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1. The Hodge star and a variational viewpoint

Let (M, g) be an oriented Riemannian manifold of dimension n (for the most part
we will assume M is compact without boundary). For simplicity, we shall denote the
metric gp by 〈, 〉p for each p ∈M .

The Hodge star operator: First of all, for any m > 0, there is an induced metric
on ΛmM . To see this, for each p ∈M , consider multilinear map (T ∗pM ×· · ·×T ∗pM)×
(T ∗pM×· · ·×T ∗pM)→ R, given by ((v1, · · · , vm), (w1, · · · , wm)) 7→ det(〈vi, wj〉p). This
induces a symmetric bilinear form Λmp M × Λmp M → R, which is positive definite. We

shall denote it by 〈, 〉p as well. It is easy to check that if ε1, ε2, · · · , εn form a local
orthonormal coframe of M , then

{εi1 ∧ εi2 ∧ · · · ∧ εim |i1 < i2 < · · · < im}

form a local orthonormal frame for the bundle ΛmM with respect to the induced
metric. With this understood, we shall define the Hodge star ∗ : ΛmM → Λn−mM .

Fix a positively oriented orthonormal coframe ε1, ε2, · · · , εn, for any multi-index
(i1, i2, · · · , im), we let (j1, j2, · · · , jn−m) be the multi-index where {j1, · · · , jn−m} =
{1, 2, · · · , n} \ {i1, · · · , im}. With this understood, we define

∗(εi1 ∧ εi2 ∧ · · · ∧ εim) = ±εj1 ∧ εj2 ∧ · · · ∧ εjn−m ,

where the ±-sign is chosen such that the following holds:

(εi1 ∧ εi2 ∧ · · · ∧ εim) ∧ ∗(εi1 ∧ εi2 ∧ · · · ∧ εim) = ε1 ∧ ε2 ∧ · · · ∧ εn.

By linearity, this extends to a map ∗ : ΛmM → Λn−mM , characterized by the property

〈v, w〉 · dV olg = v ∧ ∗w,

where dV olg = ε1∧ ε2∧ · · · ∧ εn is the positive volume form. One can easily check that

the square of the Hodge star, ∗∗ : ΛmM → ΛmM is given by ∗∗ = (−1)m(n−m).
1
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From now on, we assume M is compact without boundary. We define a L2-product
on ΩmM as follows: for any α, β ∈ ΩmM , we define

(α, β) =

∫
M
〈α, β〉dV olg =

∫
M
α ∧ ∗β.

We denote the L2-norm of α by ||α||. With the L2-product as above, we can define
the adjoint of d : Ωm−1M → ΩmM , which is denoted by d∗ : ΩmM → Ωm−1M , by
the equation (dα, β) = (α, d∗β) for any α ∈ Ωm−1M , β ∈ ΩmM .

Lemma 1.1. d∗ = − ∗ d ∗ when n is even, and d∗ = (−1)m ∗ d ∗ when n is odd.

Proof. For α ∈ Ωm−1M , β ∈ ΩmM , we have

d(α∧∗β) = dα∧∗β+(−1)m−1α∧d(∗β) = dα∧∗β+(−1)m−1·(−1)(n−m+1)(m−1)α∧∗∗d(∗β).

Now observe that (−1)(n−m+1)(m−1)+m = −1 when n is even, and (−1)(n−m+1)(m−1)+m =
(−1)m when n is odd. The lemma follows from Stokes’s theorem. �

Harmonic forms: Let ω0 ∈ ΩpM be a closed p-form, i.e., dω0 = 0. We consider
the class of ω0 in the de Rham cohomology group Hp

dRM , [ω0] = {ω0+dη|η ∈ Ωp−1M}.

Lemma 1.2. Suppose ω0 has the minimal L2-norm among the closed p-forms in the
class [ω0], i.e.,

(ω0, ω0) = inf
ω∈[ω0]

(ω, ω).

Then ω0 must be co-closed, i.e., d∗ω0 = 0. Moreover, such a p-form is unique (if
exists).

