , yn)T ) 7→
n∑
i=1

(xiui(q) + yivi(q)).

For part (2), it follows from Theorem 2.7, i.e., Sp(2n)/U(n) is contractible.
�

Theorem 2.14. Let (E1, ω1), (E2, ω2) be two symplectic vector bundles. Then they
are isomorphic as symplectic vector bundles iff they are isomorphic as complex vector
bundles.

Proof. Pick J1 ∈ J (E1, ω1), J2 ∈ J (E2, ω2). Then by the previous lemma (E1, ω1),
(E2, ω2) are isomorphic as symplectic vector bundles iff (E1, J1, ω1), (E2, J2, ω2) are
isomorphic as U(n)-vector bundles. But the classification of U(n)-vector bundles up
to isomorphisms is the same as classification of the underlying complex vector bundles
because GL(n,C)/U(n) is contractible. The theorem follows immediately.

�

Theorem 2.15. For any symplectic vector bundle (E,ω), the space of ω-compatible
complex structures J (E,ω) is nonempty and contractible. In particular, for any sym-
plectic manifold (M,ω), the space of ω-compatible almost complex structures on M is
nonempty and contractible.

Proof. There are actually two proofs:

Proof 1: The space J (E,ω) is the space of smooth sections of a fiber bundle
over M with fiber J (R2n, ω0). The claim that J (E,ω) is nonempty and contractible
follows immediately from Theorem 2.7 that J (R2n, ω0) is contractible.

Proof 2: A parametric version of Theorem 2.8 gives rise to a similar map r :
Met(E)→ J (E,ω). Contractibility of J (E,ω) follows from convexity of Met(E).

�

Proof 2 of Theorem 2.15, which uses Theorem 2.8, is less conceptual than Proof 1
but more useful in various concrete constructions. As an example of illustration, we
prove the following

Proposition 2.16. Let Q be a symplectic submanifold of (M,ω). Then for any J ∈
J (Q,ω|Q), there exists a Ĵ ∈ J (M,ω) such that Ĵ |TQ = J . In particular, every
symplectic submanifold of (M,ω) is a pseudo-holomorphic submanifold for some ω-
compatible almost complex structure on M .

Proof. Recall the symplectic direct sum decomposition

(TM |Q, ω|Q) = (TQ, ω|TQ)⊕ (νQ, ω|νQ),

where νQ is the normal bundle of Q in M . For any J ∈ J (Q,ω|Q), we can extend it
to J ′ = (J, Jν) by choosing a Jν ∈ J (νQ, ω|νQ). We then extend the corresponding
metric ω(·, J ′·) on TM |Q over the whole M to a metric g on TM . Let r : Met(M)→
J (M,ω) be the parametric version of the map in Theorem 2.8. Then Ĵ ≡ r(g) satisfies
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Ĵ |TQ = J , and in particular, Q is a pseudo-holomorphic submanifold with respect to

the ω-compatible almost complex structure Ĵ on M .
�

Exercise: Let (M,ω) be a symplectic manifold, G be a compact Lie group acting
smoothly on M which preserves the symplectic structure ω, i.e., g∗ω = ω, for any
g ∈ G. Show that there exists a J ∈ J (M,ω) such that g∗J = J for any g ∈ G, i.e.,
G acts pseudo-holomorphically on M with respect to J .

3. Moser’s argument

Moser’s argument is one of the fundamental techniques in symplectic geometry.
We shall sketch its main ideas first. Various applications are given in the individual
subsections below.

Let M be a smooth manifold (not necessarily closed), and let ωt ∈ Ω2(M), t ∈ [0, 1],
be a smooth family of 2-forms on M each of which is closed and nondegenerate. We
further assume that there exists a smooth family of 1-forms σt ∈ Ω1(M) such that

d

dt
ωt = dσt, ∀t ∈ [0, 1].

The goal of Moser’s argument is to construct a smooth family of ψt ∈ Diff(M) such
that

ψ∗t ωt = ω0, ∀t ∈ [0, 1].

Suppose ψt is generated by a smooth family of (time-dependent) vector fields Xt. Let’s
find what conditions Xt has to satisfy.

Note that ψ∗t ωt = ω0, ∀t ∈ [0, 1], is equivalent to

0 =
d

dt
(ψ∗t ωt) = ψ∗t (

d

dt
ωt + LXtωt) = ψ∗t (dσt + d(iXtωt))

since ωt is closed. The above equation is satisfied if we define Xt by the following
equation:

iXtωt + σt = 0.

With Xt determined as such, we can integrate Xt to obtain the diffeomorphisms ψt
by solving the following initial value problem of ODE

d

dt
ψt = Xt ◦ ψt, ψ0 = id.

In general, the above problem has a (unique) solution for small t. When M is compact,
ψt exists for all t ∈ [0, 1]. But for the case where M is open, one needs some additional
assumptions on ωt to ensure that ψt exists for all t ∈ [0, 1].

3.1. Various neighborhood theorems. We first prove a basic lemma.

Lemma 3.1. Let M be a 2n-dimensional smooth manifold and Q ⊂M be a compact
closed submanifold. Suppose that ω0, ω1 are closed and nondegenerate 2-forms in a
neighborhood of Q, such that ω0 = ω1 on TqM for each q ∈ Q. Then there exists open
neighborhoods N0, N1 of Q in M and a diffeomorphism φ : N0 → N1 such that

φ∗ω1 = ω0, and φ|Q = id.
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Proof. First of all, we will show that there exists a neighborhood N of Q and a 1-form
σ ∈ Ω1(N) such that

ω1 − ω0 = dσ, and σ|TqM = 0, ∀q ∈ Q.

To this end, we fix a Riemannian metric on M and identify the normal bundle νQ of

Q with the orthogonal complement TQ⊥. Then the exponential map exp : νQ → M
is a diffeomorphism on Uε ≡ {(q, v) ∈ νQ||v| < ε} for a sufficiently small ε > 0. We set
N ≡ exp(Uε). (Note that such an ε > 0 exists because Q is compact.)

Now for t ∈ (−∞, 0] we define φt : N → N by φt(exp(q, v)) = exp(q, etv). Then for
any t, φt is a diffeomorphism from N onto its image in N . Moreover, we have φ0 = id,
limt→−∞ φt(N) = Q and φt|Q = idQ for any t. It is easy to see that φs+t = φs ◦ φt, so

that Y ≡ ( ddtφt) ◦ φ
−1
t = d

dtφt|t=0 is a time-independent vector field on N . Moreover,
note that Y = 0 on Q.

