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1. Lie Groups

A Lie group G is a smooth manifold such that the multiplication map G×G→ G,
(g, h) 7→ gh, and the inverse map G→ G, g 7→ g−1, are smooth maps. A Lie subgroup
H of G is a subgroup of G which is at the same time an embedded submanifold. A Lie
group homomorphism is a group homomorphism which is a smooth map between the
Lie groups. The Lie algebra, denoted by Lie(G), of a Lie group G consists of the set
of left-invariant vector fields on G, i.e., Lie(G) = {X ∈ X (G)|(Lg)∗X = X}, where
Lg : G→ G is the left translation Lg(h) = gh. As a vector space, Lie(G) is naturally
identified with the tangent space TeG via X 7→ X(e). A Lie group homomorphism
naturally induces a Lie algebra homomorphism between the associated Lie algebras.
Finally, the universal cover of a connected Lie group is naturally a Lie group, which
is in one to one correspondence with the corresponding Lie algebras.

Example 1.1. Here are some important Lie groups in geometry and topology.

• GL(n,R), GL(n,C), where GL(n,C) can be naturally identified as a Lie sub-
group of GL(2n,R).
• SL(n,R), O(n), SO(n) = O(n) ∩ SL(n,R), Lie subgroups of GL(n,R).
• SL(n,C), U(n), SU(n) = U(n) ∩ SL(n,C), Lie subgroups of GL(n,C).
• Sp(2n), Lie subgroup of GL(2n,R), defined as the subgroup preserving the

standard symplectic form on R2n. Sp(2n) ∩O(2n) = U(n), under the natural
identification of GL(n,C) as a subgroup of GL(2n,R).
• S1 ⊂ C, S3 ⊂ H, the spin group Spin(n), n > 2, which is the universal cover

of SO(n). Note that Spin(n) → SO(n) is a double cover as π1(SO(n)) = Z2

for n > 2; Spinc(n) = Spin(n)×{±1} S1.

• Lie groups of low dimensions: S1 = SO(2) = U(1), S3/{±1} = SO(3), S3 =
SU(2) = Spin(3), Spinc(3) = U(2), Spin(4) = S3 × S3 = SU(2)× SU(2).
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1-parameter subgroups: Given any X ∈ Lie(G), one can associate a 1-parameter
subgroup of G to X as follows. Let φXt : G → G denote the flow generated by the
vector field X. Then due to X being left-invariant, we have Lg ◦φXt = φXt ◦Lg for any
g ∈ G. This easily implies the following: (1) the flow φXt is complete, i.e., it is defined
for all t ∈ R, (2) for any s, t ∈ R, φXs (e)φXt (e) = φXs+t(e), (3) the flow φXt : G → G is

given by the right translation RφXt (e). By (2), φXt (e) ∈ G is a 1-parameter subgroup

of G, which we associate to X ∈ Lie(G).

Example 1.2. Consider G = GL(n,R). In this case, TeG = M(n,R) is the space

of all n × n matrices, and Lie(G) consists of maps Ã : GL(n,R) → M(n,R), where

A ∈M(n,R), and Ã : X ∈ GL(n,R) 7→ XA ∈M(n,R). Hence the flow φAt generated
by A ∈ Lie(G) obeys the ODE d

dtφ
A
t = φAt A, which implies easily that φAt (e) = etA.

It is clear that one can replace G by any other matrix groups.

Exponential Map: We define exp : Lie(G) → G by exp(X) = φX1 (e). It is
clear that φXt (e) = exp(tX). One can check easily that exp : Lie(G) → G is a local
diffeomorphism from a neighborhood of 0 ∈ Lie(G) onto a neighborhood of e ∈ G,
with d(exp) equaling identity at 0 ∈ Lie(G). By Example 1.2, for G = GL(n,R), the
exponential map exp is given by exp(X) = eX for any X ∈ Lie(G).

The Adjoint Representation: For any g ∈ G, the map Ad(g) : G→ G defined by
h 7→ ghg−1 is an automorphism of G. There is the induced Lie algebra automorphism,
which is also denoted by Ad(g) : Lie(G) → Lie(G) for simplicity. The corresponding
homomorphism Ad : G → GL(Lie(G)) sending g to Ad(g) is called the Adjoint Rep-
resentation of G. Note that Ad is a Lie group homomorphism. The corresponding Lie
algebra representation is denoted by ad : Lie(G) → M(Lie(G)), where M(Lie(G))
stands for the Lie algebra of GL(Lie(G)).