Proof. First, under the assumption of minimality of (ω0, ω0), for any η ∈ Ωp−1M , we
have

2(ω0, dη) =
d

dt
(ω0 + tdη, ω0 + tdη)|t=0 = 0.

This gives (d∗ω0, η) = 0 for any η ∈ Ωp−1M . In particular, we take η = d∗ω0, we
obtain (d∗ω0, d

∗ω0) = 0, which implies that d∗ω0 = 0.
Next we prove uniqueness. Suppose α, β ∈ [ω0] such that both d∗α = d∗β = 0.

We shall prove that α = β must be true. Note that α − β = dη for some η. Then
d∗(dη) = d∗(α − β) = 0, which implies that (dη, dη) = (η, d∗dη) = 0. Hence dη = 0,
and α = β is proved.

�

Definition 1.3. A p-form ω is called a harmonic form if dω = d∗ω = 0.

The above discussions show that each de Rham cohomology class in Hp
dRM can

have at most one harmonic representative. The question is

Is there always a harmonic representative for each de Rham cohomology class?
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2. The Hodge decomposition theorem

The existence question of harmonic reprsentative of a de Rham cohomology class
was solved not via the variational approach in the last section, but rather using the
standard techniques of elliptic PDEs, which we shall explain in this section.

The Laplace-Beltrami operator: For any 0 ≤ p ≤ n, we let ∆ := dd∗ + d∗d :
ΩpM → ΩpM , called the Laplace-Beltrami operator. It is known a nonlinear elliptic
partial differential operator, and it is obviously a self-adjoint operator with respect
to the L2-product on ΩpM , i.e., (∆v, w) = (v,∆w), for any v, w ∈ ΩpM . We let
Hp(M) = {ω ∈ ΩpM |∆ω = 0} be the kernel of ∆. The relevance of Hp(M) is clear
from the following lemma.

Lemma 2.1. ω ∈ Hp(M) if and only if ω is a harmonic p-form, i.e., dω = d∗ω = 0.

Exercise: Let M = R3, given with the Euclidean metric. Compute ∆ : ΩpM →
ΩpM for p = 0, 1.

Exercise: Let {Ei} be a local orthonormal frame such that the corresponding

connection 1-forms ωji vanish at a given point p ∈M . Show that for any f ∈ C∞(M),
∆f = −

∑
i∇Ei∇Eif holds at the point p.

The Hodge decomposition theorem: We are interested in solving the equation
∆ω = η, where ω, η ∈ ΩpM . In order to make use of techniques in functional analysis,
we shall formulate it differently. Note that ∆ω = η holds true if and only if for any
φ ∈ ΩpM ,

(∆ω, φ) = (ω,∆φ) = (η, φ).

If we view ω as a bounded linear functional l on ΩpM via l(β) = (ω, β), ∀β ∈ ΩpM ,
then the equation ∆ω = η can be regarded as l(∆φ) = (η, φ). A bounded linear
functional l satisfying the above equation is called a weak solution of ∆ω = η. Then
the idea is to find classical solutions via weak solutions.

The following two facts (stated as theorems) are crucial in this approach; their
proofs are based on the theory of elliptic PDEs which is beyond the scope here.

Theorem 2.2. (Regularity)
Let η ∈ ΩpM , and let l be a weak solution of ∆ω = η. Then there exists a ω ∈ ΩpM

such that l(β) = (ω, β), ∀β ∈ ΩpM . Consequently, ∆ω = η.

Theorem 2.3. (Pre-compactness)
Let {αn} be a sequence in ΩpM such that ||αn|| < c and ||∆αn|| < c for all n and for

some constant c > 0. Then there is a subsequence of αn which is a Cauchy sequence
in the L2-norm.

Assuming these two theorems, we shall prove the following

Theorem 2.4. (The Hodge decomposition theorem)
For each 0 ≤ p ≤ n, Hp(M) is finite dimensional, and we have the following

orthogonal direct sum decomposition of ΩpM :

ΩpM = Hp(M)⊕∆(ΩpM).
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Proof. The statement that Hp(M) is finite dimensional follows immediately from The-
orem 2.3 (pre-compactness).