We set τ ≡ ω1 − ω0. Then τ = 0 on TqM for any q ∈ Q. It follows easily that
limt→−∞ φ

∗
t τ = 0 as limt→−∞ φt(N) = Q. With this understood, we observe

τ = φ∗0τ =

∫ 0

−∞

d

dt
φ∗t τ dt =

∫ 0

−∞
φ∗t (LY τ) dt

=

∫ 0

−∞
φ∗t (iY dτ + d(iY τ)) dt

= d(

∫ 0

−∞
φ∗t (iY τ) dt) = dσ,

where σ ≡
∫ 0
−∞ φ

∗
t (iY τ) dt. Note that σ = 0 on TqM for any q ∈ Q, because for any

t, φ∗t (iY τ) = iY τ = 0 on TqM for any q ∈ Q, as φt|Q = idQ for any t.
Given the 1-form σ as above, we shall consider the family of closed 2-forms ωt ≡ ω0+

t(ω1−ω0), t ∈ [0, 1]. Since nondegeneracy is an open condition, ωt is a smooth family
of symplectic forms in a perhaps smaller neighborhood of Q, which, for simplicity, is
still denoted by N . Note that d

dtωt = τ = dσ.
In order to run Moser’s argument on ωt, we define time-dependent vector fields Xt

by the equation

iXtωt + σ = 0, ∀t ∈ [0, 1].

Observe that Xt = 0 on Q because of the condition σ|TqM = 0, ∀q ∈ Q.
It remains to show that there exists a neighborhood N0 ⊂ N of Q such that the

family of maps ψt defined by solving the following initial value problem of ODE

d

dt
ψt = Xt ◦ ψt, ψ0 = id

is defined on N0 for all t ∈ [0, 1]. Suppose to the contrary, no such a neighborhood
exists. Then there exists a sequence of points pn ∈ N and a sequence of tn ∈ [0, 1)
such that ψt(pn) is defined for t ∈ [0, tn] and ψtn(pn) ∈ ∂N , and as n → ∞, the
distance between pn and Q converges to 0. Since Q is compact, a subsequence of pn
converges to q0 ∈ Q, and for that subsequence of pn, tn → t0 ∈ [0, 1]. Now the integral
curves of Xt ψt(qn), t ∈ [0, tn], converges to the integral curve ψt(q0), t ∈ [0, t0]. Since
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ψtn(pn) ∈ ∂N , and ∂N is compact, we see that ψt0(q0) ∈ ∂N also. But this is a
contradiction, because Xt = 0 on Q so that ψt(q0) = q0 ∈ Q for any t ∈ [0, 1].

Set N1 ≡ ψ1(N0) ⊂ N . Then φ ≡ ψ1 : N0 → N1 is the desired diffeomorphism:
φ∗ω1 = ω0 and φ|Q = id (because Xt = 0 on Q).

�

Next we use this lemma to prove several standard neighborhood theorems in sym-
plectic geometry.

Theorem 3.2. (Darboux Theorem). Every symplectic form is locally diffeomorphic
to the standard symplectic form ω0 on R2n.

Proof. Suppose ω is a symplectic form defined near q ∈ M . In order to apply the
previous lemma, we fix a Riemannian metric near q, and fix a choice of symplectic
basis u1, u2, · · · , un, v1, v2, · · · , vn of the symplectic vector space (TqM,ω(p)). With
this given, we define φ : R2n →M by

φ : (x1, x2, · · · , xn, y1, y2, · · · , yn)T 7→ expq(
n∑
j=1

(xjuj + yjvj)).

The map φ is a diffeomorphism from a neighborhood U of 0 ∈ R2n onto a neighborhood
of q ∈ M , hence define a chart centered at q. Since the differential of expq at the
origin is identity, and u1, u2, · · · , un, v1, v2, · · · , vn is a symplectic basis, it follows easily
that φ∗ω and ω0 as symplectic forms on U are equal on TqU . The theorem follows
immediately by applying Lemma 3.1 with Q = {q}.

�

Exercise: Formulate and prove an equivariant version of Darboux Theorem.

A similar argument gives the following

Theorem 3.3. (Symplectic Neighborhood Theorem). For j = 0, 1, let (Mj , ωj) be a
symplectic manifold with a compact symplectic submanifold Qj. Suppose that there
exists an isomorphism Φ : (νQ0 , ω0) → (νQ1 , ω1) between the normal bundles which
covers a symplectomorphism φ : (Q0, ω0) → (Q1, ω1). Then there are neighborhoods
N0 and N1 of Q0 and Q1 respectively, such that φ extends to a symplectomorphism
Ψ : N0 → N1 with dΨ = Φ on νQ0.

Proof. For each j = 0, 1 we fix a Jj ∈ J (Mj , ωj) such that Qj is pseudo-holomorphic
submanifold with respect to Jj (cf. Proposition 2.16 in Section 2). Then with respect

to the metric gJj (·, ·) ≡ ωj(·, Jj ·), the symplectic complement TQ
ωj
j = νQj is identified

with the orthogonal complement TQ⊥j . With this understood, let ψj : νQj → Mj be

defined by (q, v) 7→ expq(v), where q ∈ Qj , then Ψ′ ≡ ψ1 ◦Φ ◦ψ−1
0 is a diffeomorphism

between a neighborhood of Q0 onto a neighborhood of Q1, such that (Ψ′)∗ω1 = ω0 on
TqM0 for each q ∈ Q0. The theorem follows by applying Lemma 3.1.

�
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Theorem 3.4. (Lagrangian Neighborhood Theorem). Let (M,ω) be a symplectic man-
ifold and L ⊂ M be a compact Lagrangian submanifold. Then there exist a neighbor-
hood U of the zero-section in T ∗L and a neighborhood V of L in M , and a diffeomor-
phism φ : U → V such that

φ∗ω = −dλ, φ|L = id,

where λ is the canonical 1-form on T ∗L (cf. Example 1.3 in Section 1).

Proof. Note that since L is Lagrangian in (M,ω), i.e. ω(u, v) = 0 for any u, v ∈ TqL,
q ∈ L, the homomorphism β : TqM → T ∗q L defined by β(u)(v) = ω(u, v) factors
through TqL to give rise to an isomorphism of bundles νL → T ∗L. This at least shows
that a neighborhood of L in M is diffeomorphic to a neighborhood of the zero-section
in T ∗L. The key issue is to find an appropriate diffeomorphism under which the two
symplectic forms ω and −dλ agree on TM along L.

Lemma 3.5. Let (V, ω) be a symplectic vector space, and let L ⊂ V be a Lagrangian
subspace, i.e., Lω = L. Then for any J ∈ J (V, ω), JL ⊂ V is also a Lagrangian
subspace, and moreover, with respect to the Hermitian structure gJ(·, ·) ≡ ω(·, J ·), L
and JL are orthogonal to each other.

