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1. Almost complex manifolds

Algebraic preliminaries: Let V be a real vector space of dimension n = 2m. A
complex structure on V is an endomorphism J : V → V such that J2 = −Id. With J ,
V can be made into a complex vector space (of dimension m) in a canonical way:

(a+ ib) ·X = aX + bJX, where a, b ∈ R, X ∈ V.

Conversely, any complex vector space V is naturally a real vector space with a canon-
ical complex structure J0, the one given by multiplication by the complex number i,
i.e., J0X = iX, for any X ∈ V . Finally, a R-linear map f : V → V becomes a C-linear
map when V is regarded as a complex vector space if and only if f commutes with J .

Example 1.1. The standard example is V = R2m, with the complex structure J0

given by the matrix J0 =

[
0 −Im
Im 0

]
. If (x1, · · · , xm, y1, · · · , ym) is the coordinates

functions on V = R2m, then with J0, V becomes the complex vector space Cm, with
coordinate functions zk := xk + iyk, k = 1, 2, · · · ,m. Finally, under this identification,
the complex general linear group GL(m,C) is identified with a subgroup of the real
general linear group GL(n,R) under the correspondence

A+ iB 7→
[
A −B
B A

]
, where A+ iB ∈ GL(m,C).

Let V ∗ be the dual space of V . A complex structure J on V naturally determines
a complex structure, still denoted by J , on V ∗ by the following equation:

X∗(JX) = JX∗(X), for any X ∈ V,X∗ ∈ V ∗.

Observe that in terms of bases, if (e1, · · · , em, f1, · · · , fm) is a basis of V such that
Jek = fk, Jfk = −ek for each k, and if (ε1, · · · , εm, δ1, · · · , δm) is the dual basis of V ∗,
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then for each k,

Jεk = −δk, Jδk = εk.

Let V c := V ⊗R C be the complexification of V , which is a naturally a complex
vector space of dimension n = 2m. Then V is contained in V c, via X 7→ X ⊗ 1, as a
real subspace. There is a R-linear endomorphism on V c, called complex conjugation,
defined by sending Z := X+iY to Z̄ := X−iY for any X,Y ∈ V . Finally, we introduce
complex subspaces V1,0, V0,1, which are the (+i)-eigenspace and (−i)-eigenspace of J
respectively. Then V c = V1,0⊕V0,1, and the complex conjugation sends V1,0 to V0,1 as
a real isomorphism. Note that

V1,0 = {X − iJX| X ∈ V }, V0,1 = {X + iJX| X ∈ V }.
Similarly, if we denote by V 1,0, V 0,1 the (+i)-eigenspace and (−i)-eigenspace of J on
the dual space V ∗ respectively, then (V ∗)c = V 1,0 ⊕ V 0,1. Furthermore, we observe
that V 1,0, V 0,1 annihilate V0,1, V1,0 respectively. Finally, V , as a complex vector space,
is naturally identified with the complex subspace V1,0 of V c via X 7→ 1

2(X − iJX),
the projection of V onto V1,0 in V c. Conversely, for a given real vector space V , any
decomposition of its complexification V c = V1,0⊕V0,1, where the complex conjugation
in V c sends V1,0 to V0,1 isomorphically as real vector spaces, defines a complex structure
J on V as follows: we note that V ⊂ V c is sent to V1,0 isomorphically as real vector
spaces via the projection V c → V1,0. With this understood, we simply let J be the
pull-back of the complex multiplication of i on V1,0.

Recall that a Hermitian inner product on a real vector space V with a complex
structure J is an inner product h on V such that h(JX, JY ) = h(X,Y ) for any X,Y ∈
V . It is easy to see that h(JX,X) = 0 for any X ∈ V . Note that h and J together
determine a skew-symmetric bilinear form ω on V , where ω(X,Y ) := h(JX, Y ).

A Hermitian inner product h on V can be extended uniquely to the complexification
V c as a complex symmetric bilinear form, still denoted by h, which obeys the following
conditions:

• h(Z̄, W̄ ) = h(Z,W ), for any Z,W ∈ V c,
• h(Z, Z̄) > 0 for any nonzero Z ∈ V c,
• h(Z, W̄ ) = 0 for any Z ∈ V1,0, W ∈ V0,1.

Conversely, any complex symmetric bilinear form on V c obeying the above three con-
ditions determines a Hermitian inner product on V . If (e1, · · · , em, f1, · · · , fm) is
a basis of V such that Jek = fk, Jfk = −ek for each k, then zk := 1

2(ek − ifk),

k = 1, 2, · · · ,m, form a basis of V1,0, and z̄k := 1
2(ek + ifk), k = 1, 2, · · · ,m, form a

basis of V0,1. With this understood, the complex symmetric bilinear form h on V c is
completely determined by the m×m matrix (hkl̄), where

hkl̄ := h(zk, z̄l) =
1

2
(h(ek, el)− iω(ek, el)).

Almost complex manifolds and Nijenhuis tensor: Let M be a smooth, 2m-
dimensional manifold. An almost complex structure on M is a smooth section J of
the bundle End(TM) such that J2 = −Id. Equivalently, each tangent space TpM is
equipped with a complex structure Jp which varies smoothly with respect to p. Such a
manifold M is called an almost complex manifold. Each Jp makes TpM into a complex
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vector space, and with J , TM becomes a complex vector bundle. It is easy to see that
the existence of an almost complex structure is equivalent to that the frame bundle of
TM admits a GL(m,C)-reduction, viewing GL(m,C) as a subgroup of GL(2m,R) in
a canonical way. Almost complex manifolds are canonically oriented, as matrices in
GL(m,C) ⊂ GL(2m,R) have positive (real) determinants.