It remains to show that ΩpM = Hp(M)⊕∆(ΩpM). Let Hp(M)⊥ be the orthogonal
complement of Hp(M) in ΩpM . Then ΩpM = Hp(M) ⊕Hp(M)⊥ as Hp(M) is finite
dimensional, and we shall prove Hp(M)⊥ = ∆(ΩpM) below, which finishes off the
proof of Theorem 2.4.

First of all, note that ∆(ΩpM) ⊂ Hp(M)⊥. So it remains to show Hp(M)⊥ ⊂
∆(ΩpM). The following inequality plays the key role:

There exists a constant c > 0 such that for any β ∈ Hp(M)⊥, ||β|| ≤ c||∆β||.
Suppose to the contrary, there is no such constant c > 0. Then there is a sequence

{βi} in Hp(M)⊥ such that ||βi|| = 1 and ||∆βi|| → 0. By the pre-compactness (The-
orem 2.3), a subsequence of {βi} (still denoted by {βi} for simplicity) converges in
L2-norm. We can use it to define a bounded linear functional l by

l(ψ) = lim
i→∞

(βi, ψ),∀ψ ∈ ΩpM.

Note that l(∆φ) = limi→∞(βi,∆φ) = limi→∞(∆βi, φ) = 0, so that l is a weak solution
of ∆ω = 0. Then by Theorem 2.2 (Regularity), there must be a ω ∈ ΩpM , such that
l(ψ) = (ω, ψ) for any ψ ∈ ΩpM , and ∆ω = 0. By the definition of l, it is easy to see
that ω ∈ Hp(M)⊥ and ||ω|| = 1 as {βi} is in Hp(M)⊥ and ||βi|| = 1. But ∆ω = 0
implies that ω ∈ Hp(M), which is a contradiction.

Now we complete the proof for Hp(M)⊥ ⊂ ∆(ΩpM). For any η ∈ Hp(M)⊥, we
define a linear functional l on ∆(ΩpM) as follows:

l(∆φ) = (η, φ), ∀φ ∈ ΩpM.

To see that l is bounded, we let ψ be the component of φ in Hp(M)⊥. Then

|l(∆φ)| = |l(∆ψ)| ≤ ||η|| · ||ψ|| ≤ c||η|| · ||∆ψ|| = c||η|| · ||∆φ||.
Now by Hahn-Banach theorem, l can be extended to a bounded linear functional on
ΩpM , which continues to be denoted by l. Clearly, l is a weak solution of ∆ω = η.
Hp(M)⊥ ⊂ ∆(ΩpM) follows immediately from the Regularity theorem (Theorem 2.2).

�

As an immediate corollary, we have

Corollary 2.5. The de Rham group Hp
dRM is isomorphic to Hp(M); in particular,

Hp
dRM is finite dimensional.

Some applications: We list some immediate topological consequences of the
Hodge decomposition theorem.

Theorem 2.6. (Poincaré duality). Let M be a compact closed, orientable manifold of

dimension n. Then Hp
dRM is isomorphic to the dual space of Hn−p

dR M . Equivalently,

the pairing Hp
dRM ×H

n−p
dR M → R defined by ([ω], [η]) 7→

∫
M ω ∧ η is non-degenerate.

Theorem 2.7. Let M be a compact closed manifold of dimension n. Assume M is
connected. Then Hn

dRM = R if M is orientable, and Hn
dRM = 0 if otherwise.
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Theorem 2.8. Let M be a compact closed oriented manifold, equipped with a smooth,
finite, free action of G. Let N = M/G be the quotient manifold. Then Hp

dRN is

isomorphic to (Hp
dRM)G, i.e., the subspace of Hp

dRM which is fixed under the induced
action of G.

We end with a useful technique due to Bochner (called Bochner’s technique).