Proof. First, JL ⊂ V is also a Lagrangian subspace follows from the fact that for
any J ∈ J (V, ω), ω(·, ·) = ω(J ·, J ·), and the fact that dim JL = dimL = 1

2 dimV .
Second, L and JL are orthogonal to each other with respect to the Hermitian structure
gJ because gJ(u, Jv) = −ω(u, v) for any u, v ∈ V .

�

Now let’s go back to the proof of Theorem 3.4. We fix a J ∈ J (M,ω), and by the
previous lemma we may identify JTL with the normal bundle νL. This gives rise to
an isomorphism β : JTL→ T ∗L by β(u)(v) = ω(u, v). We fix the Riemannian metric
gJ(·, ·) = ω(·, J ·) on M , and define a map

ψ : T ∗L→M : (q, v) 7→ expq(−β−1v).

We fix the decomposition T(q,0)T
∗L = TqL⊕ T ∗q L, q ∈ L, and write any v ∈ T(q,0)T

∗L

as v = (v0, v
∗
1). Then observe that dψ(q,0)(v) = v0 − β−1v∗1, and therefore

ψ∗ω(q,0)(v, w) = ωq(v0 − β−1v∗1, w0 − β−1w∗1)

= w∗1(v0)− v∗1(w0),

because TL is Lagrangian by assumption and JTL is Lagrangian by Lemma 3.5, and
β−1v∗1, β−1w∗1 ∈ JTqL.

On the other hand, recall that (cf. Example 1.3 in Section 1) in the standard local
coordinates q1, · · · , qn, p1, · · · , pn on T ∗L, −dλ =

∑n
j=1 dqj∧dpj . For each point q ∈ L,

∂q1, · · · , ∂qn and dq1, · · · , dqn form a basis of TqL and T ∗q L respectively. If we write

v =
n∑
j=1

(xj∂qj + yjdqj), w =
n∑
j=1

(sj∂qj + tjdqj),
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then v0 =
∑n

j=1 xj∂qj , v
∗
1 =

∑n
j=1 yjdqj , and w0 =

∑n
j=1 sj∂qj , w

∗
1 =

∑n
j=1 tjdqj .

With these understood,

−dλ(q,0)(v, w) =
n∑
j=1

(xjtj − sjyj) = w∗1(v0)− v∗1(w0).

Hence ψ∗ω = −dλ on T(q,0)T
∗L for any q ∈ L. Theorem 3.4 follows from Lemma 3.1

immediately. �

Exercise: Let L be a compact Lagrangian submanifold of (M,ω), and L′ = ψ1(L)
where ψ1 is the time-1 map of some Hamiltonian isotopy ψt, t ∈ [0, 1]. Show that
there exists a regular neighborhood N of L in M such that if L′ ⊂ N , then L and L′

must intersect nontrivially, at more than one point.

3.2. Stability theorem. We apply Moser’s argument to the case of compact, closed
manifolds, and prove Moser’s stability theorem for symplectic structures.

Theorem 3.6. (Moser’s stability theorem). Let M be a compact, closed manifold and
suppose that ωt, t ∈ [0, 1], is a smooth family of cohomologous symplectic forms on M ,
i.e., the deRham cohomology class [ωt] is constant in t. Then there exists a smooth
family of ψt ∈ Diff(M) such that

ψ0 = id, ψ∗t ωt = ω0.

Proof. Since M is a compact closed manifold, the diffeomorphisms ψt in Moser’s ar-
gument are defined over M for all t ∈ [0, 1]. The key issue here is to show that there
exists a smooth family of 1-forms σt such that d

dtωt = dσt. This will follow from the
Hodge theory.

Note that for each t, d
dtωt is an exact 2-form because ωt are cohomologous. This

implies that d
dtωt is in the L2 orthogonal complement of the space of harmonic 2-forms,

therefore lies in the image of the Laplacian ∆ by the Hodge decomposition theorem.
Consequently, we obtain a smooth family of 2-forms τt := ∆−1( ddtωt). We will see

below that d
dtωt = dσt where σt = d∗τt.

By definition d
dtωt = ∆τt = dd∗τt + d∗dτt, from which we see that our claim above

follows if d∗dτt = 0. This is true because

〈d∗dτt, d∗dτt〉 = 〈( d
dt
ωt − dd∗τt), d∗dτt〉 = 〈d(

d

dt
ωt − dd∗τt), dτt〉 = 0.

(Note that in the last equation above, d( ddtωt) = d
dt(dωt) = 0.) Thus we have estab-

lished the existence of σt, and Moser’s stability theorem follows.
�

Exercise: Let (M,ω) be a symplectic manifold with dimM = 4. Let Σ1,Σ2 be
two embedded symplectic surfaces in M which have the same genus, self-intersection,
and symplectic area (i.e.,

∫
Σ1
ω =

∫
Σ2
ω). Show that there are regular neighborhoods

N1, N2 of Σ1,Σ2 respectively, and a diffeomorphism ψ : N1 → N2 such that ψ∗ω = ω.
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4. Symplectic group actions

4.1. Symplectic circle actions. We set S1 = R/2πZ throughout.
Let (M,ω) be a symplectic manifold. A symplectic S1-action on (M,ω) is a smooth

family ψt ∈ Symp(M,ω), t ∈ S1, such that ψt+s = ψt ◦ ψs for any t, s ∈ S1. One can
easily check that the corresponding vector fields Xt ≡ d

dtψt ◦ψ
−1
t is time-independent,

i.e., Xt = X is constant in t. We call X the associated vector field of the given
symplectic S1-action, which is a symplectic vector field, i.e., iXω is a closed 1-form.

When iXω = dH is an exact 1-form, the corresponding symplectic S1-action is
called a Hamiltonian S1-action, and the function H : M → R is called a moment
map. Note that H is uniquely determined up to a constant. We point out that a
symplectic S1-action on (M,ω) is automatically Hamiltonian if H1(M ;R) = 0.

Exercise: If iXω = dH where H : M → R/Z is a circle-valued function, the
function H is called a generalized moment map. Show that for any symplec-
tic S1-action, there is always a generalized moment map after suitably changing the
symplectic structure on the manifold.

Let H be a moment map or generalized moment map of a given symplectic S1-action.
We shall make the following two observations.

(1) Each level surface H−1(λ) is invariant under the S1-action.
(2) A point p ∈ M is a fixed point of the S1-action if and only if p is a critical

point of H, i.e., dH = 0 at p.

Now consider a level surface H−1(λ) where λ is a regular value of H. Then H−1(λ)
is a hypersurface in M which does not contain any fixed points of the S1-action. When
the S1-action is free on H−1(λ), the quotient Bλ ≡ H−1(λ)/S1 is a smooth manifold.
In general, the S1-action may have finite isotropy on H−1(λ), and the quotient Bλ ≡
H−1(λ)/S1 is a smooth orbifold. In any case, one observes that dimBλ = dimM − 2.