Example 1.2. (Complex manifolds)
Let M be a m-dimensional complex manifold, that is, M admits an atlas {(Uα, φα)},

where φα : Uα → Cm, such that the transition maps φβ ◦ φ−1
α are bi-holomorphisms.

If φα = (zkα) and zkα := xkα + iykα, then the endomorphism Jα given by Jα
∂
∂xkα

= ∂
∂ykα

,

Jα
∂
∂ykα

= − ∂
∂xkα

, k = 1, 2, · · · ,m, defines an almost complex structure J = {Jα} on M .

Such an almost complex structure J is called integrable.

Let J be an almost complex structure on M . The Nijenhuis tensor of J is defined
as follows: for any vector fields X,Y ,

N(X,Y ) := [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ].

Exercise: Verify the following statements:

(1) N(X,Y ) = −N(Y,X), and for any smooth function f , N(fX, Y ) = fN(X,Y );
(2) N(X,JX) = 0 for any X; in particular, N ≡ 0 when M is 2-dimensional;
(3) N(X,Y ) = 0 for any X,Y if J is integrable.

Theorem 1.3. (Newlander-Nirenberg)
Let (M,J) be any almost complex manifold. If the Nijenhuis tensor of J is zero,

then J must be integrable.

For any almost complex manifold (M,J), the complexification of the tangent bundle
and cotangent bundle admit canonical decompositions: TM ⊗R C = T1,0M ⊕ T0,1M
and T ∗M ⊗R C = T 1,0M ⊕ T 0,1M . Furthermore, for each r, the exterior bundle
ΛrM ⊗R C = ⊕p+q=rΛp,qM , where Λp,qM = (ΛpT 1,0M)Λ(ΛqT 0,1M). Consequently,
the space of complex-valued r-forms on M is decomposed into a direct sum of r-forms
of type (p, q), which is a smooth section of the bundle Λp,qM :

Ωr(M)⊗R C = ⊕p+q=rΩp,q(M), where Ωp,q(M) = Γ(Λp,qM).

Exercise: Note that for any complex-valued 1-form ω, the exterior differential dω
has a canonical decomposition into 2-forms of type (2, 0), (1, 1), and (0, 2). Prove that
the vanishing of the Nijenhuis tensor of J is equivalent to the following statement: for
any ω ∈ Ω1,0(M), the (0, 2)-component of dω is zero.

Remarks: Note that an almost complex structure J on a manifold M can be im-
plicitly defined by specifying a decomposition of the complexification of the cotangent
bundle T ∗M⊗RC = T 1,0M⊕T 0,1M where T 0,1M is the complex conjugate of T 1,0M .
With this definition of J , we can verify J is integrable by showing that near any point
p ∈ M , there is a local frame {φi} of T 1,0M such that for each i, dφi contains no
(0, 2)-component.

It follows easily that if the Nijenhuis tensor of J is zero, then for any (p, q)-form
ω, the exterior differential dω is a sum of a (p + 1, q)-form and a (p, q + 1)-form. We
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denote the (p + 1, q)-form and the (p, q + 1)-form by ∂ω, ∂̄ω respectively. Hence in
this case, d = ∂ + ∂̄, where ∂ : Ωp,q(M)→ Ωp+1,q(M) and ∂̄ : Ωp,q(M)→ Ωp,q+1(M).
The equation d2 = 0 becomes

∂2 = ∂̄2 = 0, and ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0.

LetM be a complex manifold. Then the holomorphic tangent and cotangent bundles
of M are naturally identified with T1,0M and T 1,0M respectively. More precisely, let

{zk = xk + iyk} be a system of local holomorphic coordinates. Then for each k, one
has ∂

∂zk
= 1

2( ∂
∂xk
− i ∂

∂yk
), dzk = dxk + idyk, which form a local frame or coframe of

the corresponding bundles. Note that ∂
∂z̄k

= 1
2( ∂
∂xk

+ i ∂
∂yk

), dz̄k = dxk − idyk, which

form a local frame and coframe of T0,1M and T 0,1M respectively.

Exercise: Let M be a complex manifold. Prove that a complex valued smooth
function f is holomorphic if and only if the (0, 1)-component of df is zero, i.e., ∂̄f = 0,
and if and only if f is annihilated by any vector field of type (0, 1), i.e., a smooth section
of T0,1M . Furthermore, a smooth map f : M → M ′ between complex manifolds is
holomorphic if and only if f∗ : TM ⊗R C → TM ′ ⊗R C preserves the decomposition
into (1, 0), (0, 1)-components.

Note that locally, for a (p, q)-form ω = fdzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq , the
decomposition of dω into ∂ω, ∂̄ω are given by

∂ω =
∑
k

∂f

∂zk
dzk ∧ dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,

and

∂̄ω = (−1)p
∑
k

∂f

∂z̄k
dzi1 ∧ · · · ∧ dzip ∧ dz̄k ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

Next we consider covariant derivatives on an almost complex manifold (M,J). Note
that if ∇ is a covariant derivative which is associated to a connection in the frame
bundle of TM as a complex vector bundle, it must commute with J , or equivalently,
J is parallel with respect to ∇, i.e., ∇J = 0.

Exercise: Let ∇ be a covariant derivative such that ∇J = 0. Suppose ∇ is torsion-
free, i.e., T∇(X,Y ) = ∇XY − ∇YX − [X,Y ] = 0 for any vector fields X,Y . Prove
that the Nijenhuis tensor of J must be zero.

