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1. The Levi-Civita connection and geodesics

Let M be a smooth n-dimensional manifold (without loss of generality, assume M
is connected), and g be a Riemannian metric on M . Let P be the frame bundle of the
tangent bundle TM . A fundamental fact in Riemannian geometry is that the metric
g determines a unique connection in P , called the Levi-Civita connection. We shall
describe the corresponding covariant derivative on Γ(TM) in terms of the metric g.

To begin with, let ∇ be any covariant derivative on Γ(TM). We define the torsion
of ∇, denoted by T∇, which is a 2-form valued vector field on M , by the following
formula: for any vector fields X,Y on M ,

T∇(X,Y ) = ∇XY −∇YX − [X,Y ].

Theorem 1.1. Let (M, g) be any Riemannian manifold. There exists a unique co-
variant derivative ∇ on Γ(TM), such that

(1) For any X,Y, Z, Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ).
(2) For any X,Y , T∇(X,Y ) = 0.

Proof. Using (1) and (2), one can easily derive the following expression

g(∇XY,Z) =
1

2
(Xg(Y,Z)+Y g(X,Z)−Zg(X,Y )+g(X, [Z, Y ])+g(Y, [Z,X])+g(Z, [X,Y ])),

which uniquely determines ∇. �

Now we pick a local coordinate system (U, {xi}) on M , and denote by ∂i := ∂
∂xi

the

local coordinate frame on U . We introduce smooth functions Γkij on U by

∇∂i∂j =
n∑
k=1

Γkij∂k.

1
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Furthermore, introduce n×n matrix functions (gij) and (gij) := (gij)
−1, where gij :=

g(∂i, ∂j). Then we can solve for Γkij :

Γkij =
1

2

n∑
l=1

gkl(∂igjl + ∂jgil − ∂lgij).

The functions Γkij are called the Christoffel symbols.

On the other hand, if {Ei} is a local orthonormal frame and we introduce a n× n
matrix of 1-forms (ωji ) by the equation ∇Ei =

∑n
j=1Ej ⊗ ω

j
i , then it is easy to check

that (ωji ) = −(ωji )
T . The 1-forms ωji are called connection 1-forms associated to the

local orthonormal frame {Ei}. Now if {φi} denotes the dual coframe of {Ei}, then

ωji can be determined through the equations dφj =
∑

i φ
i ∧ ωji . (Note that d is the

anti-symmetrization of ∇φj = −ωji ⊗ φi.)
The Levi-Civita connection determines a unique covariant derivative, continued to

be denoted by ∇, on all the tensor fields, differential forms on M . Note that in this
light, (1) in Theorem 1.1 may be stated as the tensor field g being parallel with respect
to the Levi-Civita connection, i.e., ∇g = 0.

Exercise: Let N be a submanifold of M , with the induced Riemannian metric.
Let pr : TpM → TpN , ∀p ∈ N , be the orthogonal projection with respect to the
Riemannian metric on M . Denote by ∇M , ∇N the covariant derivatives corresponding
to the Levi-Civita connections of M and N respectively. Prove that for any vector
fields X,Y on N , ∇NXY = pr(∇MX Y ).

Exercise: Let (M, g) be a Riemannian manifold. Show that the Levi-Civita con-
nection is flat if and only if g is locally isometric to the Euclidean metric, i.e., every
point in M is contained in a local chart (U, {xi}) such that g =

∑
i(dx

i)2.

Geodesics: Let x(t) be a smooth curve in M . Let ẋ(t) be the tangent vector of
x(t). The curve x(t) is called a geodesic if ẋ(t) is parallel along x(t), i.e., ∇ẋ(t)ẋ(t) = 0.

In a local coordinate system (U, {xi}), suppose the smooth curve x(t) is given by

x(t) = (x1(t), x2(t), · · · , xn(t)).

Then the geodesic equation ∇ẋ(t)ẋ(t) = 0 takes the form of a 2nd order ODE

ẍk(t) +
n∑

i,j=1

ẋi(t)ẋj(t)Γkij(x(t)) = 0, k = 1, 2, · · · , n.

Exercise: Let M = {(x, y) ∈ R2|y > 0} be the upper-half plane, given with the
Riemannian metric g = 1

y2
(dx2 + dy2). Show that the vertical lines x = x0 and the

semi-circles (x − x0)2 + y2 = R2, y > 0, with a suitable parametrization, satisfy the
geodesic equation.

Exercise: Let G be a Lie group. For any given inner product g0 on the tangent
space TeG, we can define a left-invariant Riemannian metric g on G as follows: for
any left-invariant vector fields X,Y , we set g(X,Y ) := g0(Xe, Ye).
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• Show that g is right-invariant, i.e., g((Ra)∗X, (Ra)∗Y ) = g(X,Y ) for all a ∈
G, if and only if the inner product g0 on TeG is invariant under the adjoint
representation Ad : G→ GL(Lie(G)). Such a metric is called bi-invariant.
• Let g be a bi-invariant metric on a Lie group G. Show that the Levi-Civita

connection obeys ∇XY = 1
2 [X,Y ] for any left-invariant vector fields X,Y .

Note that in particular, ∇XX = 0 for any left-invariant vector field X, which
implies that the 1-parameter subgroups exp(tX) are geodesics in (G, g).