Lemma 2.9. Let {Ei} be a local orthonormal frame, {φi} be the dual coframe, such

that the corresponding connection 1-forms ωji vanishes at a given point p. Let α be
any 1-form, for simplicity, assume α = fφ1. Then at the point p, the following holds:

〈∆α, α〉p = −(
∑
j

∇Ej∇Ejf) · f +Ric(E1, E1)f2.

Proof. Recall that the curvature Ωj
i =

∑
k<lR

j
kliφ

k∧φl, whereRjkli = R(Ek, El, Ei, Ej).

On the other hand, at point p, Ωj
i = dωji . It follows easily that

Ric(Ei, Ej) =
∑
k

Rkkij =
∑
k

dωkj (Ek, Ei) =
∑
k

(∇Ekω
k
j (Ei)−∇Eiωkj (Ek)).

In particular, Ric(E1, E1) =
∑

k(∇Ekωk1 (E1)−∇E1ω
k
1 (Ek)).

On the other hand, for 1-forms ∆α = −((−1)n ∗ d ∗ d + d ∗ d ∗)α. We compute
separately:

d ∗ d ∗ (fφ1) = d ∗ d(fφ2 ∧ φ3 ∧ · · · ∧ φn)

= d ∗ (∇E1f ∗ 1 + f
∑
i>1

(−1)iφ2 ∧ · · · ∧ dφi ∧ · · · ∧ φn)

= d ∗ (∇E1f ∗ 1 + f
∑
i>1

(−1)iωi1(Ei)φ
2 ∧ · · · ∧ φ1 ∧ φi ∧ · · · ∧ φn)

=
∑
k

(∇Ek∇E1f + f
∑
i

∇Ekω
i
1(Ei))φ

k.

(−1)n ∗ d ∗ d(fφ1) = (−1)n ∗ d ∗ (
∑
j

(∇Ejf)φj ∧ φ1 + fdφ1)

= (−1)n ∗ d(
∑
j>1

∇Ejf ∗ (φj ∧ φ1) +
∑
k,l

fω1
k(El) ∗ (φk ∧ φl)),

where

d(
∑
j>1

∇Ejf ∗ (φj ∧ φ1) =
∑
j>1

(∇Ej∇Ejf(− ∗ φ1) +∇E1∇Ejf ∗ φj),

and

d(fω1
k(El) ∗ (φk ∧ φl)) = f(∇Elω

1
k(El) ∗ φk −∇Ekω

1
k(El) ∗ φl).

Combing these equations. we obtain
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∆α = −((
∑
j

∇Ej∇Ejf)φ1 +
∑
j>1

(∇Ej∇E1f −∇E1∇Ejf)φj

+f(
∑
k,i

∇Ekω
i
1(Ei)φ

k −
∑
k,l

(∇Elω
1
k(El)φ

k −∇Ekω
1
k(El)φ

l))).

(Note further that the term
∑

j>1(∇Ej∇E1f − ∇E1∇Ejf)φj actually disappears be-

cause ∇Ej∇E1f − ∇E1∇Ejf = [Ej , E1]f = 0 at the point p.) Picking up the φ1-
component, we obtain easily that

〈∆α, α〉p = −(
∑
j

∇Ej∇Ejf) · f +
∑
k

(∇Ekω
k
1 (E1)−∇E1ω

k
1 (Ek))f

2,

which is what we claimed: 〈∆α, α〉p = −(
∑

j ∇Ej∇Ejf) · f +Ric(E1, E1)f2.
�

Theorem 2.10. (Bochner) Let (M, g) be a compact connected orientable Riemann-
ian manifold. If the Ricci tensor is semi-positive definite, then b1(M) ≤ dimM . If
furthermore, the Ricci tensor is positive definite at some point, then b1(M) = 0.