The next theorem shows that there exists a natural symplectic structure ωλ on Bλ.
The symplectic manifold (or orbifold) (Bλ, ωλ) is called the symplectic quotient
or the reduced space at λ. The process of going from (M,ω) to (Bλ, ωλ) is called
symplectic reduction.

Theorem 4.1. There exists a canonically defined symplectic structure ωλ on Bλ such
that π∗ωλ = ω|H−1(λ), where π : H−1(λ)→ H−1(λ)/S1 ≡ Bλ is the projection.

Proof. For simplicity, we assume the S1-action on H−1(λ) is free, and consequently
Bλ is a smooth manifold. To simplify the notation, we set Q = H−1(λ).

Let’s recall a basic result about differentiable Lie group actions on manifolds —
the existence of local slice. In the present situation, the result amounts to say that
for any point q ∈ Q, there exists a submanifold Oq of codimension 1 containing q,
such that S1 × Oq embedds into Q S1-equivariantly. Oq is called a local slice at q,
and the set {Oq|q ∈ Q} forms an atlas of charts for the differentiable structure on the
quotient Q/S1. If q′ ∈ Q lies in S1 × Oq, then there is a local diffeomorphism φqq′

from a neighborhood U of q′ in the slice Oq′ into Oq and a function on U into S1,
fqq′ , such that U ⊂ Oq′ may be identified with the graph of fqq′ over the image of φqq′

in S1 × Oq. Note that with the differentiable structure on the quotient Q/S1 = Bλ
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described above, the projection π : Q → Bλ becomes a principal S1-bundle over Bλ,
with local trivializations of the bundle given by projections S1 ×Oq → Oq, q ∈ Q.

The symplectic structure ωλ is defined by pulling-back ω to each local slice Oq. This
definition immediately gives the closedness of ωλ as well as the equation π∗ωλ = ω|Q.
To see that ωλ is well-defined, i.e., the pull-back of ω to each local slice can be patched
up, we note that the local slices are graphs over each other locally, and that the tangent
direction of S1 in S1×Oq lies in TQω at each point. The nondegeneracy of ωλ follows
from the fact that dimTqQ

ω = dimTqM − dimTqQ = 1, so that TqQ
ω is actually

generated by the tangent direction of S1.
�

Example 4.2. (Product of S1-actions). For j = 1, 2, let (Mj , ωj) be a symplectic

manifold with a symplectic S1-action t 7→ ψjt , t ∈ S1. Then for any m1,m2 ∈ Z such
that gcd(m1,m2) = 1, there is a canonical S1-action on the product (M1×M2, ω1×ω2),
t 7→ ψt, t ∈ S1, where ψt = ψ1

m1t × ψ
2
m2t. Moreover, if H1, H2 are moment maps of

the S1-actions ψ1
t , ψ

2
t respectively, then H = m1H1 + m2H2 is a moment map of

the product ψt. To see this, note that if Xj , j = 1, 2, is the vector field on Mj

which generates the S1-action ψjt , then X = 〈m1X1,m2X2〉 is the vector field on
M1×M2 which generates the S1-action ψt. The claim about the moment maps follows
immediately from iX(ω1 × ω2) = m1iX1ω1 +m2iX2ω2.

Example 4.3. (Holomorphic S1-actions on Kähler manifolds). For any holomorphic
S1-action on a Kähler manifold, one can choose an invariant Kähler metric, so that the
S1-action becomes a symplectic S1-action with respect to the invariant Kähler form.

Example 4.4. Consider (R2, ω0) with symplectic S1-action given by the complex
multiplication z 7→ eitz, t ∈ S1. Here we identify R2 = C. To determine the moment
map, we note that the S1-action is generated by the vector field X = −y∂x+x∂y. With
this we see the moment map is given by H(z) = −1

2 |z|
2, because iXω0 = −ydy− xdx.

Now for any m = (m0,m1, · · · ,mn) where mi ∈ Z and gcd(m0,m1, · · · ,mn) = 1,
consider more generally the symplectic S1-action on (R2n+2, ω0), which is defined by

(z0, z1, · · · , zn) 7→ (eim0tz0, e
im1tz1, · · · , eimntzn), t ∈ S1.

By Example 4.2, the moment map of the S1-action is

H(z0, z1, · · · , zn) = −1

2
(m0|z0|2 +m1|z1|2 + · · ·+mn|zn|2).

For the special case where m = (1, 1, · · · , 1), the level surface H−1(λ), λ < 0, is the
(2n + 1)-dimensional sphere of radius −2λ, and the S1-action on H−1(λ) is given by
the Hopf fibration. The reduced space (Bλ, ωλ) at λ = −1

2 is CPn with ωλ being π
times the Fubini-Study form ω0 on CPn, see Example 1.5 in Section 1.

Example 4.5. Note that for any m = (m0,m1, · · · ,mn), the corresponding sym-
plectic S1-action on (R2n+2, ω0) with weights m preserves the unit sphere S2n+1 and
commutes with the Hopf fibration. Hence there is an induced S1-action on CPn, which
must be symplectic with respect to the Fubini-Study form and has the moment map

H(z0, z1, · · · , zn) = −1

2
(m0|z0|2 +m1|z1|2 + · · ·+mn|zn|2)
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where |z0|2 + |z1|2 + · · ·+ |zn|2 = 1, due to the relation π∗ωλ = ω|H−1(λ) between the
symplectic forms in the symplectic reduction given in Theorem 4.1, and the fact that
the vector field on CPn which generates the induced S1-action is the push-down of the
corresponding vector filed on S2n+1 under the Hopf fibration π : S2n+1 → CPn.

In terms of the homogeneous coordinates z0, z1, · · · , zn on CPn, the S1-action is
given by

[z0, z1, · · · , zn] 7→ [eim0tz0, e
im1tz1, · · · , eimntzn], t ∈ S1.

The corresponding moment map is given by

H([z0, z1, · · · , zn]) = − 1

2
∑n

j=0 |zj |2
(m0|z0|2 +m1|z1|2 + · · ·+mn|zn|2).

Note that in order for the S1-action on CPn to be effective, one needs to impose
additional conditions

gcd(m0 −mj , · · · ,mn −mj) = 1, ∀j = 0, · · · , n.

