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1. The fundamental construction

Let G be a Lie group. For any k > 0, let Ik(G) be the space of symmetric multilinear
maps f : Lie(G)× Lie(G)× · · · × Lie(G)→ R, which are Ad-invariant, i.e.,

f(Ad(a)t1, Ad(a)t2, · · · , Ad(a)tk) = f(t1, t2, · · · , tk)
for any a ∈ G. Set I0(G) = R, and I(G) = ⊕∞k=0I

k(G). Then I(G) can be made into
a commutative algebra by defining a product f · g through symmetrization, as follows:
for any f ∈ Ik(G), g ∈ I l(G),

f · g(t1, t2, · · · , tk+l) =
1

(k + l)!

∑
σ∈Sk+l

f(tσ(1), · · · , tσ(k))g(tσ(k+1), · · · , tσ(k+l)).

Fix a principal G-bundle P over M , and consider the associated bundle of Lie
algebra P ×Ad Lie(G). Since each f ∈ Ik(G) is Ad-invariant, it is easy to see that
for any smooth sections s1, s2, · · · , sk ∈ Γ(P ×Ad Lie(G)), f(s1, s2, · · · , sk) defines a
smooth function on M . In fact, we can even allow each si to be a differential form
valued section. This can be done first for decomposable elements and then extend
it by linearity. More precisely, let ηi, i = 1, 2, · · · , k, be a differential ri-form on M ,
where at most one of ri’s is odd. Then we define

f(s1 ⊗ η1, s2 ⊗ η2, · · · , sk ⊗ ηk) = f(s1, s2, · · · , sk)η1 ∧ η2 ∧ · · · ∧ ηk.
With the preceding understood, we pick a connection form ω on P , and let Ω denote

the curvature of ω, here viewed as a smooth section of the bundle P×AdLie(G)⊗Λ2M .
With this understood, for any f ∈ Ik(G), f(Ω,Ω, · · · ,Ω) is a 2k-form on M . Here is
the main theorem of this section.

Theorem 1.1. The 2k-form f(Ω,Ω, · · · ,Ω) is closed, and its de Rham cohomology
class is independent of the choice of the connection form ω. Denote the de Rham
cohomology class of f(Ω,Ω, · · · ,Ω) by f(P ) ∈ H2k

dR(M). Then f 7→ f(P ) defines an
algebra homomorphism from I(G) to Heven

dR (M).
1



2 WEIMIN CHEN

Proof. We first show that f(Ω,Ω, · · · ,Ω) is closed. To this end, let ∇ be the covariant
derivative on Γ(P ×AdLie(G)) associated to the connection form ω, and let d∇ be the
corresponding exterior covariant derivative. Then

d f(Ω,Ω, · · · ,Ω) = f(d∇Ω, · · · ,Ω) + · · ·+ f(Ω, · · · , d∇Ω) = 0,

because of the Bianchi identity d∇Ω = 0.
To see that the de Rham cohomology class of f(Ω,Ω, · · · ,Ω) is independent of the

choice of the connection form ω, we let ω0, ω1 be any two connection forms on P . Then
ω1 − ω0 = α, where α is a smooth section of P ×Ad Lie(G) ⊗ T ∗M . We introduce,
for t ∈ [0, 1], ωt = ω0 + tα, and let Ωt be the curvature of ωt, and denote by d∇t the
exterior covariant derivative associated to ωt.

With this understood, we claim ∂tΩt = d∇tα, for any t ∈ [0, 1]. This can be easily
verified by computing locally. Suppose P is trivial over U , and let ωt be the Lie(G)-
valued 1-form on U . Then on U , Ωt = dωt + 1

2 [ωt, ωt]. Consequently, on U ,

∂tΩt = dα+
1

2
[α, ωt] +

1

2
[ωt, α] = dα+ [ωt, α] = d∇tα,

which verifies the claim ∂tΩt = d∇tα.
Now we observe

∂tf(Ωt, · · · ,Ωt) = f(∂tΩt, · · · ,Ωt) + · · ·+ f(Ωt, · · · , ∂tΩt) = kf(Ωt, · · · , d∇tα).