Proof. In the equation in Lemma 2.9, if we let α̃ = fE1 be the vector field dual to
α, then Ric(E1, E1)f2 = Ric(α̃, α̃). To understand the term −(

∑
j ∇Ej∇Ejf) · f , we

note that at the point p,

−(
∑
j

∇Ej∇Ejf) · fφ1 ∧ · · · ∧ φn = 〈∇α,∇α〉φ1 ∧ · · · ∧ φn − 1

2
d(∗d〈α, α〉).

It follows easily that for any 1-form α, we have

(∆α, α) =

∫
M
〈∇α,∇α〉dV olg +

∫
M
Ric(α̃, α̃)dV olg.

In particular, if Ric(α̃, α̃) ≥ 0, then ∆α = 0 implies that Ric(α̃, α̃) = 0 and ∇α = 0.
The latter implies that α is determined by its value at one point, so that the space of
harmonic 1-forms H1(M) may be regarded as a subspace of T ∗pM for any given point
p. It follows that b1(M) ≤ dimM . If in addition the Ricci tensor is positive definite at
some point, then Ric(α̃, α̃) = 0 (with ∇α = 0) implies that α = 0. Hence b1(M) = 0.

�

As an example, let M be a compact Kähler manifold whose canonical line bundle
KM is torsion. Then by Yau’s solution of Calabi’s conjecture, M admits a Kähler-
Einstein metric, whose Ricci curvature is necessarily constant zero. Theorem 2.10
implies that b1(M) ≤ dimRM .( e.g. M is a complex torus. )

3. Hodge theory on complex manifolds

Hodge theory of Dolbeault cohomology: Let M be a complex manifold of
complex dimension n. For any p ≥ 0, the complex {∂̄ : Ωp,qM → Ωp,q+1M |q ≥
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0} is exact, i.e., ∂̄2 = 0. The cohomology groups are called the (p, q)-th Dolbeault
cohomology:

Hp,q

∂̄
M =

{ω ∈ Ωp,qM |∂̄ω = 0}
{ω|ω = ∂̄η, η ∈ Ωp,q−1M}

.

The relevance of Dolbeault cohomology groups in complex geometry is due to

Theorem 3.1. (Dolbeault Theorem)
Hp,q

∂̄
M = Hq(M,Ωp), where Hq(M,Ωp) is the q-th Čech cohomology group of the

sheaf Ωp of holomorphic p-forms (i.e., (p, 0)-forms) on M .

Hodge theory can be similarly developed for Dolbeault cohomology. More con-
cretely, let M be compact and fix a Hermitian metric h on M . Then h induces a
Hermitian inner product 〈, 〉x on Λp,qx M for each x ∈ M . By integrating over M , we
define a L2-Hermitian product on Ωp,qM :

(ψ, η) :=

∫
M
〈ψ, η〉xdV olh.

We define the adjoint operator ∂̄∗ : Ωp,qM → Ωp,q−1M of ∂̄ by

(∂̄∗ψ, η) = (ψ, ∂̄η), ∀ψ ∈ Ωp,qM, η ∈ Ωp,q−1M.

By the same argument, one can show that if a ∂̄-closed form ψ has minimal norm
among the Dolbeault cohomology class of ψ, then ψ must be ∂̄-coclosed, i.e., ∂̄∗ψ = 0,
and moreover, such a ψ, if exists, is unique in the Dolbeault cohomology class. In
order to prove existence, we form the ∂̄-Laplacian ∆∂̄ := ∂̄∗∂̄+ ∂̄∂̄∗ : Ωp,qM → Ωp,qM .
If we let Hp,q

∂̄
M = {η ∈ Ωp,qM |∆∂̄η = 0}, then Hp,q

∂̄
M = {η ∈ Ωp,qM |∂̄η = ∂̄∗η = 0}.

Next we introduce the Hodge star ∗ : Λp,qx M → Λn−p,n−qx M , ∀x ∈M , such that

〈ψ, η〉xdV olh(x) = ψ ∧ ∗η, ∀ψ, η ∈ Λp,qx M.

Let {φi} be a local unitary coframe. Then it is easy to check that

dV olh = (−1)n(n−1)/2inφ1 ∧ φ2 ∧ · · · ∧ φn ∧ φ̄1 ∧ φ̄2 ∧ · · · ∧ φ̄n.