The exponential map: By the local existence and uniqueness theorem for 2nd
order ODE, for any p ∈M and any tangent vector X ∈ TpM , there is a unique geodesic
x(t), defined for −ε < t < ε for some ε > 0, such that x(0) = p, ẋ(0) = X. We observe
that for any fixed s > 0, the curve y(t) := x(st), for −ε/s < t < ε/s, is also a geodesic,
satisfying y(0) = p and ẏ(0) = sX. It follows easily that for any p ∈ M , there exists
a εp > 0 such that for any tangent vector X ∈ TpM satisfying g(X,X) < ε2p, the
unique geodesic x(t) with x(0) = p, ẋ(0) = X is defined for −1 ≤ t ≤ 1. With this
understood, we set B(εp) = {X ∈ TpM |g(X,X) < ε2p}, and define expp : B(εp) → M
by sending X to x(1), where x(t) is the unique geodesic satisfying x(0) = p, ẋ(0) = X.
the map expp is called the exponential map at p. One can show that by choosing
εp > 0 sufficiently small, expp : B(εp)→M is a diffeomorphism onto its image.

Example 1.2. Here is an application of exponential map in differential topology.
SupposeG is a compact Lie group acting smoothly onM . Then we can always equipM
with a G-invariant Riemannian metric. Now for any p ∈M , let Gp = {g ∈ G|g ·p = p}
be the isotropy subgroup at p. Then there is an induced linear representation of Gp
on the tangent space TpM . With this understood, note that expp : B(εp) → M is
G-equivariant because the Riemannian metric is G-invariant. This shows that the
G-action on M is locally smoothly conjugate to a linear action.

Normal neighborhoods: For any fixed orthonormal basis E1, E2, · · · , En of TpM ,
we define E : TpM → Rn by E :

∑n
i=1 viEi 7→ (vi). On the other hand, let U be the

image of expp : B(εp) → M . Then (U, φ) is a local coordinate chart centered at p,
where φ = E ◦ (expp)

−1 : U → Rn. It is called a normal neighborhood and has the
following properties.

Theorem 1.3. The normal coordinate chart (U, φ) has the following properties:

• For any X =
∑n

i=1X
iEi ∈ B(εp), let x(t) be the geodesic satisfying x(0) = p,

ẋ(0) = X. Then φ(x(t)) = (tX1, tX2, · · · , tXn).
• The metric is Euclidean at p, i.e., let gij = g(∂i, ∂j), then gij(p) = δij.

• The Christoffel symbols vanish at p, i.e., Γkij(p) = 0, for all i, j, k.

Exercise: Prove that for any p ∈ M , there exists a local orthonormal frame {Ei}
near p, such that ∇Ei(p) = 0 for each i; equivalently, the connection 1-forms ωji
vanishes at p, i.e., ωji (p) for all i, j.

Geodesics as length-minimizing curves: Let (M, g) be a Riemannian manifold.
Let x(t), a ≤ t ≤ b, be a piecewise smooth curve in M . We can define the length of
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x(t) to be

L(x(t)) :=

∫ b

a
g(ẋ(t), ẋ(t))1/2dt.

Furthermore, we can define a distance function d on M , where for any p, q ∈ M , the
distance d(p, q) is defined to be the infimum of the length of all piecewise smooth
curves connecting p and q. In this way, M becomes a metric space, whose topology
as a metric space can be shown to be the same as the original topology.

Let x(t), a ≤ t ≤ b, be a piecewise smooth curve, where it may have conners at ai.
We set ∆iẋ := limt→ai,t>ai ẋ(t) − limt→ai,t<ai ẋ(t) to be the difference of the tangent
vectors at ai. Furthermore, we let x(s, t), −ε < s < ε, a ≤ t ≤ b, be a variation of x(t),
where x(0, t) = x(t), x(s, a) = x(a), x(s, b) = x(b) for all s. Set V (t) = ∂

∂sx(s, t)|s=0.

Lemma 1.4. Assume g(ẋ(t), ẋ(t)) = 1 for a ≤ t ≤ b. Then

d

ds
L(x(s, t))|s=0 = −

∫ b

a
g(V (t),∇ẋ(t)ẋ(t))dt−

∑
i

g(V (ai),∆iẋ).

Corollary 1.5. If a piecewise smooth curve x(t) is length-minimizing, then it must
be smooth and is a geodesic.

Corollary 1.5 raises a natural question: for any p, q ∈M , does there exist a geodesic
x(t) connecting p and q, such that d(p, q) = L(x(t))? It turns out that, locally, the
answer to the question is always positive.

Theorem 1.6. For any x ∈ M , there is a normal neighborhood of x, expx(B(ε))
for some small ε > 0, such that for any points p, q ∈ expx(B(ε)), there is an unique
geodesic x(t) ⊂ expx(B(ε)) connecting p, q, with d(p, q) = L(x(t)).

We remark that such a neighborhood expx(B(ε)) is called geodesically convex. The
proof of Theorem 1.6 consists of two steps.

Step 1: Let (U, φ = {xi}) be a normal coordinate chart centered at p ∈ M . Then
any q ∈ U is connected to p by a “radial” geodesic of the form (tX1, tX2, · · · , tXn).