It follows immediately that

f(Ω1, · · · ,Ω1)− f(Ω0, · · · ,Ω0) = dΦ,

where Φ :=
∫ 1

0 kf(Ωt,Ωt, · · · , α)dt is a (2k − 1)-form on M . This shows that the de
Rham cohomology class of f(Ω,Ω, · · · ,Ω) is independent of the choice of the connec-
tion form ω. The claim that f 7→ f(P ) defines an algebra homomorphism from I(G)
to Heven

dR (M) is straightforward from the definition.
�

2. Invariant polynomials

In this section, we analyze the algebraic structure of I(G) for the case where G
is a compact Lie group. To begin with, we shall first identify elements of I(G) with
polynomial functions on the Lie algebra Lie(G) in a canonical way. To this end, we
shall fix a basis t1, t2, · · · , tn of Lie(G), and denote by ξ1, ξ2, · · · , ξn the dual basis.
Denote by P k(G) the set of Ad-invariant, homogeneous polynomials in ξ1, ξ2, · · · , ξn
of degree k. (Elements of P k(G) are called invariant polynomials.) Then for each
f ∈ Ik(G), Pf (t) = f(t, t, · · · , t), t ∈ Lie(G), defines an element of P k(G): if we write
t = a1t1 + a2t2 + · · ·+ antn, where ai = ξi(t), then Pf (t) is a homogeneous polynomial

of degree k in a1, a2, · · · , an. Hence Pf ∈ P k(G). Note that we can recover f from Pf
by the following formula:

f(ti1 , ti2 , · · · , tik) =
1

k!

∂k

∂ξi1∂ξi2 · · · ∂ξik
Pf .



MATH 704: PART 2: THE CHERN-WEIL THEORY 3

In particular, the map f 7→ Pf is injective. This map is also surjective, as for any

P ∈ P k(G), where

P =
n∑

i1,i2,··· ,ik=1

ai1i2···ikξi1ξi2 · · · ξik ,

with ai1i2···ik being symmetric in i1, i2, · · · , ik, we can define an element f ∈ Ik(G), by

f(s1, s2, · · · , sk) :=
n∑

i1,i2,··· ,ik=1

ai1i2···ikξi1(s1)ξi2(s2) · · · ξik(sk).

Then P = Pf . Let P 0(G) = R, and P (G) = ⊕∞k=0P
k(G). Then I(G) and P (G) are

isomorphic as commutative algebras under f 7→ Pf .
With the preceding understood, we shall analyze the structure of I(G) by choosing

a suitable Lie subgroup G′ of G and look at the restriction map I(G) → I(G′).
The first question is when the restriction map is injective. It is easy to check that
under the following condition, the map I(G) → I(G′) is injective, i.e., if for any
t ∈ Lie(G), there is an element a ∈ G, such that Ad(a)(t) ∈ Lie(G′). This is because,
if f ∈ Ik(G) restricts to Ik(G′) to zero, i.e., f(t′, t′, · · · , t′) = 0 for any t′ ∈ Lie(G′),
then f(t, t, · · · , t) = 0 for any t ∈ Lie(G), as there is an element a ∈ G such that
Ad(a)(t) ∈ Lie(G′) and f is Ad-invariant. With this understood, we let N be the
subgroup of G defined by the following property: for any n ∈ N , Ad(n)(Lie(G′)) =
Lie(G′). If we denote by IN (G′) the subset of I(G′) consisting of elements which are
invariant under Ad(n), ∀n ∈ N , then it is easy to see that the image of I(G) in I(G′)
under the restriction map is contained in IN (G′).