To determine Ad, we let X ∈ Lie(G) and consider the corresponding 1-parameter
subgroup exp(tX). Then for any g ∈ G, Ad(g) : Lie(G) → Lie(G) is given by Xe ∈
TeG 7→ d

dt(g · exp(tX) · g−1)|t=0 = d
dt(Rg−1(φXt (g)))|t=0 = (Rg−1)∗(Xg) ∈ TeG. To de-

termine ad, for any X,Y ∈ Lie(G), ad(X)(Ye) is given by d
dt(Ad(exp(tX))(Ye))|t=0 =

d
dt(Rexp(−tX))∗(Yexp(tX))|t=0 = d

dt(φ
X
−t)∗(YφXt (e))|t=0 = (LXY )e = [X,Y ]e, which im-

plies that ad(X)(Y ) = [X,Y ] for any X,Y ∈ Lie(G). Note that ad is a Lie algebra
homomorphism, i.e., ad([X,Y ]) = ad(X)ad(Y )− ad(Y )ad(X), which is equivalent to
the Jacobi identity [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Exercise: For G = GL(n,R), show that Ad(X)(A) = XAX−1 for any X ∈
GL(n,R) and A ∈M(n,R), and ad(A)(B) = AB −BA for any A,B ∈M(n,R).

The Canonical 1-Form: The canonical 1-form θ on G is the Lie(G)-valued, left
invariant 1-form determined by θ(X) = X for any X ∈ Lie(G). If we pick a basis
{Xi} of Lie(G) and let {θi} be the dual basis of Lie(G)∗, then θ =

∑
i θ
iXi. Let

[Xj , Xk] =
∑

i c
i
jkXi (here cijk are called the structure constants which completely

determine the Lie bracket). Then dθi = −1
2

∑
j,k c

i
jkθ

j ∧ θk, called the Maurer-Cartan
equation.
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Exercise: Show that for G = GL(n,R), the canonical 1-form θ is given by A 7→
A−1dA, A ∈ GL(n,R).

Let ρ : G → G′ be any Lie group homomorphism, and let θ, θ′ be the canonical
1-forms on G,G′ respectively. We denote by ρ∗θ′, ρ∗θ the Lie(G′)-valued 1-forms on
G defined as follows: for any tangent vector X on G,

(ρ∗θ′)(X) = θ′(ρ∗(X)), (ρ∗θ)(X) = ρ∗(θ(X)).

Then by taking X to be a left-invariant vector field on G, it follows easily that

ρ∗θ′ = ρ∗θ.

For reference see Chapter 20 of J. Lee [2]

2. Principal Bundles

Fix a smooth manifold M (assume M is connected without loss of generality) and
a Lie group G, a principal G-bundle over M is a smooth manifold P with a surjective
smooth map π : P →M (called projection), which satisfies the following conditions:

• The space P is equipped with a smooth, free, right action of G: P ×G→ P ,
denoted by (p, g) 7→ pg.
• For any (p, g) ∈ P ×G, π(pg) = π(p), and furthermore, π induces a diffeomor-

phism between the quotient space P/G and M .
• P is locally trivial, i.e., for any x ∈ M , there is a neighborhood U and a G-

equivariant diffeomorphism ϕU : π−1(U)→ U ×G, ϕU (p) = (π(p), ψ(p)), such
that ϕU (pg) = (π(p), ψ(p)g).

The space P is called the total space, M is called the base, and G is called the the
structure group of the principal G-bundle. Two principal G-bundles P, P ′ over M
are called isomorphic if there is a G-equivariant diffeomorphism from P to P ′ which
induces the identity map on the base M . (Note: P being locally trivial is equivalent
to the G-action being proper.)

An alternative definition via transition functions: Suppose {Uα} is an open
cover of M such that P is trivial over each Uα, with a trivialization ϕUα : π−1(Uα)→
Uα×G. For any α, β such that Uα ∩Uβ 6= ∅, ϕUβ ◦ϕ