Introducing function r(q) = (
∑n

i=1 x
i(q)2)1/2, where φ(q) = (x1(q), x2(q), · · · , xn(q)),

and vector field on U \ {p}, ∂r := r(q)−1
∑n

i=1 x
i(q)∂i. Then (1) ∂r has unit length

and is tangent to the “radial” geodesics, (2) ∂r is the gradient vector of the function
r with respect to the Riemannian metric g. It follows that d(p, q) = r(q), which is the
length of the “radial” geodesic connecting p and q. Moreover, one can show that the
“radial” geodesic is the unique geodesic in U which connects p and q.

Step 2: For any p ∈ M , the map exp : TM → M × M , where exp(q,X) =
(q, expqX), is defined for q ∈ U , a small neighborhood of p, and X ∈ TqM with length
less than some small δ > 0. Moreover, choosing U , δ sufficiently small, exp is actually
a diffeomorphism onto its image, to be denoted by V . Now choose a sufficiently
small ε > 0, we have expp(B(ε)) ⊂ U and expp(B(ε)) × expp(B(ε)) ⊂ V . It follows
easily that for any q1, q2 ∈ expp(B(ε)), there is a geodesic x(t) connecting q1, q2 such
that d(q1, q2) = L(x(t)) (cf. Step 1). Prove that when ε > 0 is sufficiently small,
x(t) ⊂ expp(B(ε)) for all t. (Hint: r(x(t)) is a convex function when ε > 0 is small.)
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Completeness: A Riemannian manifold (M, g) is called geodesically complete, if
every maximally defined geodesic is defined for all t ∈ R. Recall that a metric space
is complete if every Cauchy sequence contains a convergent subsequence.

Theorem 1.7. (Hopf-Rinow) A Riemannian manifold (M, g) is geodesically complete
if and only if it is complete as a metric space. Suppose M is complete and connected.
Then for any p, q ∈ M , there exists a geodesic x(t) connecting p and q, such that
d(p, q) = L(x(t)).

A proof can be found in Lee [4].

2. The Riemann curvature tensor

Let (M, g) be a Riemannian manifold, and let ∇ denote its Levi-Civita connection.
The curvature, which is a 2-form valued endomorphism of TM , is called the Riemann
curvature endomorphism, and is denoted by R instead of Ω. In other words, for vector
fields X,Y, Z on M ,

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

In local coordinates (U, {xi}), if we write R(∂i, ∂j)∂k :=
∑n

l=1R
l
ijk∂l, then an ex-

pression of Rlijk in terms of the Christoffel symbols Γkij can be easily derived:

Rlijk = ∂iΓ
l
jk − ∂jΓlik +

n∑
t=1

(ΓlitΓ
t
jk − ΓljtΓ

t
ik).

On the other hand, if {Ei} is a local orthonormal frame, with {φi} being the dual

coframe and ωji being the corresponding connection 1-forms, we introduce Rjkli by the

equation R(Ek, El)Ei =
∑n

j=1R
j
kliEj , and set Ωj

i := 1
2

∑n
k,l=1R

j
kliφ

k ∧ φl. Then Ωj
i

can be expressed in terms of dωji and (ωji ).

Exercise: Prove that Ωj
i = dωji −

∑n
k=1 ω

k
i ∧ ω

j
k.

Riemann curvature tensor: We define a covariant 4-tensor field R, called the
Riemann curvature tensor: for any vector fields X,Y, Z,W ,

R(X,Y, Z,W ) := g(R(X,Y )Z,W ).

Lemma 2.1. (Algebraic properties of Riemann curvature tensor)

(a) R(X,Y, Z,W ) = −R(Y,X,Z,W );
(b) R(X,Y, Z,W ) = −R(X,Y,W,Z);
(c) R(X,Y, Z,W ) +R(Y,Z,X,W ) +R(Z,X, Y,W ) = 0;
(d) R(X,Y, Z,W ) = R(Z,W,X, Y ).

Proof. (a) follows from definition, (b) follows from ∇g = 0, (c) follows from T∇ = 0
and the Jacobi identity for Lie bracket, (d) follows from (a), (b), (c) combined. �

Sectional curvature: Let Π ⊂ TpM be any 2-dimensional subspace. We define
the sectional curvature

K(Π) :=
R(X,Y, Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
, where X,Y is any basis of Π.
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One can easily check that K(Π) is well-defined. Moreover, if we scale the Riemannian
metric g by a constant λ > 0, to a metric λg, then the sectional curvatures change
as follows: Kλg(Π) = 1

λKg(Π). When M is 2-dimensional, the sectional curvature is
simply the classical Gauss curvature.

Exercise: Let (Σ, g) be a compact closed, connected, oriented 2-dimensional Rie-
mannian manifold. Prove that the Euler class of the tangent bundle TΣ, χ(TΣ), is
represented by 1

2πKdV olg, where K is the Gauss curvature and dV olg is the volume
form of (Σ, g). Then note that the formula χ(Σ) = χ(TΣ)[Σ] gives the so-called
Gauss-Bonnet Theorem

χ(Σ) =
1

2π

∫
Σ
KdV olg.

Lemma 2.2. The sectional curvature K completely determines the Riemann curvature
tensor R. (cf. Lemma 8.9, Lee [4]).

Theorem 2.3. Let (M, g) be a simply connected, n-dimensional complete Riemannian
manifold with constant sectional curvature K ≡ 1, 0 or −1. Then (M, g) is isometric
to the following models (called space forms) respectively.