For the special case where G is a compact Lie group, we shall take G′ to be a
maximal torus of G. Recall that a maximal torus T of G is a compact, connected,
Abelian Lie subgroup which is maximal in the sense that it is not contained in any
larger torus in G. It is known that maximal tori are conjugate to each other in G. We
fix a maximal torus T of G, and let N be the normalizer of T in G, i.e.,

N = {g ∈ G|g · T · g−1 = T}.
With this understood, the quotient group W = N/T is called the Weyl group of G.

The following two properties of maximal torus are crucial in our consideration here:

(1) For any element a ∈ G, there is a b ∈ G such that bab−1 ∈ T .
(2) For any t, t′ ∈ T , if t, t′ are conjugate in G, then they are also conjugate by an

element of N .

Theorem 2.1. Suppose G is compact. Let T be a maximal torus of G. Then the
restriction map I(G)→ IN (T ) is an isomorphism.

Note that since T is Abelian, the adjoint representation of T is trivial. Thus if
ξ1, ξ2, · · · , ξn is a dual basis of Lie(T ), then I(T ) is identified with the algebra of
polynomials in ξ1, ξ2, · · · , ξn. Finally, IN (T ) is simply the subalgebra consisting of
elements of I(T ) which are invariant under the Weyl group.

Proof. It follows from property (1) of T , that for any t ∈ Lie(G), there is an element
a ∈ G such that Ad(a)(t) ∈ Lie(T ). This shows that the restriction map I(G)→ I(T )
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is injective. Furthermore, by the definition of N , N = {n ∈ G|Ad(n)(Lie(T )) =
Lie(T )}. Hence the image of I(G)→ I(T ) lies in IN (T ).

To see that I(G) → IN (T ) is surjective, let f ′ ∈ IN (T ) be any element, where
f ′ ∈ Ik(T ) for some k. We define P ∈ P k(G) as follows: for any t ∈ Lie(G),
we choose an element a ∈ G such that Ad(a)(t) ∈ Lie(T ), and define P (t) =
f ′(Ad(a)(t), Ad(a)(t), · · · , Ad(a)(t)). To see that P (t) is independent of the choice of
a ∈ G, suppose there is a b ∈ G such that Ad(b)(t) ∈ Lie(T ). Then Ad(a)(t), Ad(b)(t)
are conjugate by an element of G. It follows easily from property (2) of T that there is
an element n ∈ N , such that Ad(n)Ad(a)(t) = Ad(b)(t). Since f ′ is Ad(n)-invariant,
we have

f ′(Ad(a)(t), Ad(a)(t), · · · , Ad(a)(t)) = f ′(Ad(b)(t), Ad(b)(t), · · · , Ad(b)(t)).

Hence P (t) is well-defined. Then there is a f ∈ I(G) such that P = Pf , and it follows
that f restricts to f ′ under the map I(G)→ IN (T ). This proves the subjectivity.

�

In the remaining part of this section, we shall examine the cases where G = U(n),
O(n), and SO(n).

The case G = U(n): In this case, the maximal torus is the n-fold product T =
U(1) × U(1) × · · · × U(1), i.e., the diagonal matrices diag(eiξ1 , eiξ2 , · · · , eiξn). The
corresponding Lie algebra consists of diagonal matrices diag(iξ1, iξ2, · · · , iξn). With
this understood, I(T ) can be identified with the algebra of polynomials in ξ1, ξ2, · · · , ξn.
On the other hand, the Weyl group of U(n) is the symmetric group Sn acting on the
set (ξ1, ξ2, · · · , ξn) as permutations. It follows easily that IN (T ) consists of symmetric
polynomials in ξ1, ξ2, · · · , ξn. With this understood, we introduce polynomial functions
f1, f2, · · · , fn by the following equation

det(λIn + iX) = λn − f1(X)λn−1 + f2(X)λn−2 + · · ·+ (−1)nfn(X), X ∈ Lie(U(n)).