With this understood, if locally we write η =
∑

I,J ηIJ̄φ
I∧φ̄J , where I = (i1, i2, · · · , ip),

J = (j1, j2, · · · , jq) are ascending multi-indices, φI = φi1∧· · ·∧φip , φ̄J = φ̄j1∧· · ·∧φ̄jq ,
then

∗η = (−1)n(n−1)/2in ·
∑
I,J

εIJηIJ̄φ
I0 ∧ φ̄J0 ,

where I0, J0 are ascending multi-indices complementary to I, J , and εIJ = 1 or −1,
which is the sign of the permutation (1, 2, · · · , n, 1̄, 2̄, · · · , n̄) 7→ (I, J̄ , I0, J̄0). This
local formula easily implies that for any η ∈ Ωp,qM ,

∗ ∗ η = (−1)p+qη.

Finally, with this expression the Stokes’s theorem easily implies that ∂̄∗ = − ∗ ∂̄ ∗.

Example 3.2. Let M = C2 with the standard Hermitian metric (i.e., Euclidean
metric). Let z1, z2 be the coordinates, and let φi = 1√

2
dzi. Then {φ1, φ2} form a
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unitary coframe. Furthermore, note that when n = 2, dV olh = φ1∧φ2∧ φ̄1∧ φ̄2. With
this understood, we compute ∆∂̄f for a smooth complex valued function f :

∆∂̄f = ∂̄∗∂̄f

= − ∗ ∂̄ ∗ (
√

2
∂f

∂z̄1
φ̄1 +

√
2
∂f

∂z̄2
φ̄2)

= −
√

2 ∗ ∂̄(
∂f

∂z̄1
φ1 ∧ φ2 ∧ φ̄2 − ∂f

∂z̄2
φ1 ∧ φ2 ∧ φ̄1)

= −2 ∗ (
∂

∂z̄1

∂f

∂z̄1
φ̄1 ∧ φ1 ∧ φ2 ∧ φ̄2 − ∂

∂z̄2

∂f

∂z̄2
φ̄2 ∧ φ1 ∧ φ2 ∧ φ̄1)

= −2(
∂2f

∂z1∂z̄1
+

∂2f

∂z2∂z̄2
)

= −1

2
(
∂2

∂x2
1

+
∂2

∂y2
1

+
∂2

∂x2
2

+
∂2

∂y2
2

)f

=
1

2
∆f.

The key point is that the ∂̄-Laplacian is an elliptic differential operator, which
implies the following Hodge decomposition theorem.

Theorem 3.3. For any p, q ≥ 0, Hp,q
∂̄
M is finite dimensional, and moreover, we

have Ωp,qM = Hp,q
∂̄
M⊕∆∂̄(Ωp,qM) as an orthogonal decomposition with respect to the

L2-Hermitian product.

Corollary 3.4. For any p, q ≥ 0, the Dolbeault cohomology group Hp,q

∂̄
M is isomorphic

to Hp,q
∂̄
M ; in particular, it is finite dimensional.

Theorem 3.5. (Kodaira-Serre duality)
The pairing Hq(M,Ωp)⊗Hn−q(M,Ωn−p)→ Hn(M,Ωn) ∼= C is non-degenerate.

The dimensions hp,q(M) := dimCH
p,q

∂̄
M are called the Hodge numbers of M ;

a priori they are not topological invariants of M as they depend on the complex
structure. Note that the Kodaira-Serre duality implies that hp,q(M) = hn−p,n−q(M).