Every almost complex manifold (M,J) admits a Hermitian metric, i.e., a Riemann-
ian metric h such that h(JX, JY ) = h(X,Y ) for any X,Y . The above fact implies
that if J is parallel with respect to the Levi-Civita connection of the Riemannian man-
ifold (M,h) (which is torsion-free), M must be a complex manifold. In other words,
as far as Riemannian geometry is concerned, an almost complex structure does not
add anything interesting unless it is integrable. In the next section, we will see that
there is another condition we need to impose on the Hermitian metric: the Kähler
condition.

Holomorphic vector fields: Let M be a complex manifold. In this case, T1,0M
is simply the holomorphic tangent bundle. A holomorphic vector field on M is by
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definition a holomorphic section of T1,0M , which locally can be written as
∑

k fk
∂
∂zk

for a local holomorphic coordinates {zk}, where fk are local holomorphic functions.
Holomorphic vector fields are closely related to infinitesimal automorphisms of the
complex structure of M .

More generally, consider an almost complex manifold (M,J). Let X be a vector
field such that the flow generated by X preserves J (such a X is called an infinitesimal
automorphism of J). This happens if and only if the Lie derivative LXJ = 0, which is
equivalent to [X, JY ] = J [X,Y ]. Plug this into the expression of N(X,Y ), we obtain
N(X,Y ) = [JX, JY ]−J [JX, Y ]. It follows immediately that if J is integrable, then X
is an infinitesimal automorphism of J if and only if JX is. It is known that the space
of infinitesimal automorphisms forms a Lie algebra under the Lie bracket, and it is the
Lie algebra of the automorphism group of (M,J). So when M is a complex manifold,
the Lie algebra of infinitesimal automorphisms is a complex Lie algebra under J .

Exercise: Let M be a complex manifold. Prove that X is an infinitesimal auto-
morphism of the complex structure if and only if the projection of X onto T1,0M , i.e.,
X 7→ 1

2(X − iJX), is a holomorphic vector field.

Symplectic manifolds, a side note: A symplectic structure on a (necessarily
even-dimensional) manifold M is a closed, non-degenerate 2-form, usually denoted by
ω. Every symplectic manifold is almost complex; in fact, one can always find an almost
complex structure J such that g(X,Y ) := ω(X, JY ) defines a Riemannian matric (in
fact, g will be a Hermitian metric on (M,J)). Such a J is called ω-compatible, which
forms an infinite-dimensional contractible space. It is clear that most of these J ’s will
not be integrable at all, so the corresponding Riemannian geometry is not interesting.
However, introducing such an almost complex structure is fundamental in Gromov’s
pseudo-holomorphic curve theory for symplectic manifolds.

2. Kähler manifolds

The Kähler condition: We begin with a lemma for almost complex manifolds.

Lemma 2.1. Let (M,J) be an almost complex manifold, and let h be any Hermitian
metric on (M,J). Denote by ∇ the Levi-Civita connection, and let ω be the 2-form
associated to h, i.e., for any vector fields X,Y , ω(X,Y ) = h(JX, Y ). Then the
following equation holds true: for any vector fields X,Y, Z,

2h((∇XJ)Y,Z) = dω(X,Y, Z)− dω(X, JY, JZ) + h(JX,N(Y, Z)).

Proof. First of all, (∇XJ)Y = ∇XJY − J∇XY , which implies that

h((∇XJ)Y,Z) = h(∇XJY, Z) + h(∇XY, JZ).

Then for the two terms on the right-hand of the above, use the following formula:

h(∇XY, Z) =
1

2
(Xh(Y, Z)+Y h(X,Z)−Zh(X,Y )+h(X, [Z, Y ])+h(Y, [Z,X])+h(Z, [X,Y ])).

On the other hand, recall that for a 2-form α,

dα(U, V,W ) = Uα(V,W )−V α(U,W )+Wα(U, V )−α([U, V ],W )+α([U,W ], V )−α([V,W ], U).
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The lemma follows easily by putting these equations together.
�

If ∇J = 0, then ∇ω = 0 because ∇h = 0. This implies that dω = 0 because dω
equals the anti-symmetrization of ∇ω. The other direction of the following corollary
follows from Lemma 2.1.

Corollary 2.2. The almost complex structure J is parallel with respect to the Levi-
Civita connection if and only if the Nijenhuis tensor is zero and the associated 2-form
ω is closed.

Definition 2.3. A Hermitian metric on a complex manifold is called a Kähler metric
if the associated 2-form is closed. Such a complex manifold is called a Kähler manifold.
The associated 2-form of a Kähler metric is called the Kähler form.

Kähler metrics in local coordinates: Let M be a complex manifold, h be a
Hermitian metric on M , which is extended to the complexification TM ⊗R C canoni-
cally. Suppose z1, z2, · · · , zn is a local holomorphic coordinate system. We set hkl̄ :=

h( ∂
∂zk

, ∂
∂z̄l

). Then (hkl̄) is a n×n Hertimian matrix with entries smooth local functions,

i.e., hlk̄ = hkl̄. The Hermitian metric h is completely determined by the matrix (hkl̄),
and is customarily written as

∑
k,l hkl̄dz

k ⊗ dz̄l. Note that for any (real) vector fields

X,Y , h(X,Y ) equals the real part of 2
∑

k,l hkl̄dz
k(X)dz̄l(Y ):

h(X,Y ) = Re (2
∑
k,l

hkl̄dz
k(X)dz̄l(Y )).

On the other hand, the associated 2-form ω is given by

ω = i · (
∑
k,l

hkl̄dz
k ∧ dz̄l).

It follows easily that the Kähler condition dω = 0 is equivalent to

∂

∂zj
hkl̄ −

∂

∂zk
hjl̄ = 0, for any j, k, l.