−1
Uα

: Uα ∩Uβ ×G→ Uα ∩Uβ ×G
is given by (x, g) 7→ (x, ϕβα(x)g) for some smooth map ϕβα : Uα ∩ Uβ → G. It is
easy to check that {ϕβα}, called the transition functions associated to {Uα}, satisfy
the cocycle conditions ϕγβ(x)ϕβα(x) = ϕγα(x) for any x ∈ Uα∩Uβ ∩Uγ . On the other
hand, if we are given with an open cover {Uα} of M and a set of smooth functions
{ϕβα : Uα∩Uβ → G} satisfying the cocycle conditions ϕγβ(x)ϕβα(x) = ϕγα(x) for any
x ∈ Uα∩Uβ∩Uγ , we can construct a principal G-bundle over M canonically as follows:
let P = tαUα ×G/ ∼, where for any x ∈ Uα ∩ Uβ, (x, g) ∈ Uα ×G ∼ (x, ϕβα(x)g) ∈
Uβ ×G. Then P is a smooth manifold with a natural projection π : P →M , induced
by the projections Uα ×G→ Uα, and a canonical smooth, free, right G-action on P ,
induced by the right translations of G on the G-factor of Uα×G, making P a principal
G-bundle over M .

Example 2.1. (1) (Trivial bundles) P = M ×G.
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(2) (Frame bundles) Let E →M be a smooth rank n real vector bundle. We define
the bundle of frames of E as follows: for any x ∈ M , let Px be the set of bases
(e1, e2, · · · , en) of the vector space Ex, the fiber of E at x, and set P := tx∈MPx, with
a natural projection π : P →M such that π−1(x) = Px, ∀x ∈M . Let G = GL(n,R).
Then P admits a natural free right G-action, sending any basis (e1, e2, · · · , en) ∈ Px to
(e1, e2, · · · , en)A ∈ Px under the action of A ∈ GL(n,R). To give a smooth structure to
P , for any open set U of M over which E admits a local frame σ = (σ1, σ2, · · · , σn), we
define a map φU,σ : U ×G→ P , sending (x,A) ∈ U ×G to (σ1(x), · · · , σn(x))A ∈ Px,
which is clearly one to one, and is onto the image π−1(U) ⊂ P . Using {φU,σ}, we
can define a smooth structure on P with respect to which the G-action is smooth,
π : P → M is smooth, inducing a diffeomorphism between the quotient space P/G
and M , and furthermore, P is locally trivial, with local trivializations given by φ−1

U,σ :

π−1(U)→ U×G. We remark that in terms of transition functions, P and E correspond
to the same set of transition functions. Similar arguments apply to the case where E
is a complex vector bundle, in which case the frame bundle is a principal GL(n,C)-
bundle. If E is a real vector bundle equipped with a metric, then the bundle of
orthonormal frames of E is naturally a principal O(n)-bundle.

(3) (Hopf fibration) Let S3 be the unit sphere in C2, and let π : S3 → CP1 be the
map which sends p ∈ S3 to the complex line in C2 which contains p. Then π is a
smooth surjective map. There are two free, right S1-actions on S3, defined by sending
(p, λ) ∈ S3×S1 to pλ and pλ−1 in S3 respectively. These two S1-actions define S3 as a
principal S1-bundle over CP1 in two different ways (note that the local triviality of the
principal bundles follows automatically from the fact that S1 is a compact Lie group).
Question: Are these two principal S1-bundles over CP1 isomorphic?

Fiber bundles associated to a principal bundle: Let P be a principalG-bundle
over M , and let F be a smooth manifold equipped with a smooth, left G-action. Then
on P ×F we can define a smooth, free, left G-action as follows: for any (p, y) ∈ P ×F
and g ∈ G, g · (p, y) = (pg−1, gy) ∈ P × F . One can check easily that this G-action is
proper, hence the quotient space is naturally a smooth manifold, denoted by P ×G F .
Then P×GF is naturally a fiber bundle (locally trivial) overM with fiber diffeomorphic
to F . Finally, if F possesses some additional “structure” which is preserved under the
G-action on F , then the fibers of P ×G F will inherit the “structure” from F .

Here are some important examples of this construction.

Example 2.2. (1) Consider the case where F = V is a finite dimensional vector
space, with a given linear representation ρ : G → GL(V ). In this case, G naturally
acts on V by (g, v) 7→ ρ(g)v. For example, F = Rn and ρ : G→ GL(n,R). Under this
assumption, the associated fiber bundle, denoted by E = P ×ρ F , is a smooth real
vector bundle of rank n, and moreover, in terms of transition functions, E is given by
{ρ ◦ ϕβα : Uα ∩ Uβ → GL(n,R)} where {ϕβα : Uα ∩ Uβ → G} is the set of transition
functions of P associated to a cover {Uα} of M . Note that in some sense, this is the
inverse procedure of the frame bundle construction described in Example 2.1(2).