On the other hand, for any m ∈ Z, the wights m−m ≡ (m0−m,m1−m, · · · ,mn−m)
defines the same S1-action on CPn as the weights m = (m0,m1, · · · ,mn). Note that
the corresponding moment maps change by a constant m

2 .
Consider the case where n = 1. The above construction gives rise to symplectic

S1-actions on CP1 = S2, where different choices of weights m yield the same S1-action.
If we let m = (0,−1) and identify CP1 = C ∪ {∞}, the S1-action is simply given by
the complex multiplication on C, which has moment map

H(z) =
1

2
· 1

1 + |z|2
.

The fixed points are {0,∞}, and the corresponding critical values of the moment map
are H(0) = 1

2 , H(∞) = 0. The only difference between this example of a Hamiltonian

S1-action on S2 and the one given in the exercise at the end of §1.1 is that the former
has area π over S2 and the latter has area 4π.

Definition 4.6. A smooth function f on a manifold M is called Morse-Bott if for
any critical point p ∈M of f , there is a chart φ : Rn →M centered at p such that

φ∗f(x1, · · · , xn) = a1x
2
1 + · · ·+ anx

2
n + f(p),

where each aj is −1, 0 or 1. The number of aj ’s where aj < 0 is called the index of
f at p. If none of the aj ’s is zero for every critical point p, the function f is called a
Morse function. Note that a Morse function has only isolated critical points, and for
a Morse-Bott function in general, the set of critical points consists of a disjoint union
of submanifolds of various co-dimensions, called the critical submanifolds. In the
above standard chart, the critical submanifold is given by the equations xj = 0 for all
j with aj 6= 0.

Proposition 4.7. A moment map (or generalized moment map) of a symplectic S1-
action is Morse-Bott with the following additional properties: (1) the critical subman-
ifolds are symplectic submanifolds, (2) the index at each critical point is always an
even number.
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Proof. The proposition follows from an equivariant version of the Darboux theorem,
which also gives a model for the moment map near a critical point. Since the problem
is local, there is no difference for the case of generalized moment map.

Let (M,ω) be a symplectic manifold with a symplectic S1-action ψt, t ∈ S1. The
equivariant version of Darboux theorem states as follows: for any fixed point p ∈ M ,
there is a chart φ : R2n → M centered at p, such that φ∗ω = ω0 the standard
symplectic form on R2n, and the pull-back S1-action φ∗ψt ≡ φ−1 ◦ ψt ◦ φ on R2n is
linear and is given under the standard identification R2n = Cn by

(z1, z2, · · · , zn) 7→ (eim1tz1, e
im2tz2, · · · , eimntzn), t ∈ S1,

for some m1,m2, · · · ,mn ∈ Z with gcd(m1,m2, · · · ,mn) = 1.
Let H be a moment map of the symplectic S1-action on M . Then the equivariant

Darboux theorem together with Example 4.4 implies that there exists a chart φ :
R2n →M centered at p such that

φ∗H(x1, · · · , xn, y1, · · · , yn) = −1

2
[m1(x2

1 + y2
1) + · · ·+mn(x2

n + y2
n)] +H(p)

for some m1,m2, · · · ,mn ∈ Z with gcd(m1,m2, · · · ,mn) = 1. With a further change
of coordinates it follows immediately that H is a Morse-Bott function. The index
at p is twice of the number of positive mj ’s, hence is always an even number. The
critical submanifold is locally defined near p by the equations xj = yj = 0 for all j
with mj 6= 0, hence is symplectic.

�

The fact that a moment map of a symplectic S1-action is Morse-Bott with even
index at each critical point has the following corollary by a standard argument in
Morse theory.

Corollary 4.8. Let H : M → R be a moment map of a Hamiltonian S1-action on
a compact, connected manifold. Then each level surface H−1(λ) is connected. In
particular, the critical submanifolds at the maximal and minimal values of H are
connected.

The standard model for a moment map H near a critical point as we obtained in the
proof of Proposition 4.7 allows one to explicitly analyzing the change of the topology
of the reduced spaces passing a critical value of the moment map in terms of the
weights mj at each critical point in the pre-image of that critical value. On the other
hand, for any interval I of regular values, Morse theory allows one to identify H−1(I)
diffeomorphically with the product H−1(λ0)×I for any λ0 ∈ I (e.g. using the gradient
flow of H), which can be made S1-equivariantly. The next proposition describes the
relation between the symplectic form ω on H−1(I) and the reduced spaces (Bλ, ωλ),
λ ∈ I, and the first Chern class of the S1-principal bunble π : H−1(λ0) → Bλ0 . For
simplicity we assume that the S1-action on H−1(I) is free, so that each reduced space
Bλ, λ ∈ I, is a smooth manifold. Note that all H−1(λ), Bλ, λ ∈ I, are diffeomorphic;
we denote the underlying manifolds by P , B respectively. (We warn that the S1-action
on each H−1(λ), λ ∈ I, is assumed to be on the left, so when H−1(λ) is regarded as a
S1-principal bundle, where the action is always assumed to be on the right, we mean
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the conjugate S1-action. For example, in this way the first Chern class of the Hopf
fibration S3 → CP1 evaluates positively on the fundamental class of CP1.)

Proposition 4.9. (1) Let c ∈ H2(B;Z) be the first Chern class of the S1-principal
bundle π : P → B and let {ωλ|λ ∈ I} be a smooth family of symplectic forms on B
such that their deRham cohomology classes satisfy

[ωλ] = [ωµ]− 2π(λ− µ) · c.
There is an S1-invariant symplectic form ω on P × I with a moment map H equal to
the projection P × I → I and with reduced spaces (B,ωλ), λ ∈ I.

(2) Conversely, every S1-invariant symplectic form ω arises in the above way. More-
over, up to S1-equivariant symplectomorphisms such a S1-invariant symplectic form
on P × I is uniquely determined by the family of symplectic forms {ωλ|λ ∈ I} on B.

Proof. (1) Since the deRham cohomology class of d
dλωλ represents −2πc, there exists a

smooth family of imaginary valued 1-forms Aλ on P , i.e., the connection 1-forms, such
that i

2πdAλ = − 1
2ππ

∗ d
dλωλ. Let X be the vector field which generates the S1-action.

Then Aλ(X) = −i because as we remarked before P is regarded as an S1-principal
bundle on B with the conjugate action. Set αλ = iAλ. Then αλ(X) = 1, and
π∗ ddλωλ + dαλ = 0. With these understood,

ω = π∗ωλ + αλ ∧ dλ
is an S1-invariant symplectic form on P × I with a moment map H equal to the
projection P × I → I and with reduced spaces (B,ωλ), λ ∈ I.