Lemma 2.4. A Hermitian metric h on M is Kähler if and only if for any point
p ∈ M , there is a local holomorphic coordinate system centered at p such that the
corresponding Hermitian matrix (hkl̄) obeys the conditions dhkl̄(p) = 0 for any k, l.

Proof. If dhkl̄(p) = 0 for any k, l, then ∂
∂zj

hkl̄ − ∂
∂zk

hjl̄ = 0 holds true at p for any k, l,

so dω(p) = 0. Since p is arbitrary, ω is closed.
On the other hand, suppose the metric is Kähler. We choose a local holomorphic

coordinate system centered at p, and consider the corresponding Hermitian matrix
(hkl̄). After a linear change of coordinates, we may write near p

hkl̄ = δkl̄ +
∑
s

akl̄szs + akl̄s̄z̄s + terms of order at least 2.

Then note that the condition ∂
∂zj

hkl̄− ∂
∂zk

hjl̄ = 0 implies that asl̄k = akl̄s, and hlk̄ = hkl̄
implies that ākl̄s = alk̄s̄. With this understood, let zk = wk − 1

2

∑
i,j aik̄jwiwj . Then
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one can easily check that w1, · · · , wn define a local holomorphic coordinate system
near p, and furthermore, ω = i · (

∑
k,l ĥkl̄dw

k ∧ dw̄l), where

ĥkl̄ = δkl̄ + terms of order at least 2.

Note that dĥkl̄(p) = 0. See [4] for more details. �

Exercise: Show that a Hermitian metric is Kähler if and only if for any point
p ∈M , there is a local unitary coframe φ1, · · · , φn (local sections of T 1,0M) centered
at p such that dφi(p) = 0 for any i.

Examples of Kähler manifolds: A fundamental question is what complex mani-
folds are Kähler. Before we list some examples, observe that any complex submanifold
of a Kähler manifold is Kähler. On the other hand, it is easy to see that a Kähler
form must be non-degenerate, hence it is particularly a symplectic structure on the
manifold. Consequently, if M is a compact Kähler manifold, then H2(M,R) 6= 0. As
an example, M = S1 × S3 is a complex surface which can not be Kähler.

Example 2.5. Let M = Cn. Then the Euclidean metric on M = R2n is Hermitian
with respect to the complex structure on M = Cn. Furthermore, it is Kähler, as the
associated 2-form ω = i

2

∑n
k=1 dzk ∧ dz̄k, which is closed. (Note that if zk = xk + iyk,

then ω =
∑n

k=1 dxk ∧ dyk, which is the standard symplectic structure on R2n. )

Example 2.6. (Stein manifolds) A Stein manifold is a properly embedded complex
submanifold of CN . So Stein manifolds are Kähler. Stein manifolds can also be
intrinsically described, which we will explain below.

Let M be a complex manifold. A real-valued (smooth) function φ on M is called
plurisubharmonic (resp. strictly plurisubharmonic) if for any local holomorphic co-

ordinate system {zk}, the Hermitian matrix ( ∂2φ
∂zk∂z̄l

) is positive semi-definite (resp.

positive definite). In a more intrinsic formulation, let J be the complex structure on
M , and set dCφ := dφ◦J . Then φ is strictly plurisubharmonic if and only if the 2-form
ωφ := −ddCφ is a Kähler form. A function φ is called exhausting if it is proper and
bounded from below. With this understood, the following is true: a complex manifold
which admits an exhausting strictly plurisubharmonic function is Stein (cf. [2]). Note
that the function φ := |z|2 on CN is an exhausting strictly plurisubharmonic function,
and its restriction to any properly embedded complex submanifold M ⊂ CN is an
exhausting strictly plurisubharmonic function on M . Finally, we remark that a Stein
manifold must be non-compact because a strictly plurisubharmonic function can not
attain a local maximum at an interior point.

Exercise: Show that dC = i(∂ − ∂̄), and ωφ = 2i∂∂̄φ. So in a local holomorphic

coordinates {zk}, we have ωφ = 2i(
∑

k,l
∂2φ

∂zk∂z̄l
dzk ∧ dz̄l).

Example 2.7. (The Fubini-Study metric on CPn) Let π : S2n+1 → CPn be the Hopf
fibration, where S2n+1 is considered as the principal S1-bundle with the action of λ ∈ S1

given by the multiplication of λ. As in Example 3.6 in Part 1, there is a canonical
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connection 1-form ω on S2n+1:

ω = i
n+1∑
k=1

(xkdyk − ykdxk).

Since S1 is Abelian, the curvature Ω = dω can be written as Ω = iπ∗η for some
(real-valued) 2-form η on CPn. We set ωFS := 1

2πη.

Claim: ωFS is a Kähler form on CPn. (The corresponding Kähler metric is called
the Fubini-Study metric.)

It is clear that ωFS is closed. To show ωFS defines a Hermitian metric, we calculate
it in local coordinates. As in Example 3.6 of Part 1, we consider the pull-back of Ω
via the local section of π : S2n+1 → CPn, (z1, z2, · · · , zn) 7→ 1√

1+|z|2
(z1, z2, · · · , zn, 1),

where |z|2 =
∑

k |zk|2. A easy calculation shows that

ωFS =
i

2π
·

(1 + |z|2)
∑

k dzk ∧ dz̄k − (
∑

k z̄kdzk) ∧ (
∑

k zkdz̄k)

(1 + |z|2)2
.

Observation: Let E0 be the dual of the tautological line bundle over CPn. Then
[ωFS ] = c1(E0).