(2) Suppose F = G′ is a Lie group and ρ : G → G′ is a Lie group homomorphism.
Then there is an induced smooth left G-action on G′ by (g, g′) 7→ ρ(g)g′. Note that
this G-action on G′ commutes with the right G′-action on G′ by right translations.
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In this case, the associated fiber bundle, denoted by P ′ := P ×ρ F , is naturally a
principal G′-bundle over M , called the induced bundle of P by ρ. We remark that if
{ϕβα : Uα∩Uβ → G} is the set of transition functions of P associated to a cover {Uα},
then the set of transition functions of P ′ associated to {Uα} is {ρ ◦ ϕβα : Uα ∩ Uβ →
G′}. Finally, note that there is a canonical smooth map f : P → P ′, defined as a
composition P → P × G′ → P ×G G′, where P → P × G′ is by p 7→ (p, e). Then it
is easy to see that f is fiber-preserving, equivariant with respect to ρ : G → G′ (i.e.,
f(pg) = f(p)ρ(g)), and induces the identity map on M .

When ρ : G → G′ is some canonical surjective homomorphism, i.e., ρ : Spin(n) →
SO(n), P is called a lifting of P ′, and when ρ : G → G′ defines G as a Lie subgroup
of G′, P is called a reduction of P ′. Note that in the latter case, f : P → P ′ is an
embedding, which is equivariant with respect to the right G-actions on P, P ′.

(3) Consider the case F = G/H is a homogeneous space, where P is a principal
G-bundle and H is a Lie subgroup of G. Recall that G/H = {gH|g ∈ G} is the
set of right H-cosets, so there is a natural smooth left G-action on G/H, given by
(g, g′H) 7→ gg′H. Set E := P ×G G/H.

There is a canonically defined smooth, surjective map π : P → E, as the composition
of maps P → P ×G/H → E, where the first map is the embedding p 7→ (p, eH) and
the second map is the natural projection P × G/H → P ×G G/H to the quotient
space. Since the first map P → P ×G/H is equivariant with respect to the H-actions
(the H-action is from the right on P and from the left on P ×G/H), it follows easily
that π(ph) = π(p) for any p ∈ P and h ∈ H. Note that the right H-action on P
is smooth, free and proper, and note that π induces a diffeomorphism between the
quotient manifold P/H and the associated fiber bundle E. In other words, with π, P
becomes a principal H-bundle over E.

Pull-back bundles: Fix P , a principal G-bundle over M , and let N be a smooth
manifold. For any smooth map f : N → M , we can define a principal G-bundle P ′

over N , called the pull-back bundle of P by f , as follows: As a smooth manifold, P ′

is the submanifold of N × P , consists of points (y, p) such that f(y) = π(p) in M ,
where π : P → M is the bundle projection. Since π : P → M is a submersion, P ′

is a submanifold of N × P for any smooth map f : N → M . The dimension of P ′

equals dimN + dimP − dimM = dimN + dimG. To see P ′ is a principal G-bundle
over N , we define π′ : P ′ → N by sending (y, p) ∈ P ′ to y ∈ N . Then it is clear that
(π′)−1(y) = Pf(y), the fiber of P at f(y) ∈ M . We define a right G-action on P ′ by
((y, p), g) 7→ (y, pg), which is clearly smooth and free, and with π′ : P ′ → N inducing
a diffeomorphism between P ′/G and N . Finally, note that if P is trivial over U ⊂M ,
then P ′ is trivial over V := f−1(U) ⊂ N . Hence π′ : P ′ → N is a principal G-bundle.
We end with the observation that if {ϕβα : Uα ∩ Uβ → G} is the set of transition
functions of P associated to a cover {Uα} of M , then {ϕβα◦f : Vα∩Vβ → G} is the set
of transition functions of P ′ associated to the cover {Vα} of N , where Vα = f−1(Uα).

Finally, we observe that there is a canonical principal G-bundle map f̃ : P ′ → P ,
sending (y, p) ∈ P ′ to p ∈ P , covering the map f : N →M .

Example 2.3. Consider the fiber bundle E →M associated to a principal G-bundle
P described in Example 2.2(3), where the fiber of E is the homogeneous space G/H.