(2) Note that as a 2-form on P × I, ω may be written as

ω = βλ + αλ ∧ dλ
for some αλ ∈ Ω1(P ) and βλ ∈ Ω2(P ). Let X be the vector field which generates the
S1-action. Since the moment map of the S1-action is the projection P × I → I, we
see that iXβλ = 0 and αλ(X) = 1. The former implies that βλ descents to a smooth
family of 2-forms ωλ on B, so that π∗ωλ = βλ. The nondegeneracy of ω implies that
each ωλ is nondegenerate, and the closedness of ω implies

dωλ = 0,
d

dλ
βλ + dαλ = 0.

Note that −iαλ are connection 1-forms on P , so that the first Chern class c is repre-
sented by i

2πd(−iαλ) = 1
2πdαλ. This gives the relation

[ωλ] = [ωµ]− 2π(λ− µ) · c.
For the uniqueness, consider two different such symplectic forms

ω = π∗ωλ + αλ ∧ dλ, ω′ = π∗ωλ + α′λ ∧ dλ.
One can form a smooth family of such symplectic forms

ωt = π∗ωλ + ((1− t)αλ + tα′λ) ∧ dλ, t ∈ [0, 1].

The uniqueness follows from an equivariant version of Moser’s stability theorem applied
to ωt. We leave it as an exercise.

�
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Example 4.10. (1) Consider the S1-action on CP1 at the end of Example 4.5. Since
the reduced spaces are a single point, ωλ = 0, and therefore the symplectic form

ω = αλ ∧ dλ.

In the polar coordinates (r, θ) on C ⊂ CP1, αλ = dθ, so that

ω = dθ ∧ d(
1

2(1 + r2)
) =

rdr ∧ dθ
(1 + r2)2

=
dx ∧ dy

(1 + x2 + y2)2
.

Direct calculation shows∫
CP1

ω =

∫ ∞
−∞

∫ ∞
−∞

dxdy

(1 + x2 + y2)2
= π

as we claimed.
(2) Consider the S1-action on (R2n+2, ω0) in Example 4.4 with weights m = (1, 1, · · · , 1).

The moment map is

H(z0, z1, · · · , zn) = −1

2
(|z0|2 + |z1|2 + · · ·+ |zn|2).

For any λ < 0 the level surface H−1(λ) is the sphere of radius −2λ, and the S1-action
on H−1(λ) is given by the Hopf fibration, with the quotient being CPn. We have
claimed in Example 4.4 that the symplectic form ωλ at λ = −1

2 is π times the Fubini-
Study form on CPn, which is normalized so that the integral of its n-th power over
CPn equals 1. Note that this implies that

∫
CPn ω

n
−1/2 = πn. We shall next give an

independent verification of this fact using Proposition 4.9.
First note that as λ→ 0 the form ωλ converges to 0. This gives, by Proposition 4.9,

[ω− 1
2
] = 0− 2π(−1

2
− 0) · c = π · c,

where c is the first Chern class of the Hopf fibration. It is known that c ∈ H2(CPn;Z) =
Z is the positive generator, so that cn[CPn] = 1. This implies that∫

CPn
ωn− 1

2

= πn

as we claimed.
(3) Consider the S1-action on CP2 in Example 4.5 with weights m = (0,−1,−2).

There are three fixed points [1, 0, 0], [0, 1, 0] and [0, 0, 1], where the moment map has
values 0, 1

2 and 1 respectively. Using the standard model for the moment map near
a critical point as in the proof of Proposition 4.7, it is easy to check that for any
regular value λ, the reduced space Bλ is the weighted projective space CP1(1, 2),
which is the quotient space (C2 \ {(0, 0)})/ ∼, where (z1, z2) ∼ (zz1, z

2z2). (Note that
CP1(1, 2) is a 2-dimensional orbiford, with one singular point of order 2.) However,
for λ ∈ (0, 1

2), the first Chern class of the (orbifold) S1-pricipal bundle H−1(λ)→ Bλ
equals −1

2 ∈ H
2(CP1(1, 2);Q) and for λ ∈ (1

2 , 1), it equals 1
2 ∈ H

2(CP1(1, 2);Q). Note

that the first Chern class changes by 1 when passing the critical value λ = 1
2 .

For a Hamiltonian S1-action with at most isolated fixed points, the moment map is
a Morse function. Propositions 4.7 and 4.9 show that the weights of the induced action
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on the tangent space of each fixed point contain vital information about the equivari-
ant symplectic geometry of the manifold. There are certain constraints amongst the
weights of the fixed points, as shown in the following beautiful theorem of Duistermaat
and Heckman.

Theorem 4.11. (Duistermaat-Heckman). Assume a Hamiltonian S1-action on a
compact 2n-dimensional symplectic manifold (M,ω) has only isolated fixed points. Let
H : M → R be a moment map, and let e(p) denote the product of the weights at a
fixed point p. Then ∫

M
e−2π~H ω

n

n!
=
∑
p

e−2π~H(p)

~ne(p)

for every ~ ∈ C, where the sum on the right-hand side runs over all fixed points of the
S1-action.

Example 4.12. If one expands both sides of the Duistermaat-Heckman formula as
power series in ~ and then compares the coefficients, the following set of constraints
are obtained: ∑

p

H(p)k

e(p)
= 0, for k = 0, 1, · · · , n− 1,

and ∫
M
ωn = (−2π)n

∑
p

H(p)n

e(p)
.

We check this out on an example of S1-action on CP2 as discussed in Example 4.5,
with weights m = (0,−2,−5). It is easy to check that there are three isolated fixed
points p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1], which have weights (−2,−5), (2,−3),
and (5, 3) respectively. Let H be the standard moment map as given in Example 4.5.
Then H(p1) = 0, H(p2) = 1, and H(p3) = 5

2 . We also know (see Example 4.10 (2))

that
∫
CP2 ω

2 = π2. With the preceding understood, the set of constraints obtained
from the Duistermaat-Heckman formula are the following for this example:

1

(−2) · (−5)
+

1

2 · (−3)
+

1

5 · 3
= 0,

0

(−2) · (−5)
+

1

2 · (−3)
+

5
2

5 · 3
= 0

and

(−2π)2(
02

(−2) · (−5)
+

12

2 · (−3)
+

(5
2)2

5 · 3
) = π2.

4.2. Hamiltonian torus actions. We denote by Tn = (S1)n the n-torus. The cor-
responding Lie algebra and its dual are denoted by tn and (tn)∗ respectively. Since
Tn is abelian, the Lie bracket is trivial, and tn and (tn)∗ can be canonically identified
with Rn, with the pairing between tn and (tn)∗ given by the inner product on Rn.

Let (M,ω) be a connected symplectic manifold, and let Tn act on M via symplecto-
morphisms. Then for any ξ ∈ tn, one has a 1-parameter group of symplectomorphisms
exp(tξ). We denote by Xξ the vector field on M which generates the flow exp(tξ).
Note that for any ξ, η ∈ tn, [Xξ, Xη] = X[ξ,η] = 0 since Tn is abelian. On the other
hand, each Xξ is a symplectic vector field, i.e., iXξω is closed. We say that a symplectic
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Tn-action on (M,ω) is weakly Hamiltonian if for any ξ ∈ tn, iXξω = dHξ for some
smooth function Hξ on M .