Exercise: There is another formulation for ωFS . Let π : Cn+1 \ {0} → CPn be
the natural projection. Then note that (z1, z2, · · · , zn) 7→ (z1, z2, · · · , zn, 1) is a local
holomorphic section of π, and

ωFS =
i

2π
∂∂̄ ln(1 + |z1|2 + |z2|2 + · · ·+ |zn|2).

Prove that for any local holomorphic section Z : U → Cn+1 \ {0} of π, we have

ωFS =
i

2π
∂∂̄ ln |Z|2, where |Z| is the norm of Z ∈ Cn+1.

Let M ⊂ CPN be an embedded complex submanifold. Then a theorem of Chow
says that M is algebraic, i.e., M is the zero set of polynomial equations. A natural
question is: what compact complex manifold is a smooth algebraic variety?

Theorem 2.8. (Kodaira embedding theorem, cf. e.g. [4]) Let M be a compact complex
manifold. Then M can be embedded in CPN as a complex submanifold for some N > 0,
if and only if there is a complex line bundle E on M and a Kähler metric on M such
that the corresponding Kähler form ω obeys [ω] = c1(E).

Example 2.9. (The 2-dimensional case) Let M be an orientable 2-dimensional man-
ifold, and let g be any Riemannian metric on M . Then fixing any orientation on M ,
the metric g determines a unique complex structure J on M , with respect to which g
is Hermitian. Note that g is automatically Kähler because M is 2-dimensional.

3. Curvature of a Kähler metric

Algebraic properties: Let ∇ be the Levi-Civita connection of a Kähler metric
h, J be the complex structure. Then ∇ ◦ J = J ◦ ∇. This has the following easy
consequences on the curvature endomorphism R and the Ricci tensor Ric.
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Lemma 3.1. (1) R(X,Y )(JZ) = JR(X,Y )Z, R(JX, JY )Z = R(X,Y )Z, and

R(JX, JY, Z,W ) = R(X,Y, JZ, JW ) = R(X,Y, Z,W ).

(2) Ric(JX, JY ) = Ric(X,Y );
(3) Ric(X,Y ) = 1

2Trace(J ◦R(X, JY )).

Proof. First, R(X,Y )(JZ) = JR(X,Y )Z follows trivially from ∇ ◦ J = J ◦ ∇. Sec-
ondly,

R(Z,W, JX, JY ) = h(R(Z,W )JX, JY ) = h(JR(Z,W )X, JY ) = h(R(Z,W )X,Y ) = R(Z,W,X, Y ),

which implies easily

R(JX, JY, Z,W ) = R(X,Y, JZ, JW ) = R(X,Y, Z,W ).

Finally, R(JX, JY )Z = R(X,Y )Z follows from

h(R(JX, JY )Z,W ) = R(JX, JY, Z,W ) = R(X,Y, Z,W ) = h(R(X,Y )Z,W ).

To see Ric(JX, JY ) = Ric(X,Y ), note that

Ric(JX, JY ) = Trace(V 7→ R(V, JX)JY ) = Trace(JV 7→ R(JV, JX)JY ).

But R(JV, JX)JY = JR(V,X)Y , so Ric(JX, JY ) = Trace(JV 7→ JR(V,X)Y ) =
Trace(V 7→ R(V,X)Y ) = Ric(X,Y ).

Finally, to see Ric(X,Y ) = 1
2Trace(J ◦R(X, JY )), we note that

Ric(X,Y ) = Trace(V 7→ R(V,X)Y ) = Trace(V 7→ −JR(V,X)JY ),

and on the other hand,

R(V,X)JY +R(JY, V )X +R(X, JY )V = 0.

One can easily check that Ric(X,Y ) = Trace(V 7→ −JR(JY, V )X), hence the claim
Ric(X,Y ) = 1

2Trace(J ◦R(X, JY )). �

Remark 3.2. By (1), we note that the curvature R, as a 2-form valued endomorphism
of TM ⊗RC, preserves the decomposition TM ⊗RC = T1,0M ⊕T0,1M , and moreover,
the 2-form value is of type (1, 1). The latter means that for any X,Y ∈ Γ(T1,0M) or
X,Y ∈ Γ(T0,1M), we have R(X,Y ) = 0.

By (2), we can introduce Ricci form ρ, where ρ(X,Y ) := Ric(JX, Y ). Then it
follows easily ρ(X,Y ) = −ρ(Y,X). Moreover, by (3), ρ(X,Y ) = 1

2Trace(J ◦R(X,Y )),
which is a (1, 1)-form.

Holomorphic sectional curvature: Let Π be a 2-plane in TpM which is invari-
ant under J (i.e., it is a complex line), then the sectional curvature K(Π) is called
the holomorphic sectional curvature. Strengthening the fact that sectional curvature
completely determines the Riemann curvature tensor (cf. Lemma 2.2 in Part 3), in
the Kähler case it is known that the holomorphic sectional curvature completely deter-
mines the Riemann curvature tensor. More concretely, we have the following lemma,
see [5], Chapter IX, section 7 for a proof.

Lemma 3.3. Let V be a real vector space with complex structure J , let T1, T2 : V ×
V × V × V → R be multilinear maps satisfying the following 4 conditions:

• T (X,Y, Z,W ) = −T (Y,X,Z,W ) = −T (X,Y,W,Z);
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• T (X,Y, Z,W ) = T (Z,W,X, Y );
• T (X,Y, Z,W ) + T (Y,Z,X,W ) + T (Z,X, Y,W ) = 0;
• T (JX, JY, Z,W ) = T (X,Y, JZ, JW ) = T (X,Y, Z,W ).

Then if T1(X, JX, JX,X) = T2(X, JX, JX,X) for any X ∈ V , then T1 = T2.

This algebraic fact has the following easy consequence.