Theorem 2.2. For G = U(n), the polynomial functions f1, f2, · · · , fn defined above
are algebraically independent elements in I(G) and together they generate I(G).

Proof. If we restrict f1, f2, · · · , fn to Lie(T ), i.e., assume X = diag(iξ1, iξ2, · · · , iξn),
then f1, f2, · · · , fn are precisely the elementary symmetric polynomials in ξ1, ξ2, · · · , ξn.
Since the restriction map I(G)→ IN (T ) is isomorphic and IN (T ) consists of symmetric
polynomials in ξ1, ξ2, · · · , ξn, it follows immediately that f1, f2, · · · , fn are algebraically
independent elements in I(G) and together they generate I(G).

�

The case G = O(2m + 1), O(2m), or SO(2m + 1): In this case, the maximal
torus is the m-fold product T = SO(2)× SO(2)× · · · × SO(2). Write the Lie algebra
elements of the i-th factor as (

0 −ξi
ξi 0

)
,

where i = 1, 2 · · · ,m, then I(T ) can be identified with the algebra of polynomials in
ξ1, ξ2, · · · , ξm. The Weyl group is generated by permutations of ξ1, ξ2, · · · , ξm plus
reflections (ξ1, ξ2, · · · , ξi, · · · , ξm) 7→ (ξ1, ξ2, · · · ,−ξi, · · · , ξm) for i = 1, 2, · · · ,m. It
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follows easily that IN (T ) consists of symmetric polynomials in ξ2
1 , ξ

2
2 , · · · , ξ2

m. With
this understood, we introduce polynomial functions f1, f2, · · · , fm on Lie(G) by the
following formula:

det(λIn −X) = λn + f1(X)λn−2 + f2(X)λn−4 + · · · , where X ∈ Lie(G).

Here G = O(n) where n = 2m + 1 or 2m, or G = SO(n) for n = 2m + 1. Note that
since XT = −X, the right hand side of the above equation does not contain terms with
λn−1, λn−3, · · · . Note that the restrictions of f1, f2, · · · , fm to IN (T ) are precisely the
elementary symmetric polynomials in ξ2

1 , ξ
2
2 , · · · , ξ2

m. The following theorem follows
by a similar argument as in the case of G = U(n).

Theorem 2.3. For G = O(2m + 1), O(2m), or SO(2m + 1), the polynomial func-
tions f1, f2, · · · , fm defined above are algebraically independent elements in I(G) and
together they generate I(G).

The case G = SO(2m): In this case, the maximal torus is still the m-fold prod-
uct T = SO(2) × SO(2) × · · · × SO(2), however, the Weyl group is different. For
G = SO(2m), the Weyl group is generated by permutations of ξ1, ξ2, · · · , ξm plus auto-
morphisms (ξ1, ξ2, · · · , ξi, · · · , ξj , · · · , ξm) 7→ (ξ1, ξ2, · · · ,−ξi, · · · ,−ξj , · · · , ξm) for any
i < j. It follows easily then, that for any f ∈ IN (T ), there are symmetric polynomials
p, q in ξ2

1 , ξ
2
2 , · · · , ξ2

m, such that

f = p+ ξ1ξ2 · · · ξm · q.
On the other hand, note that fm = (ξ1ξ2 · · · ξm)2. It follows easily that f1, f2, · · · , fm−1

and ξ1ξ2 · · · ξm are algebraically independent in IN (T ) and together they generate
IN (T ).

We define a polynomial function g on Lie(SO(2m)) by the following formula: for
X = (xij) where xij = −xji, we set

g(X) =
1

2mm!

∑
εi1i2···i2m−1i2mxi1i2xi3i4 · · ·xi2m−1i2m ,

where the sum is taken over all permutations (i1, i2, · · · , i2m−1i2m) of (1, 2, · · · , 2m−
1, 2m), and εi1i2···i2m−1i2m = 1 or −1 is the sign of the permutation. One can check
that g is Ad-invariant, hence defines an element in I(G). Moreover, the restriction of
g to Lie(T ) equals (−1)mξ1ξ2 · · · ξm; in particular, this implies that fm = g2 in I(G).
The following theorem is straightforward.