6 WEIMIN CHEN

Suppose there is a smooth section of the bundle f : M → E, and let P ′ be the
principal H-bundle over M which is the pull-back bundle of the principal H-bundle
P → E by f . Then there is a corresponding principal H-bundle map f̃ : P ′ → P ,
which defines P ′ as a reduction of the principal G-bundle P to a principal H-bundle.
On the other hand, it is easy to see that any reduction P ′ → P of a principal G-bundle
to a principal H-bundle gives rise to a smooth section of the associated fiber bundle
E → M , where E = P ×G G/H. Thus the problem of existence of a reduction to a
principal H-bundle is reduced to the problem of existence of smooth sections of the
associated fiber bundle E → M , which is a problem solvable using homotopy theory.
For example, for G = GL(n,R), H = O(n), it is known that G/H is a contractible
space. This implies that every principal GL(n,R)-bundle admits a reduction to a
principal O(n)-bundle, or equivalently, every real vector bundle has a metric.

3. Connections and curvature

Fix a principal G-bundle P over M . First of all, for any A ∈ Lie(G), we define
a vector field A∗ on P , called the fundamental vector field corresponding to A, as
follows: for any u ∈ P , A∗u is the tangent vector of the smooth curve ugt in P where
gt = exp(tA). It is clear that A∗ is nowhere vanishing. In what follows, we shall adapt
the following notation: for any g ∈ G, let Rg : P → P be the map u 7→ ug. Then
observe that (Rg)∗A

∗ = (Ad(g−1)(A))∗.
For any u ∈ P , let Gu be the subspace of TuP consisting of vectors tangent to the

fiber of P through u. Then a connection in P , denoted by Γ, is an assignment of a
subspace Qu of TuP to each u ∈ P depending smoothly on u, such that

(a) TuP = Gu +Qu as a direct sum,
(b) Qug = (Rg)∗Qu, for any g ∈ G.

A connection Γ in P can be equivalently defined by a Lie(G)-valued 1-form ω on
P , where ω is uniquely characterized by the properties that (1) ω(A∗) = A for any
A ∈ Lie(G), (2) ωu(X) = 0 for any X ∈ Qu and any u ∈ P . It is clear that ω obeys
the following two conditions:

(a’) ω(A∗) = A for any A ∈ Lie(G),
(b’) (Rg)

∗ω = Ad(g−1)ω, where for any tangent vector X on P , (Rg)
∗ω(X) =

ω((Rg)∗(X)), and Ad(g−1)ω(X) = Ad(g−1)(ω(X)).

Conversely, any Lie(G)-valued 1-form ω on P obeying (a’), (b’) defines a connection
in P by setting Qu = kerωu, i.e., Qu = {X ∈ TuP |ωu(X) = 0}. Such a form is called
a connection form.

There is a third way to describe a connection in P , which is through a system of lo-
cally defined, Lie(G)-valued 1-forms on M satisfying certain compatibility conditions.
To see this, let {Uα} be an open cover of M such that over each Uα, a localization of P
is given by ψα : π−1(Uα)→ Uα×G, and we let {ϕβα} be the associated transition func-
tions, such that ψβ◦ψ−1

α (x, g) = (x, ϕβα(x)g). For each α, set σα(x) := ψ−1
α (x, e) ∈ Px,

x ∈ Uα, which is a local smooth section of P over Uα. Then note that σα = σβϕβα
over Uα ∩ Uβ. With this understood, for any given connection form ω on P , we set
ωα := σ∗αω, which is a Lie(G)-valued 1-form on Uα. Let θ be the canonical 1-form on
G, and for any α, β, set θβα = ϕ∗βαθ, which is a Lie(G)-valued 1-form on Uα ∩ Uβ.
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Then the system of Lie(G)-valued 1-forms {ωα} obeys the following compatibility
conditions

ωα(x) = Ad(ϕβα(x)−1)ωβ(x) + θβα(x), ∀x ∈ Uα ∩ Uβ.
Conversely, any such a system of Lie(G)-valued 1-forms {ωα} defines a connection
form ω on P , such that ωα = σ∗αω, ∀α.

Example 3.1. In the case of G = GL(n,R), each ωα is a n× n matrix-valued 1-form
on Uα, and θβα = ϕ−1

βαdϕβα as θ = A−1dA for G = GL(n,R). Furthermore, recall that

Ad(X)(A) = XAX−1 for any X ∈ GL(n,R) and A ∈M(n,R). With this understood,
the compatibility conditions for {ωα} read as

ωα = ϕ−1
βαωβϕβα + ϕ−1

βαdϕβα.