Proposition 3.4. Let (M,h) be a Kähler manifold. Suppose for any p ∈ M , the
holomorphic sectional curvature K(Π) for any Π ⊂ TpM depends only on p. Then the
Kähler metric h must be an Einstein metric. In particular, when dimCM ≥ 2, (M,h)
has constant holomorphic sectional curvature.

Proof. For each p ∈M , we define a quadrilinear map R0 on TpM by

R0(X,Y, Z,W ) :=
1

4
(h(X,W )h(Y,Z) + h(X,JW )h(Y, JZ)− h(X,Z)h(Y,W )

−h(X, JZ)h(Y, JW )− 2h(X, JY )h(Z, JW )).

It is easy to check that R0 obeys the 4 conditions in Lemma 3.3, and moreover,
R0(X, JX, JX,X) = h(X,X)2. It follows from Lemma 3.3, that if c(p) denotes the
holomorphic sectional curvature at p, then the Riemann curvature tensor R of (M,h)
obeys R(p) = c(p)R0. With this understood, it follows easily that

Ric(X,Y )(p) =
1

2
(n+ 1)c(p)h(X,Y )(p), where n = dimCM .

It follows immediately that when dimCM ≥ 2, c(p) is constant in p. �

Example 3.5. The U(n + 1)-action on Cn+1 induces a holomorphic action on CPn,
which is obviously transitive. Furthermore, the holomorphic action on CPn preserves
the Fubini-Study metric (Explain why). With this understood, note that for any
p ∈ CPn, the isotropy subgroup at p is isomorphic to U(n), which acts transitively
on the space of complex lines in TpM . This implies immediately that CPn with the
Fubini-Study metric has constant holomorphic sectional curvature.

Kähler manifolds with constant holomorphic sectional curvature are completely de-
termined, see [5] for a proof of the following theorem.

Theorem 3.6. Two simply connected, complete Kähler manifolds with the same con-
stant holomorphic sectional curvature are isometric by a bi-holomorphism. The fol-
lowing is a complete list of the model spaces (where c > 0 is a constant):

• (positive holomorphic sectional curvature) M = CPn, with a Kähler form

ω =
ic

2π
·

(1 + |z|2)
∑

k dzk ∧ dz̄k − (
∑

k z̄kdzk) ∧ (
∑

k zkdz̄k)

(1 + |z|2)2
=

ic

2π
∂∂̄ ln(1 + |z|2).

• (zero holomorphic sectional curvature) M = Cn, with the standard flat metric.
• (negative holomorphic sectional curvature) M = {z ∈ Cn||z|2 < 1}, with a

Kähler form

ω =
ic

2π
·

(1− |z|2)
∑

k dzk ∧ dz̄k + (
∑

k z̄kdzk) ∧ (
∑

k zkdz̄k)

(1− |z|2)2
= − ic

2π
∂∂̄ ln(1− |z|2).

(The corresponding Kähler metric is called the Bergmann metric.)
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Curvature in local coordinates: Let {zk} be a local holomorphic coordinate
system. Note that∇ ∂

∂z̄i

∂
∂zj

is of type (1, 0) and∇ ∂

∂zj

∂
∂z̄i

is of type (0, 1), and∇ ∂

∂z̄i

∂
∂zj

=

∇ ∂

∂zj

∂
∂z̄i

because ∇ is torsion-free. It follows that they must be both zero. On the

other hand, ∇ ∂

∂zi

∂
∂zj

= ∇ ∂

∂z̄i

∂
∂z̄j

, so ∇ is completely determined by ∇ ∂

∂zi

∂
∂zj

.

We shall write ∇ ∂

∂zi

∂
∂zj

=
∑

k Γkij
∂
∂zk

. Then

Γkij =
1

2

∑
l

hkl̄(
∂hjl̄
∂zi

+
∂hil̄
∂zj
− ∂hij

∂z̄l
) =

∑
l

hkl̄ ·
∂hjl̄
∂zi

.

Since the curvature is a 2-form of type (1, 1), it follows easily that

R(
∂

∂zi
,
∂

∂z̄j
,
∂

∂zk
,
∂

∂z̄l
) = −

∑
s

∂Γsik
∂z̄j

hsl̄ = − ∂2hkl̄
∂zi∂z̄j

+
∑
s,t

hst̄
∂hkt̄
∂zi

∂hsl̄
∂z̄j

.

Exercise: Note that the holomorphic sectional curvature of the complex line deter-
mined by ∂

∂zi
(i.e., the 2-plane spanned by ∂

∂xi
, ∂
∂yi

) equalsR( ∂
∂zi
, ∂
∂z̄i
, ∂
∂zi
, ∂
∂z̄i

)/h( ∂
∂zi
, ∂
∂z̄i

)2.

Use the above formula of curvature to show that the holomorphic sectional curvature
of the Fubini-Study metric in Example 2.7 equals 4π.

Kähler-Einstein metrics: A Kähler metric which is Einstein as a Riemannian
metric is called a Kähler-Einstein metric. Every Kähler metric in complex 1-dimension
is Einstein, however, things are much more complex and interesting in dimensions ≥ 2.

Lemma 3.7. The Ricci form ρ(X,Y ) = i · Trace(R(X,Y )|T1,0); in particular, the de
Rham cohomology class of the Ricci form of a Kähler metric on M equals 2π ·c1(TM).

Proof. Recall that the Ricci form

ρ(X,Y ) =
1

2
Trace(J◦R(X,Y )) =

1

2
(Trace(J◦R(X,Y )|T1,0)+Trace(J◦R(X,Y )|T0,1).