Extension to holomorphic vector bundles: Let E be a holomorphic vector
bundle over M . We can extend the definition of Dolbeault cohomology groups to
(p, q)-forms with values in E. To this end, recall from Section 4 in Part 4 that there
is a special class of covariant derivatives ∇ on Γ(E) which obeys condition (1) in
Theorem 4.1. In particular, the (0, 1)-component of ∇ is uniquely determined and the
(0, 2)-component of its curvature is zero. With this understood, the (0, 1)-component
of the exterior covariant derivative d∇ defines an operator ∂̄ : Ωp,q(E) → Ωp,q+1(E),
where Ωp,q(E) = Γ(E)⊗Ωp,qM , which is independent of the choice of ∇. Furthermore,
since the curvature has no (0, 2)-part, ∂̄2 = 0. The corresponding cohomology groups
are denoted by Hp,q

∂̄
(E). If Hq(M,Ωp(E)) denotes the q-th Čech cohomology group

of the sheaf of E-valued holomorphic p-forms, then the Dolbeault theorem claims that
Hq(M,Ωp(E)) is isomorphic to Hp,q

∂̄
(E).
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The Hodge theory can be extended to the case of Hp,q

∂̄
(E). To this end, we fix a

Hermitian metric on E, which gives rise to a L2-product on Ωp,q(E). This allows to
define the adjoint operator ∂̄∗ and form the ∂̄-Laplacian ∆∂̄ := ∂̄∗∂̄+ ∂̄∂̄∗ : Ωp,q(E)→
Ωp,q(E). If we let Hp,q(E) = {η ∈ Ωp,q(E)|∆∂̄η = 0}, then one has similarly Hp,q(E) =
{η ∈ Ωp,q(E)|∂̄η = ∂̄∗η = 0}. We remark that in this case, the Hodge star takes the

following form: ∗ : Λp,qx (E)→ Λn−p,n−qx (E∗), x ∈M , where E∗ is the dual of E.

Theorem 3.6. (1) Hp,q

∂̄
(E) is isomorphic to Hp,q(E); in particular, it is finite di-

mensional.
(2) (Kodaira-Serre duality) The pairing Hq(M,Ωp(E)) ⊗ Hn−q(M,Ωn−p(E∗)) →

Hn(M,Ωn) ∼= C is non-degenerate.

See [2] for more details.

Hodge theory on Kähler manifolds: On a complex manifold M with a Her-
mitian metric h, there are two Laplacian operators: the Laplace-Beltrami operator ∆
and the ∂̄-Laplacian ∆∂̄ . In general they are unrelated, however, when the metric is
Kähler, we have the following important fact:

Lemma 3.7. (cf. [2]) If the Hermitian metric is Kähler, then ∆ = 2∆∂̄.

As an immediate consequence, note that the orthogonal decomposition ΩrM =
⊕r=p+qΩp,qM is preserved by ∆. If we let Hp,qM = {η ∈ Ωp,qM |∆η = 0}, then

HrM = ⊕r=p+qHp,qM, Hp,qM = Hq,pM.

More intrinsically, we consider the following subgroups of Hr
dR(M)⊗ C:

Hp,qM :=
{ω ∈ Ωp,qM |dω = 0}
{ω ∈ Ωp,qM |ω = dη}

.

Then it is easy to see that Hp,qM is isomorphic to Hp,qM , and Hp,qM = Hq,pM .
Moreover, since Hp,q

∂̄
M = Hp,qM , Hp,qM is isomorphic to Hp,q

∂̄
M .

Theorem 3.8. Let M be a compact Kähler manifold. Then

Hr
dR(M)⊗ C ∼= ⊕r=p+qHp,qM, and Hp,qM ∼= Hp,q

∂̄
M.

Corollary 3.9. The odd Betti numbers of a compact Kähler manifold must be even.

Example 3.10. Let M be a compact complex surface. In this case, the Hodge num-
bers of M are completely determined by h1,0(M), h0,1(M), h1,1(M), h0,2(M). The
number q(M) := h0,1(M) is called the irregularity of M , and the number pg(M) :=
h0,2(M) is called the geometric genus. Finally, it is known that M is Kähler if and
only if b1(M) is even.

Now suppose M is Kähler. Then q(M) = 1
2b1(M), and b2(M) = 2pg(M) +h1,1(M).