In order to define Hamiltonian actions, we recall the concept of Poisson bracket.
Let F,H be smooth functions on M . We denote by XF , XH the corresponding Hamil-
tonian vector fields, i.e., iXFω = dF , iXHω = dH. Then the Poisson bracket of F,H
is defined and denoted by

{F,H} ≡ ω(XF , XH) = dF (XH) = −dH(XF ).

In particular, {F,H} = 0 means that the Hamiltonian function F is constant under
the flow generated by XH (and vice versa). The set of smooth functions on (M,ω)
becomes a Lie algebra under the Poisson bracket.

With the above understood, a weakly Hamiltonian Tn-action is called Hamilton-
ian if for any ξ, η ∈ tn, the Poisson bracket {Hξ, Hη} = 0. (In general, a weakly
Hamiltonian Lie group action is called Hamiltonian if ξ 7→ Hξ can be chosen to be a
Lie algebra homomorphism.)

Exercise: Show that for any weakly Hamiltonian Tn-action on (M,ω), the Poisson
bracket {Hξ, Hη} is a constant function on M for any ξ, η ∈ tn. In particular, a weakly
Hamiltonian Tn-action is Hamiltonian if exp(tξ) has a fixed point for any ξ ∈ tn (e.g.,
when M is compact, closed).

The moment map of a Hamiltonian Tn-action on (M,ω) is a smooth map

µ : M → (tn)∗ = Rn,

such that for any ξ ∈ tn = Rn,

Hξ(p) = 〈µ(p), ξ〉,∀p ∈M,

is a Hamiltonian function for exp(tξ), i.e., iXξω = dHξ. Note that the assignment
ξ 7→ Hξ is linear.

Remark 4.13. (1) The moment map always exists. For example, let ξ1, · · · , ξn ∈ tn

be a basis, and let ξ∗1 , · · · , ξ∗n ∈ (tn)∗ be the corresponding dual basis. Then

µ(p) = Hξ1(p)ξ∗1 + · · ·+Hξn(p)ξ∗n, ∀p ∈M,

is a moment map.
(2) The moment map is uniquely defined up to a constant vector in (tn)∗.
(3) Because {Hξ, Hη} = 0 for any ξ, η ∈ tn and the fact that Tn is connected, the

moment map µ : M → Rn is Tn-invariant, i.e., µ(g · p) = µ(p) for any g ∈ Tn.

Let p be a point in M . We next give a description of the image of dµp : TpM →
(tn)∗ = Rn. Let us consider the subspace of tn = Rn which annihilates the im-
age, i.e., the set of ξ ∈ tn = Rn such that 〈dµp(Y ), ξ〉 = 0 for all Y ∈ TpM . Ob-
serve the identity 〈dµp(Y ), ξ〉 = (dHξ)p(Y ) = ωp(Xξ, Y ). Since ω is nondegenerate,
we see immediately that the set of ξ which annihilates the image of dµp : TpM →
(tn)∗ = Rn is the subspace {ξ ∈ tn|Xξ = 0 at p}, or equivalently, the subspace
{ξ ∈ tn|p is a fixed point of the subgroup exp(tξ)}. In particular, since the princi-
pal orbit, i.e., the set of points in M which has trivial isotropy, is open and dense
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for an effective action, we see that the set of regular values of the moment map
µ : M → (tn)∗ = Rn is open and dense in the image µ(M).

Let λ ∈ (tn)∗ = Rn be a regular value of µ. Since µ is Tn-invariant, we see that the
level surface µ−1(λ) is Tn-invariant. The quotient space Bλ ≡ µ−1(λ)/Tn, which is
an orbifold in general of dimension dimM − 2n, has a natual symplectic structure ωλ.
The space (Bλ, ωλ) is called the reduced space at λ (its proof is similar to the case of
S1-action, cf. Theorem 4.1). Note that dimM − 2n ≥ 0, namely, the dimension of the
torus is at most half of the dimension of the symplectic manifold which the torus acts
on. When the dimension of the torus equals half of the dimension of the symplectic
manifold, the reduced spaces consist of single points, and the preimages µ−1(λ) are
orbits of the torus action, which are easily seen to be embedded Lagrangian tori (they
are Lagrangian because of the conditon {Hξ, Hη} = ω(Xξ, Xη) = 0 for any ξ, η ∈ tn).

The fundamental result concerning Hamiltonian torus actions is the following con-
vexity theorem, due to Atiyah and Guillemin-Sternberg independently.

Theorem 4.14. (Atiyah-Guillemin-Sternberg). Let (M,ω) be a compact, connected
symplectic manifold which is equipped with a Hamiltonian Tn-action of moment map
µ : M → Rn. Then the fixed points of the Tn-action form a finite union of connected
symplectic submanifolds Q1, · · · , QN , such that on each Qj, the moment map µ has a
constant value λj ∈ Rn, and the image of µ is the convex hull of λj, i.e.,

µ(M) = {
N∑
j=1

xjλj |
N∑
j=1

xj = 1, xj ≥ 0} ⊂ Rn.

Example 4.15. (1) Consider the following Hamiltonian Tn-action on CPn

(t1, t2, · · · , tn) · [z0, z1, z2, · · · , zn] = [z0, e
−it1z1, e

−it2z2, · · · , e−itnzn],

which has moment map

µ([z0, z1, · · · , zn]) =
1

2
(

|z1|2

|z0|2 + · · ·+ |zn|2
, · · · , |zn|2

|z0|2 + · · ·+ |zn|2
).

Clearly µ(CPn) = {(x1, x2, · · · , xn) ∈ Rn|
∑n

i=1 xi ≤
1
2 , xi ≥ 0}. The fixed points are

p0 = [1, 0, · · · , 0], p1 = [0, 1, · · · , 0], · · · , pn = [0, 0, · · · , 1], which are mapped under µ
to λ0 = (0, 0, · · · , 0), λ1 = (1

2 , 0, · · · , 0), · · · , λn = (0, 0, · · · , 1
2) respectively. µ(CPn) is

the n-simplex with vertices λ0, λ1, · · · , λn.
(2) A non-effective T2-action on CP2. Consider the following non-effective action

(t1, t2) · [z0, z1, z2] = [z0, e
−it1z1, e

−2it2z2],

which has moment map

µ([z0, z1, z2]) =
1

2
(

|z1|2

|z0|2 + |z1|2 + |z2|2
,

2|z2|2

|z0|2 + |z1|2 + |z2|2
).