On the other hand, on T1,0, J = i, and on T0,1, J = −i, and furthermore, R(X,Y )|T0,1 =
R(X,Y )|T1,0 . With this understood,

Trace(J◦R(X,Y )|T0,1) = −i·Trace(R(X,Y )T |T0,1) = i·TraceR(X,Y )|T0,1 = i·Trace(R(X,Y )|T1,0).

It follows immediately that ρ(X,Y ) = i ·Trace(R(X,Y )|T1,0), and the de Rham coho-
mology class [ρ] = 2π · c1(T1,0M) = 2π · c1(TM). �

In a local holomorphic coordinates {zk}, if we let G = det(hkl̄), then

∂G

∂zi
= G ·

∑
k,l

hkl̄ · ∂hkl̄
∂zi

= G ·
∑
k

Γkik.

This gives a local formula for the Ricci form:

ρ = i ·
∑
k

−
∂Γkik
∂z̄j

dzi ∧ dz̄j = −i∂∂̄ lnG.
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Example 3.8. Back to the example of Fubini-Study metric on CPn. We showed that
the holomorphic sectional curvature equals 4π. Then in the formula

Ric(X,Y )(p) =
1

2
(n+ 1)c(p)h(X,Y )(p), where n = dimCM ,

we have c(p) = 4π, which implies that c1(TCPn) = (n+ 1)[ωFS ]. Note that
∫
L ωFS =

1 for any complex line L ⊂ CPn, so under the Poincaré duality, [ωFS ] equals the
homology class of a hyperplane H ⊂ CPn. Hence

c1(TCPn) = (n+ 1) ·H.
Note that for n = 2, we obtain c1(TCP2) = 3 · PD(CP1) (cf. Example 3.2 in Part 2).

Calabi’s Conjecture: Let M be a compact complex manifold, h be a Kähler
metric with Kähler form ω. For any closed (1, 1)-form η which represents c1(TM),

there exists a unique Kähler metric h̃ with Kähler form ω̃, such that

• the Ricci form of h̃ equals 2πη,
• [ω̃] = [ω] ∈ H2

dR(M).

Calabi’s Conjecture was solved by S.T. Yau in 1977 (the uniqueness part due to Cal-
abi). Note that in the case of c1(TM) = 0, we can take η = 0, and Calabi’s Conjecture
implies that M admits a Kähler-Einstein metric with vanishing Ricci curvature.

Let M be a complex manifold. The canonical line bundle of M , denoted by KM , is
the determinant line bundle of the holomorphic cotangent bundle T ∗M = T 1,0M . Its
dual K∗M is called the anti-canonical line bundle. Note that c1(K∗M ) = c1(TM).

Definition 3.9. A complex line bundle E over a complex manifold M is called positive
(resp. negative) if c1(E) is represented by a positive (resp. negative) multiple of a
Kähler form on M .

An immediate corollary of Lemma 3.7 is

Corollary 3.10. If a complex manifold M (of dimension ≥ 2) admits a Kähler-
Einstein metric, then its anti-canonical line bundle K∗M must be either positive, or
zero (i.e., torsion), or negative. Correspondingly, the Ricci curvature is positive, zero,
or negative.

The question of the existence of Kähler-Einstein metrics is completely solved. In the
case of K∗M being negative or torsion, the necessary topological condition in Corollary
3.10 turns out to be also sufficient. The case where K∗M is negative is due to Aubin
and Yau (independently), and the case where K∗M is torsion is a consequence of Yau’s
solution of Calabi’s conjecture. Additional conditions are required for the case where
K∗M is positive, which was resolved by Chen-Donaldson-Sun and Tian.

Example 3.11. Let M be a compact complex surface. If K∗M is positive, zero, or
negative, then c1(TM)2[M ] ≥ 0, with “=” if and only if c1(TM) = 0 (i.e., torsion).
On the other hand, if we blow up M at one point, then one can easily check that the
number c1(TM)2[M ] decreases by 1. It follows then that after blowing up sufficiently
many points, M can not admit any Kähler-Einstein metric. For example, CP2 blown
up at more than 8 points does not admit any Kähler-Einstein metric.
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SupposeM is not minimal, i.e., there exists a holomorphic 2-sphere C with C2 = −1.
If M admits a Kähler-Einstein metric, then by the adjunction formula, c1(KM ) ·C =
−C2 − 2 = −1, which implies that the Ricci curvature of M must be positive.

Example 3.12. Here we discuss the classification of compact complex surfaces M
with b1(M) = 0, b2(M) = 1, where the existence of Kähler-Einstein metrics plays a
crucial role.

First, c1(TM)2[M ] = 2χ(M)+3σ(M) = 2(2+b2)+3(b2−2b−2 ) = 9−6b−2 > 0. By the
complex surface theory, c1(TM)2[M ] > 0 implies that M is algebraic, in particular,
M has a Kähler metric with Kähler form ω. Furthermore, [ω]2 > 0 implies that
b+2 = b2 = 1, so that c1(TM)2[M ] = 9.

Secondly, since b2 = 1, we have c1(K∗M ) = λ[ω] for some λ 6= 0. When λ > 0, the
complex surface theory implies that M is biholomorphic to CP2. For the case of λ < 0,
M admits a Kähler-Einstein metric with negative Ricci curvature. Now observing that
c1(TM)2[M ] = 3c2(TM)[M ], as c2(TM) = χ(TM), so that c2(TM)[M ] = χ(M) = 3.
On the other hand, by a theorem of S.S. Chern, if a complex surface M admits a
Kähler-Einstein metric, then c1(TM)2[M ] ≤ 3c2(TM)[M ], with “ = ” if and only if
the Kähler-Einstein metric has a constant holomorphic sectional curvature. It follows
immediately that in the case of c1(KM ) = λ[ω] where λ < 0, M has a metric of
negative constant holomorphic sectional curvature, hence its universal cover is the
open unit ball in C2. In particular, π1(M) is infinite. Such a complex surface M is
called a fake CP2; it’s known that there are exactly 100 such complex surfaces (50 as
smooth 4-manifolds). See [1].