Theorem 3.2. (Existence of connections) There exists a connection in P . Moreover,
the space of connections in P can be identified with the space of smooth sections of
the vector bundle (P ×Ad Lie(G)) ⊗ T ∗M , where P ×Ad Lie(G) is the vector bundle
associated to P by the adjoint representation Ad : G→ Lie(G).

Induced connections: Let P ′ be a principal G′-bundle which is the induced
bundle of P by ρ : G → G′, and let f : P → P ′ be the corresponding bundle
map. Then for any given connection Γ in P , there is an induced connection Γ′ in P ′

defined as follows. Suppose u ∈ P 7→ Qu ⊂ TuP is the assignment which defines
Γ. We define an assignment u′ ∈ P ′ 7→ Qu′ ⊂ Tu′P

′ by first setting Qu′ = f∗(Qu)
for some u′ = f(u), ∀x ∈ M and π(u) = x, and then for any other points in the
fiber P ′x, which is of the form u′g′ for some g′ ∈ G′, we define Qu′g′ = (Rg′)∗Qu′ .
This assignment is well-defined due to the fact that f : P → P ′ is equivariant with
respect to ρ : G→ G′, and it automatically satisfies condition (b) in the definition of
connections. On the other hand, note that π∗ sends the subspace Qu isomorphically
onto TxM , x = π(u), and since f induces the identity map on M , it follows easily
that condition (a) is also satisfied by the assignment u′ 7→ Qu′ . Hence we obtain
the induced connection Γ′. We observe that if ω, ω′ are the corresponding connection
forms of Γ,Γ′, then f∗ω′ = ρ∗ω holds true as Lie(G′)-valued 1-forms on P . This is
because for any A ∈ Lie(G), f∗ sends the fundamental vector field A∗ on P to the
fundamental vector field corresponding to ρ∗(A) on P ′. Finally, we point out that
another, equivalent definition of induced connection is as follows: let {Uα} be an open
cover of M such that over each Uα, a trivialization ψα is given for P , with associated
transition functions {ϕβα}. If {ωα} is a system of locally defined, Lie(G)-valued 1-
forms on M which gives a connection Γ in P , then the system of Lie(G′)-valued 1-forms
{ω′α}, where ω′α := ρ∗ωα, satisfies the compatibility conditions

ω′α(x) = Ad(ϕ′βα(x)−1)ω′β(x) + θ′βα(x), ∀x ∈ Uα ∩ Uβ,

where {ϕ′βα := ρ ◦ ϕβα} is the corresponding set of transition functions for P ′, and

θ′βα := (ϕ′βα)∗θ′. This is because ρ∗ ◦ Ad(g) = Ad(ρ(g)) ◦ ρ∗ and ρ∗θ′ = ρ∗θ. Hence

{ω′α} defines a connection in P ′, which is the induced connection of Γ.

Pull-back connections: Let P ′ be the pull-back bundle of P by a smooth map
f : N → M , and let f̃ : P ′ → P denote the corresponding bundle map. Then for
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any connection Γ in P , the pull-back connection of Γ is a connection Γ′ in P ′ defined
as follows: let ω be the connection form for Γ, then one can easily check that the
pull-back form f̃∗ω on P ′ is also a connection form (i.e., obeying (a’) and (b’)), which
defines the pull-back connection Γ′. Finally, one can easily check that if {ωα} is a
system of locally defined Lie(G)-valued 1-forms defining Γ, then the pull-back forms
{f∗ωα} defines Γ′.

Parallel transport: We fix a connection Γ in P , as assignment u 7→ Qu. For any
x ∈M and any tangent vector X ∈ TxM , we can define its horizontal lift X∗ for any
u ∈ Px, such that X∗u is the unique vector in Qu sent to X under π∗. It is clear that
X∗ug = (Rg)∗Xu, ∀g ∈ G. If X is a vector field on M , then we obtain a vector field X∗

on P , called the horizontal lift of X.
For any smooth curve τ = xt, 0 ≤ t ≤ 1, in M , a smooth curve ut in P is called a

horizontal lift of τ if π(ut) = xt for all t and the tangent vectors of ut are horizontal.

Theorem 3.3. For any smooth curve τ = xt, and any u0 ∈ Px0, there exists a unique
horizontal lift ut of τ such that the initial point of ut is u0.

Exercise: The problem is essentially local, so prove Theorem 3.3 for the case when
P = M ×G.