The image µ(CP2) is the triangle with vertices (0, 0), (1
2 , 0) and (0, 1).

(3) T2-actions on CP1 × CP1. (i) Consider the following T2-action on CP1 × CP1:

(t1, t2) · ([z0, z1], [w0, w1]) = ([z0, e
−it1z1], [w0, e

−it2w1]).
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The moment map is

µ([z0, z1], [w0, w1]) =
1

2
(

|z1|2

|z0|2 + |z1|2
,

|w1|2

|w0|2 + |w1|2
),

and the fixed points are ([1, 0], [1, 0]), ([1, 0], [0, 1]), ([0, 1], [1, 0]) and ([0, 1], [0, 1]), with
values under µ being (0, 0), (0, 1

2), (1
2 , 0) and (1

2 ,
1
2) respectively. The image of the

moment map is

µ(CP1 × CP1) = {(x1, x2) ∈ R2|0 ≤ x1, x2 ≤
1

2
}.

(ii) Consider the following T2-action on CP1 × CP1:

(t1, t2) · ([z0, z1], [w0, w1]) = ([z0, e
−it1z1], [w0, e

−it1−it2w1]).

The moment map is

µ([z0, z1], [w0, w1]) =
1

2
(

|z1|2

|z0|2 + |z1|2
+

|w1|2

|w0|2 + |w1|2
,

|w1|2

|w0|2 + |w1|2
),

and the fixed points are ([1, 0], [1, 0]), ([1, 0], [0, 1]), ([0, 1], [1, 0]) and ([0, 1], [0, 1]), with
values under µ being (0, 0), (1

2 ,
1
2), (1

2 , 0) and (1, 1
2) respectively. The image of µ is the

parallelagram with vertices (0, 0), (1
2 ,

1
2), (1

2 , 0) and (1, 1
2).

(iii) Consider the following T2-action on CP1 × CP1:

(t1, t2) · ([z0, z1], [w0, w1]) = ([z0, e
−it1z1], [w0, e

−2it1−it2w1]).

The moment map is

µ([z0, z1], [w0, w1]) =
1

2
(

|z1|2

|z0|2 + |z1|2
+

2|w1|2

|w0|2 + |w1|2
,

|w1|2

|w0|2 + |w1|2
),

and the fixed points are ([1, 0], [1, 0]), ([1, 0], [0, 1]), ([0, 1], [1, 0]) and ([0, 1], [0, 1]), with
values under µ being (0, 0), (1, 1

2), (1
2 , 0) and (3

2 ,
1
2) respectively. The image of µ is the

parallelagram with vertices (0, 0), (1, 1
2), (1

2 , 0) and (3
2 ,

1
2).

(4) A T2-action on a Hirzebruch surface CP2#CP2. Here the Hirzebruch surface is
given as the complex surface

M ≡ {([a, b], [x, y, z]) ∈ CP1 × CP2|ay = bx}.
The T2-action on M is the restriction of the following T2-action on CP1 × CP2

(t1, t2) · ([a, b], [x, y, z]) = ([e−it1a, b], [e−it1x, y, e−it2z]),

which leaves M invariant.
The moment map is

µ([a, b], [x, y, z]) =
1

2
(
|a|2

|a|2 + |b|2
+

|x|2

|x|2 + |y|2 + |z|2
,

|z|2

|x|2 + |y|2 + |z|2
),

and there are four fixed points on M , which are

([1, 0], [1, 0, 0]), ([1, 0], [0, 0, 1]), ([0, 1], [0, 1, 0]), ([0, 1], [0, 0, 1]).

The corresponding values under the moment map are (1, 0), (1
2 ,

1
2), (0, 0) and (0, 1

2).

So the image of µ is {(x1, x2) ∈ R2|x1 + x2 ≤ 1, x1 ≥ 0, 0 ≤ x2 ≤ 1
2}.
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Let (M,ω) be a symplectic manifold with a Hamiltonian Tn-action and let µ : M →
(tn)∗ be the corresponding moment map. For any k < n let Tk ⊂ Tn be a sub-torus.
Then there is naturally an induced Hamiltonian Tk-action on M . The moment map
of the induced action is µ : M → (tn)∗ composed with the projection (tn)∗ → (tk)∗.

Example 4.16. Consider the S1-action on CP2 which is induced from the standard
T2-action on CP2 considered in Example 4.15 (1) by the embedding S1 ⊂ T2 given by
t 7→ (t, 2t). This is the same S1-action we considered in Example 4.10 (3).

Note that the image of the moment map of the T2-action on CP2 is the triangle
with vertices (0, 0), (1

2 , 0) and (0, 1
2). Its projection onto the line R〈1, 2〉 ⊂ R2 is the

line segment between the points (0, 0) and (1
5 ,

2
5), which are the images of the vertices

(0, 0) and (0, 1
2) under the projection. Note that the image of the vertex (1

2 , 0) is the

middle point ( 1
10 ,

1
5) of the line segment. Compare with the moment map in Example

4.10 (3) and notice that the length of the vector 〈1, 2〉 is
√

5.

In general the set of regular values of the moment map is divided into several
chambers. We illustrate this with the following example of a T2-action on CP3.

Example 4.17. Consider the Hamiltonian T2-action on CP3

(t1, t2) · [z0, z1, z2, z3] = [z0, e
−it1z1, e

−2it1z2, e
−it2z3],

which has moment map

µ([z0, z1, z2, z3]) =
1

2
(
|z1|2 + 2|z2|2∑3

j=0 |zj |2
,
|z3|2∑3
j=0 |zj |2

).

The image of µ is the triangle with vertices (0, 0), (1, 0) and (0, 1
2). The set of regular

values of µ is the interior of the triangle with the line segment between the points
(1

2 , 0), (0, 1
2) removed. So it is divided into two chambers by the line segment. Notice

that the “wall” that divides the two chambers is the image of {[0, z, 0, w] ∈ CP3} under
µ, which is fixed by the diagonal sub-torus {(t, t)} ⊂ T2.

A compact, connected symplectic manifold of dimension 2n is called toric if it
admits an effective Hamiltonian Tn-action. Delzant showed that such a space together
with the Tn-action is uniquely determined by the image of the moment map, and
moreover, there exists a Tn-invariant complex structure with respect to which the
symplectic form is Kähler.

Compact, connected symplectic 4-manifolds with a Hamiltonian S1-action have been
classified, from which it is known that such spaces are all Kähler and the S1-actions are
holomorphic. However, S. Tolman constructed an example of a Hamiltonian T2-action
on a compact, connected 6-dimensional symplectic manifold which does not admit any
S1-invariant holomorphic Kähler structure.
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