A side note: Let (M,ω) be a symplectic 4-manifold with b1(M) = 0, b2(M) = 1.
Analogously, one has c1(K∗M ) = λ[ω] for some λ 6= 0. When λ > 0, a deep theorem
of Taubes says that M must be diffeomorphic to CP2. The case where λ < 0 remains
widely open; we know nothing except when M is a complex surface. In particular, it
is not known if there is a simply connected M with c1(K∗M ) = λ[ω] where λ < 0. Such
a M is homeomorphic to CP2 but carries an exotic smooth structure. We know it can
not be a complex surface, whose only proof is through the existence of Kähler-Einstein
metric, which can not be extended to the symplectic setting in any obvious way.

4. Connections in Hermitian vector bundles

Let E be a holomorphic vector bundle over a complex manifold M . We can always
endow E with a Hermitian metric, that is, for any p ∈M , there is a Hermitian inner
product hp on the fiber Ep such that hp depends on p smoothly. It turns out that there
is a unique connection in E (i.e., a covariant derivative on Γ(E)) which is compatible
to both structures on E. Such a connection is called the Hermitian connection (or
Chern connection) of the Hermitian vector bundle (E, h).

Theorem 4.1. Let E be a holomorphic vector bundle over a complex manifold M ,
and let h be any Hermitian metric on E. There is a unique covariant derivative ∇ on
Γ(E) which obeys the following conditions:

(1) If we decompose ∇ = ∇1,0 +∇0,1 where ∇0,1 is the (0, 1)-component of ∇, then
∇0,1 = ∂̄ in any holomorphic trivialization of E.
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(2) The covariant derivative is unitary, i.e., for any vector field X, we have

Xh(η, ξ) = h(∇Xη, ξ) + h(η,∇Xξ).
Moreover, the curvature Ω of ∇, as a 2-form valued endomorphism of E, is of type
(1, 1), i.e., Ω has no (2, 0) and (0, 2) components.

Proof. We first show that there is a covariant derivative ∇ obeying (1). To this end,
we fix an open cover {Uα} of M such that E admits a holomorphic trivialization Φα

over Uα. Let {fα} be a smooth partition of unity subordinate to {Uα}. Let ∇α be the
covariant derivative over Uα, such that with respect to the holomorphic trivialization
Φα, ∇α = d. Then we define ∇ξ =

∑
α∇α(fαξ).

Next we show that there is a unique ∇ which obeys both (1) and (2). First, we ob-
serve that for any covariant derivative which obeys (1), its (0, 1)-component is uniquely
determined. Let ∂̄+α be the uniquely determined (0, 1)-component in a local unitary
trivialization of E. Then we define ∇ so that in the same local unitary trivialization,
∇ = d + A where A = α − ᾱT . Note that ∇0,1 = ∂̄ + α so that it obeys (1). On the
other hand, ĀT = −A so ∇ also obeys (2). �

As an example for illustration, suppose E is a holomorphic line bundle. Let s
be a local nonzero holomorphic section, let |s| be the norm of s with respect to the

Hermitian metric h. We pick any covariant derivative ∇̂ which obeys (1) in Theorem

4.1. Then ∇̂s = a · s for some complex valued (1, 0)-form a. Now consider the unitary
frame u := |s|−1 · s. Then

∇̂u = (−d|s|
|s|

+ a) · u.

It follows easily that the (0, 1)-component of ∇̂ is − ∂̄|s|
|s| . Consequently, for the Hermit-

ian connection ∇, we have ∇u = 1
|s|(∂|s| − ∂̄|s|)u = ((∂ − ∂̄) ln |s|) · u. The curvature

Ω of ∇ is given by

Ω = d(∂ − ∂̄) ln |s| = −2∂∂̄ ln |s| = −∂∂̄ ln |s|2.
It is easy to check if we choose a different holomorphic section s′, Ω remains the same.

Observation: The Fubini-Study form ωFS is − i
2π times the curvature of the Her-

mitian connection in the tautological line bundle over CPn for a natural Hermitian
metric.

Finally, we remark that when M is a Kähler manifold and E is its holomorphic tan-
gent bundle (given with the Kähler metric), the Hermitian connection of E is simply
the Levi-Civita connection. With this understood, note that the Levi-Civita connec-
tion induces a connection on the determinant line bundle of E, namely K∗M . This
induced connection is easily seen the Hermitian connection. With this understood,
suppose {zk} is a local holomorphic coordinate system. Then ∂

∂z1 ∧ · · · ∧ ∂
∂zn is a local

nonzero holomorphic section of K∗M , with its norm given by G1/2 =
√

det(hkl̄). Thus
the curvature of the Hermitian connection on K∗M is Ω = −∂∂̄ lnG by the formula in
the previous paragraph. On the other hand, as the curvature of the induced connec-
tion of Levi-Civita, Ω is equal to Trace(R|T1,0M ), which is −iρ where ρ is the Ricci

form. With ρ = −i∂∂̄ lnG, we see Ω = −∂∂̄ lnG as well.
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We end with the following fact.

Theorem 4.2. A complex vector bundle E over a complex manifold M admits a holo-
morphic vector bundle structure if and only if E admits a connection whose curvature
has no (0, 2)-component.

A proof can be found in [6] which is based on the Newlander-Nirenberg theorem,
or in [3] which is “elementary”, based on the idea of “gauge fixing”.
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