Theorem 2.4. For G = SO(2m), the polynomial functions f1, f2, · · · , fm−1, g defined
above are algebraically independent elements in I(G) and together they generate I(G).

3. Chern classes, Pontrjagin classes, and Euler class

Chern classes: Let E be a complex vector bundle of rank n over a smooth manifold
M , and let P be the associated frame bundle, which is a principal G-bundle with G =
GL(n,C). We define polynomial functions f0, f1, · · · , fn on Lie(G) by the following
formula:

det(λIn +
i

2π
X) =

n∑
k=0

fk(X)λn−k, where X ∈ Lie(G).
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Here X ∈ Lie(G) means that it is a n × n complex-valued matrix. It is clear that
f0 = 1, and for k > 0, each fk is Ad-invariant, hence defines an element of I(G)⊗ C.
We define the k-th Chern class of the complex vector bundle E, denoted by ck(E), to
be the de Rham cohomology class of fk(Ω) where Ω is the curvature of any chosen
connection form on P . We remark that since P always admits a U(n)-reduction,
and if we choose a U(n)-connection then the curvature Ω obeys ΩT = −Ω, It follows
immediately from Theorem 1.1 that the de Rham cohomology class of fk(Ω) is real
valued, i.e., ck(E) ∈ H2k

dR(M). With this understood, we define the total Chern class
of E to be

c(E) :=
n∑
k=0

ck(E).

Note that the total Chern class c(E) is the de Rham cohomology class of

det(In +
i

2π
Ω),

where Ω is the curvature of any chosen connection form on P .
The Chern classes satisfy the following axioms (these axioms give an axiomatic

definition of Chern classes).

(1) (Naturality) Let E be a complex vector bundle over M , f : M ′ → M be a
smooth map, and E′ be the pull-back bundle of E by f . Then f∗c(E) = c(E′).

(2) (Whitney sum formula) Let E1, E2, · · · , En be complex line bundles over M and
E is the direct sum of E1, E2, · · · , En. Then

c(E) = c(E1) ∧ c(E2) ∧ · · · ∧ c(En).

For example, suppose E is the direct sum of complex line bundles E1, E2. Then the
Whitney sum formula implies that c1(E) = c1(E1) + c1(E2), c2(E) = c1(E1)∧ c1(E2).

Exercise: Prove the Whitney sum formula.

(3) (Normalization) Let E be the tautological line bundle over CP1. Then∫
CP1

c1(E) = −1.

(Compare Example 3.6 in Part 1.)

Exercise: Let Σ be a compact Riemann surface, and let E be a complex line bundle
over Σ. Suppose s : Σ → E is a smooth section of the bundle E, with only isolated
zeros a1, a2, · · · , ak in Σ. We define the index of each zero ai, denoted by Ind(ai), as
follows: at each ai, we pick a small disk neighborhood Di centered at ai, over which E
is trivial. Note that due to the triviality of E over Di, the section s may be regarded
as a map from Di to C. With this understood, we define Ind(ai) to be the degree of
the map ∂Di → S1, sending z ∈ ∂Di to s(z)/|s(z)| ∈ S1. Prove that

k∑
i=1

Ind(ai) =

∫
Σ
c1(E).
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Remark 3.1. (1) The proof of the above equation is the baby version of the so-called
intrinsic proof of the Gauss-Bonnet Theorem due to S.S. Chern.

The same argument applies to a slightly different situation: let E be a holomorphic
line bundle over Σ, and let s be a meromorphic section of E. Denote by a1, · · · , ak
the set of zeroes and poles of s, and let Ind(ai) be the multiplicity of ai if ai is a zero
and the negative of the multiplicity if ai is a pole. Then the following holds true:

k∑
i=1

Ind(ai) =

∫
Σ
c1(E).