• K ≡ 1: the unit sphere Sn in the standard (Rn+1, g0) with induced metric.
• K ≡ 0: the Euclidean space (Rn, g0) with standard metric g0.
• K ≡ −1: Poincaré half space Rn+ = {(x1, x2, · · · , xn−1, y)|y > 0}, with metric

g0 =
1

y2
((dx1)2 + (dx2)2 + · · ·+ (dxn−1)2 + dy2)

Exercise: In the Poincaré half space model, consider the following orthonormal

coframe φ1 := 1
ydx

1, · · · , φn−1 := 1
ydx

n−1, φn := 1
ydy. Show that ωji = 0 for any

i, j < n, and ωni = φi for any i < n. Then prove that Ωj
i = φi ∧ φj , from which one

can derive that the sectional curvature K ≡ −1.

Exercise: Let G be a Lie group, and let g be a bi-invariant metric on G. Show
that the Riemann curvature endomorphism is give by R(X,Y )Z = 1

4 [Z, [X,Y ]], where
X,Y, Z are left-invariant vector fields on G. Use this formula in the example of G =
SO(3), where g is the bi-invariant metric given by the Ad-invariant inner product g0

on TeG, where
g0(A,B) := tr(ABT ), for any A,B ∈ TeG.

Show that SO(3) with this bi-invariant metric has constant sectional curvature.

Exercise: Let π : P → M be a principal G-bundle, and let g̃ be a G-invariant
Riemannian metric on P . Then for any u ∈ P , the tangent space TuP admits an
orthogonal decomposition as a sum of Gu and Qu (recall that Gu denotes the subspace
of TuP consisting of vectors tangent to the orbit at u). For any vector field X on M ,

there is a unique vector field X̃ ∈ Qu on P , the horizontal lift of X, which is G-
invariant. We can define a Riemannian metric g on M by g(X,Y ) := g̃(X̃, Ỹ ). Let

∇̃, ∇ be the Levi-Civita connections of (P, g̃) and (M, g) respectively. Prove that for
any vector fields X,Y on M ,

∇̃X̃ Ỹ = ∇̃XY +
1

2
[X̃, Ỹ ]V ,
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where [X̃, Ỹ ]V is the vertical component of [X̃, Ỹ ] in Gu. Moreover, for any pair of

orthonormal vector fields X,Y on M , prove that the sectional curvatures K, K̃ of the
2-planes spanned by X,Y and X̃, Ỹ are related by

K(X,Y ) = K̃(X̃, Ỹ ) +
3

4
g̃([X̃, Ỹ ]V , [X̃, Ỹ ]V ).

Ricci curvature and scalar curvature: We define a covariant 2-tensor Ric,
called the Ricci tensor, as follows: for any vector X,Y ∈ TpM ,

Ric(X,Y ) = Trace(Z 7→ R(Z,X)Y ), where Z ∈ TpM,

It is clear that if {Ei} is an orthonormal basis of TpM , thenRic(X,Y ) =
∑

iR(Ei, X, Y,Ei).
It follows immediately that Ricci tensor is symmetric, as

Ric(X,Y ) =
∑
i

R(Ei, X, Y,Ei) =
∑
i

R(Y,Ei, Ei, X) =
∑
i

R(Ei, Y,X,Ei) = Ric(Y,X).

For any p ∈ M , and any v ∈ TpM with unit length, we define the Ricci curvature
at p in the direction of v to be Ricp(v) := Ric(v, v). Finally, we define the scalar
curvature S(p) := trgRic, the trace of Ric with respect to the metric g. (Namely, if
we set T : TpM → TpM by g(T (X), Y ) = Ric(X,Y ), then S(p) = trT .) It follows
easily that if {Ei} is an orthonormal basis of TpM , then S(p) =

∑
iRicp(Ei).

Exercise: Verify that for a 2-dimensional Riemannian manifold, Ricp(v) = K(p)
the Gauss curvature for any unit tangent vector v ∈ TpM , and S(p) = 2K(p).

Exercise: Verify that an n-dimensional Riemannian manifold with constant sec-
tional curvature K ≡ K0 has constant Ricci curvature and scalar curvature as well:
Ricp(v) = (n− 1)K0 and S(p) = n(n− 1)K0.

Exercise: Let (M, g) be a 3-dimensional Riemannian manifold with constant Ricci
curvature. Show that (M, g) must have constant sectional curvature as well.

In dimensions greater than 3, there are examples of Riemannian manifolds which
have constant Ricci curvature but non-constant sectional curvature.

A Riemannian manifold (M, g) is called homogeneous and isotropic if the following
conditions are satisfied:

• There is a transitive Lie group action of G on M by isometries.
• For any p ∈ M , the isotropy subgroup Gp acts on the unit sphere of TpM

transitively.

It is clear that a homogeneous and isotropic Riemannian manifold has constant Ricci
curvature.

Example 2.4. Consider S2n+1 given with the induced metric, which has constant
sectional curvature K = 1. The S1-action on S2n+1 by complex multiplication is by
isometries, thus there is a natural induced metric g on the quotient space CPn. Then
(CPn, g) is homogeneous and isotropic, thus has constant Ricci curvature. But clearly
it does not have constant sectional curvature when n > 1.
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Exercise: Let M = S2×S2 be given with the product metric, where each S2-factor
is given with the metric with constant Gauss curvature K = 1. Prove that M has
constant Ricci curvature but non-constant sectional curvature.