With Theorem 3.3, we can now define parallel transport. Given any smooth curve
τ = xt, 0 ≤ t ≤ 1 (in fact it can be more generally a piecewise smooth curve), we
define the parallel transport long τ as follows: for any u ∈ Px0 , we let τ(u) ∈ Px1
be the end point of the horizontal lift of τ whose initial point is u. Clearly this
defines an isomorphism τ from the fiber Px0 to the fiber Px1 . Note that the inverse
τ−1 : Px1 → Px0 is the parallel transport along the curve x1−t, 0 ≤ t ≤ 1.

Application: Here is a nice application of parallel transport: suppose f0, f1 : N →
M be two smooth maps which are homotopic. Then the pull-back bundles of P by
f0, f1 must be isomorphic. To see this, let f : N × [0, 1] → M be the homotopy
between f0, f1, and let P ′ → N × [0, 1] be the pull-back bundle of P by f . We pick a
connection in P ′. Then the parallel transport along the curves τy in N × [0, 1], y ∈ N ,
where τy(t) = (y, t), defines an isomorphism between the pull-back bundles of P by
f0, f1. This fact is fundamental for the classification of principal G-bundles up to
isomorphism. In fact, for any Lie group G, there is a classifying space of G, denoted
by BG, and a (universal) principal G-bundle EG over BG, such that for any principal
G-bundle P over M , there is a map f from M to BG such that P is isomorphic to the
pull-back bundle of EG by f .

Holonomy: For any x ∈M , let C(x) be the set of piecewise smooth curves whose
initial point and end point are x. We define a product structure on C(x) as follows:
for any µ, τ ∈ C(x), the product µ · τ is the piecewise smooth curve obtained from τ
followed by µ. With this understood, the parallel transport defines a map φ : C(x)→
Aut(Px), the automorphism group of the fiber Px. Its image, denoted by Φ(x), is called
the holonomy group based at x. One can identify the holonomy group Φ(x) with a
subgroup of G as follows: pick a point u ∈ Px, then for any τ ∈ C(x), τ(u) = ug for
a unique element g ∈ G. The assignment φ : τ 7→ g satisfies φ(µ · τ) = φ(µ)φ(τ). Its
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image Φ(u), which is a subgroup of G, is isomorphic to the holonomy group Φ(x). Note
that Φ(u) is uniquely determined up to conjugacy. A proof of the following theorem
can be found in [1].

Theorem 3.4. The holonomy group Φ(u) is a Lie subgroup of G. Moreover, the
principal G-bundle P admits a reduction to a principal Φ(u)-bundle.

If we let P (u) be the subspace of P which consists of points that can be connected to
u by a piecewise smooth, horizontal curve in P . Then P (u) is a principal Φ(u)-bundle
and the embedding P (u)→ P defines the reduction. Compare Example 2.3.

Curvature: Let ω be a connection form on P . Then dω is a Lie(G)-valued 2-form
on P . On the other hand, for any tangent vectors X,Y of P , [ω(X), ω(Y )] also defines
a Lie(G)-valued 2-form on P , where the bracket is the Lie bracket of Lie(G). We set
Ω(X,Y ) := dω(X,Y ) + [ω(X), ω(Y )], called the curvature of ω.

Lemma 3.5. Ω(X,Y ) = 0 if one of X or Y is vertical (i.e., tangent to the fibers).
Moreover, if X∗, Y ∗ are horizontal vector fields, then Ω(X∗, Y ∗) = −ω([X∗, Y ∗]).

By the first sentence of Lemma 3.5, Ω can be regarded as a smooth section of
(P ×Ad Lie(G)) ⊗ Λ2M . If P is given by transition functions {ϕβα} and accordingly
ω is given by a system of Lie(G)-valued 1-forms {ωα}, then Ω is given by a system
of Lie(G)-valued 2-forms {Ωα}, where Ωα := dωα + 1

2 [ωα, ωα]. One can check directly
that {Ωα} obeys

Ωα = Ad(ϕ−1
βα)Ωβ.

Note that this particularly shows that Ω is a smooth section of (P ×AdLie(G))⊗Λ2M .
Let P ′ be a principal G′-bundle which is the induced bundle of P by ρ : G→ G′, and

let f : P → P ′ be the corresponding bundle map. Let ω′ be the induced connection
of ω. Since f∗ω′ = ρ∗ω, it follows easily that the corresponding curvatures Ω,Ω′, as
2-forms on M , obey the equation Ω′ = ρ∗Ω. Likewise, if P ′ is the pull-back bundle
of P by a smooth map f : N → M , and ω′ is the pull-back connection of ω, the
corresponding curvatures Ω,Ω′, as 2-forms on M , are related by Ω′ = f∗Ω.