(2) If we identify Σ with the zero section of E and let Σ′ be the graph of the smooth
section s. Then when Ind(ai) = 1 or −1 for all i, Σ and Σ′ intersect transversely,
and the intersection number Σ ·Σ′ =

∑
i Ind(ai). This shows that the self-intersection

number Σ · Σ of Σ in E is given by

Σ · Σ =

∫
Σ
c1(E).

(3) When E = TΣ is the tangent bundle, it is known that the sum of indices∑
i Ind(ai) equals the Euler characteristic of Σ, i.e., χ(Σ) = 2 − 2gΣ =

∑
i Ind(ai),

where gΣ is the genus of Σ. (This is a theorem of Hopf.) Hence

2− 2gΣ =

∫
Σ
c1(TΣ).

Example 3.2. Let M be a complex surface and Σ be an embedded holomorphic curve
in M . We denote by TM |Σ the pull-back bundle of TM by the embedding Σ → M .
Then it is easy to see that TM |Σ is the direct sum of TΣ and the normal bundle νΣ

of Σ in M . By the Whitney sum formula,

c1(TM |Σ) = c1(TΣ) + c1(νΣ).

Pairing with the fundamental class of Σ, we obtain the so-called adjunction formula:

gΣ =
1

2
(Σ · Σ− c1(TM) · Σ) + 1.

There is a symplectic version of adjunction formula.

Exercise: Consider M = CP2. Use the adjunction formula to show that

c1(TCP2) = 3 · PD(CP1),

where PD(CP1) is the Poincare dual of a complex line CP1 ⊂ CP2. Then prove that
if Σ is a smooth algebraic curve of degree d, then its genus gΣ is given by the formula

gΣ =
1

2
(d− 1)(d− 2).

Now we go back to the Chern-Weil construction in section 1. Suppose P is a
principal G-bundle and ρ : G → G′ is a Lie group homomorphism. Let P ′ be the
induced bundle of P by ρ, i.e., P ′ = P ×ρ G′. Suppose f ∈ Ik(G) and f ′ ∈ Ik(G′)
such that for any t ∈ Lie(G),

f(t, t, · · · , t) = f ′(ρ∗t, ρ∗t, · · · , ρ∗t).
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Then it is clear from the Chern-Weil construction that the de Rham cohomology
classes f(P ) = f ′(P ′). Use this observation in the following exercise.

Exercise: Let E be a complex vector bundle of rank n, and let det : GL(n,C) →
GL(1,C) be the Lie group homomorphism given by the map A 7→ detA. Then the
induced bundle of E by det is called the determinant line bundle of E, and is denoted
by detE. Show that c1(E) = c1(detE).

Finally, we observe that since every complex vector bundle E admits a Hermitian
metric, it can be reduced to a U(n)-bundle. It follows easily from Theorem 2.2 that,
for every f ∈ I(Gl(n,C)) ⊗ C, the characteristic class f(P ) obtained from Chern-
Weil construction can be expressed in terms of the Chern classes of E. With this
understood, consider the element ch ∈ I(Gl(n,C))⊗C, where for any complex-valued
n× n matrix X,

ch(X) = Trace(e
i
2π
X).

The corresponding characteristic class ch(E) is called the Chern character of E.

Exercise: Let E be a complex vector bundle of rank n over a 4-dimensional man-
ifold M . Show that

ch(E) = n+ c1(E) +
1

2
c1(E)2 − c2(E).

Pontrjagin classes: Let E be a real vector bundle of rank n over M , and let P be
the associated frame bundle, which is a principal G-bundle with G = GL(n,R). We
define polynomial functions g0, g1, · · · , gn on Lie(G) by the following formula:

det(λIn −
1

2π
X) =

n∑
k=0

gk(X)λn−k, where X ∈ Lie(G).