Einstein metrics: A Riemannian metric g is called Einstein if Ric = λg for some
smooth function λ. (This condition is equivalent to the condition that Ricp(v) depends
only on p, not on v ∈ TpM .) It is clear that any 2-dimensional Riemannian metric is
Einstein, and any constant Ricci curvature metric is Einstein.

Theorem 2.5. For n ≥ 3, an n-dimensional Einstein metric must have constant Ricci
curvature.

Proof. First of all, if Ric = λg for some function λ, then it is easy to see that λ = 1
nS

where S is the scalar curvature. Hence Ric = 1
nS · g. Taking the covariant derivative,

and noting ∇g = 0, we obtain as covariant 3-tensors

∇Ric =
1

n
∇S · g.

Now let {Ei} be an orthonormal basis of TpM , and X ∈ TpM be any vector. Then∑
i

∇EiRic(X,Ei) =
∑
i

∇Ric(X,Ei, Ei) =
∑
i

1

n
∇EiS · g(X,Ei) =

1

n
∇XS.

On the other hand, we claim that
∑

i∇EiRic(X,Ei) = 1
2∇XS, which shows that when

n ≥ 3, ∇XS = 0 for any X. Hence λ = 1
nS is constant.

In order to derive
∑

i∇EiRic(X,Ei) = 1
2∇XS, we need the following so-called

Bianchi identity.

Lemma 2.6. (Bianchi identity)
The covariant 5-tensor field ∇R obeys the following constraint: for any X,Y, Z,W, V ,

∇VR(X,Y, Z,W ) +∇ZR(X,Y,W, V ) +∇WR(X,Y, V, Z) = 0.

Proof. We verify the identity pointwise. Fix p ∈ M , we choose a normal coordinate
chart (U, {xi}) centered at p, so that Γkij(p) = 0. In other words, ∇∂i∂j(p) = 0 for any
i, j. With this in mind, we choose X,Y, Z,W, V to be of the form ∂i. Then

∇VR(X,Y, Z,W ) = V R(X,Y, Z,W )−R(∇VX,Y, Z,W )−R(X,∇V Y, Z,W )−· · · = V R(X,Y, Z,W ).

On the other hand, V R(X,Y, Z,W ) = V R(Z,W,X, Y ) = V g(R(Z,W )X,Y ), so that

∇VR(X,Y, Z,W ) = V g(R(Z,W )X,Y ) = g(∇V∇Z∇WX −∇V∇W∇ZX,Y ).

Adding these up, we verify the Bianchi identity. �

Now back to the proof of the theorem, in the Bianchi identity we let X = W = Ei,
Y = Z = Ej , and sum up over i, j = 1, 2, · · · , n. After some manipulations, we obtain

∇V S −
∑
j

∇EjRic(V,Ej)−
∑
i

∇EiRic(V,Ei) = 0,

which gives our claim
∑

i∇EiRic(X,Ei) = 1
2∇XS. The proof of Theorem 2.5 is

complete. �
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Which manifolds (for n ≥ 4) admit Einstein metrics (i.e., constant Ricci curvature
metrics) is still a very interesting open question, with ongoing research. On the other
hand, it is known that every compact manifold admits a metric of constant scalar
curvature – this is the so-called Yamabe problem, eventually solved by Richard Schoen.

Killing vector fields: A vector field X on (M, g) is called a Killing vector field if
the (local) flow φt generated by X preserves the metric g, i.e., φt are (local) isometries.

For any vector field X, we set AX := LX −∇X , where LX is the Lie derivative and
∇ is the Levi-Civita connection. Note that AXf = 0 for any f ∈ C∞(M), so that for
any tensor field η, AX(fη) = fAXη. Furthermore, we note that for any vector field
Y , AXY = −∇YX, so AX ≡ 0 if and only if X is parallel, i.e. ∇X ≡ 0. Finally, when
X is a Killing vector field, we have LXg = 0, which implies that AXg = 0. It follows
easily that in this case, AX as a smooth section of End(TM) is skew-symmetric with
respect to g, i.e., for any vector fields Y, Z,

g(AXY,Z) = −g(Y,AXZ).

Lemma 2.7. Let X be a Killing vector field and Y be any vector field. Then

div(AXY ) = −Ric(X,Y )− tr(AXAY ).

Proof. Let φt be the flow generated by X. Then for any vector fields V,Z, we have

(φt)∗∇V Z = ∇(φt)∗V (φt)∗Z.

Differentiating with respect to t, we obtain LX(∇V Z) = ∇LXV Z + ∇V LXZ, which
can be written as LX ◦ ∇V −∇V ◦ LX = ∇[X,V ]. With this understood, we have

R(X,V )Y = (∇X ◦ ∇V −∇V ◦ ∇X −∇[X,V ])Y = −(AX ◦ ∇V −∇V ◦AX)Y.

Taking trace over V , we obtain

−Ric(X,Y ) = tr(AXAY ) + div(AXY ).

�

Now in the equation, we take Y = X, we obtain

div(AXX) = −Ric(X,X)− tr(AXAX),

where we note that since AX is skew-symmetric, tr(AXAX) ≤ 0 with “=” if and only
if AX = 0. With this understood, we have the following corollary.

Theorem 2.8. Suppose (M, g) is a compact Riemannian manifold with negative (resp.
vanishing) Ricci curvature. Then every Killing vector field X ≡ 0 (resp. is parallel).