We will show that, furthermore, b+2 (M) = 2pg(M) + 1, as a consequence of the In-
dex Theorem (called the Riemann-Roch). More concretely, we have from the index
theorem that

1− h0,1(M) + h0,2(M) = Todd(TM)[M ],

where for any complex vector bundle E of rank r, its Todd class Todd(E) is defined as

follows: let the total Chern class c(E) =
∏r
i=1(1 + δi), then Todd(E) =

∏r
i=1

δi
1−e−δi .
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Consider the case where E is of rank 2. Then

Todd(E) =
2∏
i=1

δi
1− e−δi

=
2∏
i=1

(1+(
1

2
δi−

1

6
δ2
i )+

1

4
δ2
i +· · · ) = 1+

1

2
(δ1+δ2)+

1

12
(3δ1δ2+δ2

1+δ2
2)+· · ·

Note that χ(TM) = δ1δ2, p1(TM) = δ2
1 + δ2

2 , it follows that

1− q(M) + pg(M) = Todd(TM)[M ] =
1

4
(χ(M) + σ(M)) =

1

2
(1− b1(M) + b+2 (M)),

which gives b+2 (M) = 2pg(M) + 1.
If M is non-Kähler, it is known that b+2 (M) = 2pg(M), q(M) = h0,1(M) =

h1,0(M) + 1, and b1(M) = h1,0(M) + h0,1(M). So in any case (i.e., Kähler or non-
Kähler), the Hodge numbers of M are topological invariants. See [1].

In the Kähler case, it is useful to also consider the operator ∂ : Ωp,qM → Ωp+1,qM .
Let ∂∗ : Ωp+1,qM → Ωp,qM be the adjoint operator. Then we can form the ∂-Laplacian
∆∂ := ∂∗∂ + ∂∂∗ : Ωp,qM → Ωp,qM . As part of the set of relations among the various
operators as in Lemma 3.7, we also have

Lemma 3.11. (cf. [2]) In the Kähler case, ∆ = 2∆∂, and ∂∂̄∗ + ∂̄∗∂ = 0.

Note that ∆∂ = ∆∂̄ = 1
2∆. We set Hp,q∂ M = {η ∈ Ωp,qM |∆∂η = 0}. Then

Hp,qM = Hp,q∂ M = Hp,q
∂̄
M . We have the following useful fact.

Lemma 3.12. (The ∂∂̄-Lemma) Let η be a (p, q)-form such that η is d-exact. Then
there exists a (p− 1, q − 1)-form γ such that η = ∂∂̄γ.

Proof. First of all, since η is d-exact, 0 = dη = ∂η+∂̄η, which implies that ∂̄η = ∂η = 0
since η is a (p, q)-form. Secondly, note that η is orthogonal to Hp,qM = Hp,q∂ M =

Hp,q
∂̄
M . In particular, η ∈ ∆∂̄(Ωp,qM). Let ω = ∆−1

∂̄
η. Then

η = ∆∂̄ω = ∂̄∂̄∗ω + ∂̄∗∂̄ω = ∂̄∂̄∗ω.

Note that ∂̄∗∂̄ω = 0 because ∂̄ commutes with ∆−1
∂̄

and ∂̄η = 0.

Now consider ∂̄∗ω. Since it is ∂̄-co-exact, it is also orthogonal to Hp,qM = Hp,q∂ M =
Hp,q
∂̄
M . In particular, it lies in the image of ∆∂ . On the other hand, note that

∂∂̄∗ω = −∂̄∗∂ω = 0 because ∂ commutes with ∆∂ = ∆∂̄ , so that ∂ω = ∆−1
∂̄

(∂η) = 0,

as ∂η = 0. With this understood, let ξ = ∆−1
∂ (∂̄∗ω). Then

∂̄∗ω = ∂∂∗ξ + ∂∗∂ξ = ∂∂∗ξ,

as ∂ξ = ∆−1
∂ (∂∂̄∗ω) = 0. The lemma follows by taking γ = −∂∗ξ.

�
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