Here X ∈ Lie(G) means that it is a n×n (real-valued) matrix. It is clear that g0 = 1,
and for k > 0, each gk is Ad-invariant, hence defines an element of I(G).

For each k = 1, 2, · · · ,m, where n = 2m or n = 2m + 1, the k-th Pontrjagin class
of E, denoted by pk(E), is defined to be the de Rham cohomology class of g2k(Ω),
where Ω is the curvature of any chosen connection form on P . Note that for each k,
pk(E) ∈ H4k

dR(M).

Exercise: Let E be a real vector bundle of rank n over M , and let Ec := E ⊗ C
be the complexification of E, which is a complex vector bundle of rank n. Prove that
for each k,

pk(E) = (−1)kc2k(E
c) ∈ H4k

dR(M).

The Euler class: Let E be an oriented real vector bundle over M of rank 2m. We
put a metric on E so that E becomes a SO(2m)-bundle. Let P be the associated frame
bundle, which is a principal G-bundle with G = SO(2m). Note that the isomorphism
class of P is independent of the choice of the metric on E that we have chosen.

Pick a connection form ω on P and let Ω be its curvature. Then the Euler class
of E, denoted by χ(E), is defined to be the de Rham cohomology class of g( 1

2πΩ)

in H2m
dR (M), where g ∈ I(G) is the polynomial function in Theorem 2.4. For E an
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oriented real vector bundle of odd rank, we define χ(E) = 0. One can easily check
that the Euler class satisfies the Naturality Axiom and the Whitney sum formula.

Euler class and Chern class: Let E be a complex vector bundle of rank m over
M , and let ER denote the underlying oriented real vector bundle of rank 2m. Then
the Euler class of ER and the top Chern class of E, i.e., cm(E) are equal in H2m

dR (M).
To see this, note that under the canonical identification of U(m) as a subgroup of
SO(2m), the maximal torus of U(m) corresponds to the maximal torus of SO(2m),
under which the Lie algebras are identified by the maps

iξi 7→
(

0 −ξi
ξi 0

)
.

With this understood, the polynomial fm used to define cm(E) and the polynomial g
used to define χ(ER) are related by the equation fm = 1

(2π)m g. It follows immediately

that cm(E) = χ(ER).

Example 3.3. Let E be a complex vector bundle of rank 2. Then the equation
(ξ1 +ξ2)2 = 2ξ1ξ2 +ξ2

1 +ξ2
2 gives the following relation among the characteristic classes

c1(E)2 = 2χ(ER) + p1(ER).

Now suppose E is the tangent bundle of a complex surface M . Then the above
equation becomes

c1(TM)2 = 2χ(TM) + p1(TM).

Pairing with the fundamental class of M , and noting that χ(TM)[M ] = χ(M) (The
Gauss-Bonnet Theorem) and 1

3p1(TM)[M ] = σ(M) (Hirzebruch’s Signature Theo-
rem), we obtain the well-known formula

c1(TM)2[M ] = 2χ(M) + 3σ(M).

There is a symplectic version of the above formula.

Exercise: Verify the formula c1(TM)2[M ] = 2χ(M) + 3σ(M) for M = CP2.

Exercise: Let M be a compact, connected, oriented smooth 4-manifold with
σ(M) 6= 0. Show that every f ∈ Diff(M) is orientation-preserving.

Exercise: Let E be a complex vector bundle. Denote by E the complex conjugate
of E, which is defined as follows: consider E as the real vector bundle ER equipped
with a complex structure J , then E is the complex vector bundle obtained by equipping
ER with the complex structure −J . Prove that ck(E) = (−1)kck(E).

Exercise: Show that for any complex vector bundle E, one has ER⊗RC = E⊕E.
Then use the relations pk(ER) = (−1)kc2k(ER ⊗R C) to give a different proof for the
formula in Example 3.3.
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