Theorem 2.8 has the following consequences: it is known that the group of isometries
of a Riemannian manifold is a Lie group, with its Lie algebra being the space of
Killing vector fields. Moreover, when the manifold is compact, the isometry group is
also compact (cf. [5]). It follows immediately that the isometry group of a compact
Riemannian manifold with negative Ricci curvature must be finite. Furthermore, the
identity component of the isometry group of a compact Riemannian manifold with
vanishing Ricci curvature must be a compact torus.



10 WEIMIN CHEN

3. Geometrization in low dimensions

Broadly speaking, geometrization asks for a given manifold whether there exists
a metric of certain specific geometric properties, e.g., of certain constant curvatures.
Geometrization that has the most significant implications occurs in low dimensions,
i.e., in dimensions 2 and 3.

Geometrization in dimension 2: Here the basic question asks that for a given
compact closed, oriented 2-dimensional manifold, does there exist a metric of constant
Gauss curvature? Note that the Gauss-Bonnet Theorem already gives some interesting
topological constraints regarding the sign of the constant Gauss curvature, i.e., if the
sign is positive, the surface has to be a 2-sphere; if the Gauss curvature is zero, the
surface has to be a torus, and finally if the sign is negative, the surface has to be of
genus greater than 1.

Theorem 3.1. (Uniformization of 2-dimensional metrics)
Let (M, g) be a compact closed, oriented 2-dimensional Riemannian manifold. There

exists a smooth function u on M such that the new metric g̃ := e2ug has a constant
Gauss curvature.

The change of metrics from g to g̃ := e2ug is called a conformal change. It has
the following implications: recall that M is oriented, so for each p ∈ M , we pick
a positively oriented orthonormal basis e1, e2 of TpM , and define an endomorphism
Jp : TpM → TpM by Jp(e1) = e2, Jp(e2) = −e1. One can check that Jp is independent
of the choice of e1, e2, and together determines a smooth section J of End(TM),
satisfying J2 = −Id. Such a J is called an almost complex structure on M , and by its
construction, it is said to be compatible with the metric g. It is known that for any
such J , there always exists a holomorphic coordinate z = x+ iy (only locally defined)
such that J(∂x) = ∂y and J(∂y) = −∂x, making M a compact Riemann surface. Now
note that a conformal change of metrics do not change the almost complex structure
J . Hence we arrived at the following statement:

Let Σ be a compact Riemann surface. There exists a metric on Σ, compatible with
the holomorphic structure on Σ, which has a constant Gauss curvature.

For a proof of Theorem 3.1, let us analyze how the Gauss curvature changes under
a conformal change of metrics. Let g̃ = e2ug, and let K̃,K be the Gauss curvatures of
g̃, g respectively. We pick a local orthonormal frame {E1, E2} for (M, g), with the dual

coframe denoted by {φ1, φ2}. Let ωji , Ωj
i be the corresponding connection 1-forms, and

the curvature 2-forms. Then dφj =
∑

i φ
i ∧ ωji , and Ωj

i = dωji = −Kφi ∧ φj .
With this understood, we set φ̃i := euφi. Then {φ̃1, φ̃2} is a local orthonormal

coframe with respect to the metric g̃. Let ω̃ji , Ω̃j
i be the corresponding connection

1-forms, and the curvature 2-forms. Then an easy calculation gives

ω̃ji = ∇Eiu · φj −∇Eju · φi + ωji ,

and

dω̃ji = (
2∑

k=1

∇Ek
∇Ek

u) · φi ∧ φj + (
2∑

k=1

∇Ek
u · φk) ∧ ωji + dωji .
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Now for a pointwise calculation, we may assume ωji = 0, while with this assumption, we

note that the expression
∑2

k=1∇Ek
∇Ek

u is nothing but the negative of the Laplacian
∆u of the function u (see Part 5: Hodge theory for more details). It follows easily
that the function u obeys the following PDE:

∆u+K − e2uK̃ = 0.

It turns out that this equation always has a solution on a compact 2-dimensional
manifold M . See [1].

Geometrization in dimension 3: Geometrization has played an essential role
in the topological classification of 3-dimensional manifolds. We give a brief account
below. (For simplicity, we only consider the orientable case.)

Let M be a compact closed, orientable 3-dimensional smooth manifold. (In dimen-
sion 3, the topological, smooth, and piecewise linear categories are all equivalent.)
Then by a theorem of Kneser and Milnor, M can be decomposed into a finite con-
nected sum of M1,M2, · · · ,Mk, where the manifolds Mi are unique up to order. Here
the connected sum decomposition is called prime, as none of the Mi’s can be further
decomposed into a nontrivial connected sum. In the orientable case, it is known that
each Mi is either S1 × S2, or Mi is irreducible, meaning that any embedded 2-sphere
in it bounds a 3-ball. In particular, π2(Mi) = 0 if Mi is irreducible. Note that from
the fundamental group point of view, π1(M) is a free product of π1(Mi)’s.

It is clear then that our understanding of the classification of 3-manifolds hinges on
the special case of irreducible 3-manifolds. In this regard, the next crucial piece is the
so-called JSJ decomposition, named after Jaco, Shalen, and Johannson.

Let M be an irreducible 3-manifold. Then there exists a maximal set (maybe empty)
of disjoint, embedded tori {Si} in M such that each Si is essential in the sense that
π1(Si) → π1(M) is injective, and each Si is canonical in the sense that it can be
isotopic off any embedded torus in M . This set of tori {Si} decomposes M into pieces
M1,M2, · · · ,Mn, where each Mk is a 3-manifold with boundary. Maximality of {Si}
means that we can not further decompose each Mk nontrivially in the sense that any
embedded torus in Mk must bound a product [0, 1]× T 2 with a boundary component
of Mk. This decomposition is unique up to isotopy of Si in M , and it is the so-called
JSJ decomposition of M . Note that each Si corresponds to a subgroup Z⊕Z of π1(M)
as π1(Si)→ π1(M) is injective.

So for the classification of 3-manifolds, it remains to understand the pieces in a
JSJ decomposition. This is where the Thurston’s Geometrization Conjecture (now a
theorem) comes into play. It claims that each piece in a JSJ decomposition must
possess a certain geometric structure, which we will explain below.

A geometry (in dimension 3) is a simply connected, complete, 3-dimensional Rie-
mannian manifold X, which is homogeneous, unimodular, and maximal (we will ex-
plain in turn): X is homogeneous means that its isometry group Isom(X) acts tran-
sitively, X is unimodular means that it has a quotient (by a discrete subgroup of
Isom(X)) of finite volume, and finally, the maximality condition means that there
is no Isom(X)-invariant Riemannian metric on X whose isometry group is strictly
larger than Isom(X). With this understood, we say a 3-manifold with boundary M
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possess a geometric structure if there is a geometry X such that the interior of M is
the quotient of X by a discrete subgroup of Isom(X) acting freely.

With the preceding understood, Thurston’s Geometrization reduces the problem
of classifying 3-manifolds to that of classifying all the geometries in dimension 3 and
understanding the corresponding isometry groups. It turns out that there are exactly
8 geometries: space forms S3,R3,H3 with constant sectional curvature 1, 0,−1, two
geometries R× S2,R×H2 with the product metric where S2,H2 are the space forms
with constant Gauss curvature 1,−1, and three other geometries, denoted by Nil,

S̃L2(R), and Sol, see e.g. [2] for more details.

4. Jacobi fields

Let γ(t), a ≤ t ≤ b, be a geodesic segment in (M, g), and denote its tangent vector
by V (t). We consider a variation of γ(t), which is a smooth map Γ(s, t) into M , where
−ε < s < ε, a ≤ t ≤ b, such that Γ(0, t) = γ(t) for all t. We let T (s, t), S(s, t)
to denote the vector fields ∂tΓ, ∂sΓ along Γ(s, t). (Note that V (t) = T (0, t).) Then
because [T, S] = 0, it follows easily that

R(T, S)T = ∇T∇ST −∇S∇TT = ∇T∇TS −∇S∇TT.

Now if for any fixed s, Γ(s, t) is a geodesic (i.e., the variation of γ(t) is by geodesics),
then we have ∇TT ≡ 0. Setting J(t) := S(0, t), which is the corresponding variational
vector field along γ(t), it is easy to see that J(t) obeys the following equation:

∇2
V (t)J(t) +R(J(t), V (t))V (t) = 0, where a ≤ t ≤ b.

The above equation, which is a second order linear ODE in J(t), is called the Jacobi
field equation, and a solution J(t) is called a Jacobi field along the geodesic γ(t).

Exercise: Suppose X is a Killing vector field, and set J(t) := X(γ(t)) to be the
restriction of X along a geodesic segment γ(t). Prove that J(t) is a Jacobi field.

By the existence and uniqueness theorem, for any initial value J(a) := X ∈ Tγ(a)M ,
(∇V J)(a) := Y ∈ Tγ(a)M , there exists a unique Jacobi field J(t) along γ(t) satisfying
the given initial value. Thus the set of Jacobi fields forms a 2n-dimensional vector space
canonically isomorphic to Tγ(a)M × Tγ(a)M . Furthermore, for any real numbers α, β,
the variation Γ(s, t) := γ(t+s(t−a)α+sβ) is a geodesic variation. The corresponding
Jacobi field is easily seen to be J(t) = ((t−a)α+β)V (t), in particular, J(a) = βV (a),
(∇V J)(a) = αV (a).

Exercise: Let J(t) be a Jacobi field. Verify that if (∇V J)(a) is orthogonal to V (a),
then ∇V J is orthogonal to V (t) for all t, and furthermore, if J(a) is orthogonal to
V (a), then J(t) is orthogonal to V (t) for all t.

Conversely, given a Jacobi field J(t) along γ(t), we can realize J(t) as the variational
vector field of a geodesic variation of γ(t) as follows. We pick a smooth curve φ(s),
−ε < s < ε, such that φ(0) = γ(a), d

dsφ(0) = J(a), where d
dsφ(s) denotes the tangent

vector of φ(s). We let Y (s), Z(s) be the vector fields along φ(s) which are parallel
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such that Y (0) = (∇V J)(a), Z(0) = V (a), and consider the map

Γ(s, t) := expφ(s)((t− a)(sY (s) + Z(s))).

Note that Γ(0, t) = expγ(a)((t − a)V (a)) = γ(t), and for each fixed s, Γ(s, t) is a
geodesic parametrized by the variable t. Hence Γ(s, t) is a geodesic variation of γ(t).

It remains to prove that the variational vector field of Γ(s, t), denoted by J̃(t), is the
given Jacobi field J(t). This can be verified by showing that they have the same initial

values. To see this, first, we have J̃(a) = ∂sΓ(s, a)|s=0 = d
dsφ(0) = J(a). Furthermore,

∇V J̃ |t=a = ∇V (∂sΓ|s=0)|t=a = ∇ d
ds
φ(∂tΓ|t=a)|s=0 = ∇ d

ds
φ(sY (s)+Z(s))|s=0 = (∇V J)(a).

Hence the claim.

Jacobi fields and the exponential map: Suppose the exponential map expp,
for a given point p ∈ M , is defined at a vector V ∈ TpM . The pushforward (expp)∗ :
TV (TpM) = TpM → TqM , where q = expp(V ), can be described in terms of Jacobi
fields along the geodesic γ(t) := expp(tV ). To see this, let W ∈ TpM be any tangent
vector. Then the curve s 7→ V +sW in TpM has tangent vector W ∈ TV (TpM) = TpM
at s = 0. Thus the image of W under the pushforward (expp)∗ : TV (TpM)→ TqM is

given by d
dsexpp(V + sW )|s=0. On the other hand, if J(t) is the Jacobi field along γ(t)

associated to the geodesic variation expp(t(V + sW )), then

J(1) = ∂sexpp(t(V + sW ))|s=0,t=1 =
d

ds
expp(V + sW )|s=0.

Thus we obtain the following lemma.

Lemma 4.1. The pushforward map (expp)∗ : TV (TpM) = TpM → TqM , where q =
expp(V ), sends W ∈ TpM to J(1) ∈ TqM , where J(t) is the Jacobi field along γ(t) :=
expp(tV ) with initial values J(0) = 0, (∇V J)(0) = W .

Let p, q ∈M be two points connected by a geodesic γ(t). We say that q is conjugate
to p along γ if there is a Jacobi field along γ which vanishes at both p and q but is not
identically zero. Lemma 4.1 says that (expp)∗ : TV (TpM) → TqM is an isomorphism
if and only if q is not conjugate to p along expp(tV ).

Exercise: Let γ(t) be a geodesic segment connecting p and q. Prove that if the
sectional curvature is nonpositive along γ(t) for any 2-dimensional plane containing
the tangent vector of γ(t), then p, q are not conjugate points.

With this, Lemma 4.1 implies easily the following theorem.

Theorem 4.2. Let M be a complete, connected Riemannian manifold with nonpositive
sectional curvature. Then for any p ∈ M , the exponential map expp : TpM → M
defines the universal covering map of M .

Jacobi fields of constant sectional curvature metrics: Let (M, g) be a Rie-
mannian manifold of constant sectional curvature K. It turns out we can explicitly
compute the Jacobi fields along a geodesic in this case. Let γ(t) be a geodesic segment
with initial point γ(0) = p, defined for t ≥ 0, such that without loss of generality,
assuming its tangent vector V (t) has unit length. Let J(t) be a Jacobi field along
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γ, where we assume J(0) = 0 and (∇V J)(0) is orthogonal to V (0). Let {Ei(t)} be
the vector fields along γ which are parallel such that {Ei(0)} forms an orthonormal
basis of the hyperplane at p which is orthogonal to V (0). Then for each t, {Ei(t)}
is orthonormal. If we write J(t) =

∑
i χi(t)Ei(t), then the functions χi(t) satisfy the

following equations∑
i

d2χi
dt2

(t) · Ei(t) +
∑
i

χi(t) ·R(Ei(t), V (t))V (t) = 0.

In the case of constant sectional curvature, one can check that for each i,

R(Ei(t), V (t))V (t) = KEi(t),

where K is the constant sectional curvature. It follows that for each i, χi(t) satisfies
the following ODE

d2χi
dt2

(t) +Kχi(t) = 0.

With initial conditions χi(0) = 0, dχi

dt (0) = 1, the solution for χi(t) is given explicitly
below:

• χi(t) = t, when K = 0;

• χi(t) = 1√
K

sin(t
√
K), when K > 0;

• χi(t) = 1√
|K|

sinh(t
√
|K|), when K < 0.

The above explicit calculation allows us to determine the metric g explicitly in a
normal neighborhood of p.

Theorem 4.3. Let (U, φ = {xi}) be a normal neighborhood centered at p. Let ḡ be the

Euclidean metric in (xi), and let r = (
∑n

i=1(xi)2)1/2 be the (radial) distance function

to p. For any q ∈ U \ {p}, and any tangent vector V ∈ TqM , we write V = V T + V ⊥,
an orthogonal decomposition where V T is tangent to the sphere r = const through q.
Then the metric g can be written as below, where r = d(p, q):

• g(V, V ) = |V ⊥|2ḡ + |V T |2ḡ, when K = 0;

• g(V, V ) = |V ⊥|2ḡ + 1
Kr2

sin2(r
√
K) · |V T |2ḡ, when K > 0;

• g(V, V ) = |V ⊥|2ḡ + 1
|K|r2 sinh2(r

√
|K|) · |V T |2ḡ, when K < 0.

The following is the key to the proof of the above theorem.

Exercise: Let (U, φ = {xi}) be a normal neighborhood centered at p, and let γ
be a radial geodesic starting at p. Prove that for any W =

∑
iW

i∂i ∈ TpM , the
Jacobi field J(t) along γ with initial values J(0) = 0, (∇V J)(0) = W is given by
J(t) =

∑
i tW

i∂i.
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