Exercise: For the case G = GL(n,R), recall that each ωα is a n×n matrix-valued
1-form on Uα. Show that Ωα = dωα +ωα ∧ωα as a n×n matrix-valued 2-form on Uα,
and obeys Ωα = ϕ−1

βαΩβϕβα.

Flat connections: A connection is called a flat connection if its curvature vanishes.
By the second statement of Lemma 3.5, if a connection Γ, u 7→ Qu, is flat, then for
any horizontal vector fields X∗, Y ∗, its Lie bracket [X∗, Y ∗] continues to be horizontal,
which means that Γ as a distribution is integrable. By Frobenius Theorem (cf. [2]),
for any u ∈ P , there is a maximally defined, connected submanifold P (u) such that
for any u′ ∈ P (u), Qu′ = Tu′P (u). Note that the restriction of π : P → M to the
submanifold P (u) is a covering map. It follows that the holonomy groups of a flat
connection are discrete subgroups of G, and the corresponding map φ : C(x)→ G can
be factored through to a homomorphism π1(M,x)→ G. It follows easily that

{flat connections on principal G-bundles over M}/Isom ←→ {π1(M)→ G}/conjugacy.
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Gauge transformations: Let Γ : u 7→ Qu be a connection in P and f : P → P be
any automorphism of P . Then the pushforward of f , f∗Γ : u 7→ f∗Qf−1(u), naturally
defines a connection in P , called the gauge transformation of Γ by f . Note that the
gauge transformation of a flat connection is again a flat connection.

Exercise: Show that an automorphism of P can be identified with a smooth section
of the associated fiber bundle P ×Ad G, where the left action of G on F = G is given
by (g, g′) 7→ Ad(g)(g′) = gg′g−1. Moreover, suppose a connection Γ is given by a
system of local Lie(G)-valued 1-forms {ωα} and a bundle automorphism of P is given
by a system of local smooth maps to G, {gα}, then the gauge transformation of Γ is
given by the local Lie(G)-valued 1-forms {Ad(gα)(ωα−g∗αθ)}, where θ is the canonical
1-form on G.

Example 3.6. In this example, we revisit the principal S1-bundles over CP1 where
P = S3 (see Example 2.1(3)). First consider the case where the S1-action is given by
the first choice in Example 2.1(3). Before we begin, note that Lie(S1) = iR ⊂ C.

Consider the connection form ω on S3, where at x = (x1, y1, x2, y2) ∈ S3,

ω(x) = i

2∑
k=1

(xkdyk − ykdxk).

One can check easily that ω is S1-equivariant. On the other hand, note that the S1-
action is generated by the vector field X :=

∑2
k=1(xk∂yk−yk∂xk), whose corresponding

Lie algebra generater is i (i.e., X is the fundamental vector field corresponding to
i ∈ Lie(S1)). Note that ω(X) = i. Since the adjoint representation Ad of S1 is trivial
(S1 is Abelian), it follows that ω is a connection form on S3.

Next we compute the curvature of ω, Ω = dω, as an i-valued 2-form on the base
CP1. To this end, we consider a local coordinate chart (U, φ) of CP1 and a local
section to S3 over U . As a map defined on φ(U) = C, the local section is given by
z 7→ ( z√

1+|z|2
, 1√

1+|z|2
). Then the pull-back of Ω by this local section is the 2-form

we are looking for. An easy calculation shows that it equals − dz∧dz̄
(1+|z|2)2

. Note that

the integral of this form over C equals 2πi. Consequently, the integral of Ω over CP1

equals 2πi, or
∫
CP1

i
2πΩ = −1.

Now we make the following three observations: (1) if ω′ is any other connection form,
then ω′ = ω+iπ∗a for some 1-form a on CP1 (cf. Theorem 3.2). Hence Ω′ = Ω+iπ∗da,
and as a consequence,

∫
CP1

i
2πΩ′ =

∫
CP1

i
2πΩ = −1. (2) If we change the S1-action to

the second choice, then note that the vector field generating the S1-action becomes
−X, so the connection form changes to −ω. The curvature also changes by sign, so
is the integral

∫
CP1

i
2πΩ. (3) Isomorphic principal S1-bundles have the same integral∫

CP1
i

2πΩ.

Conclusion: The two principal S1-bundle structures on S3 are not isomorphic.

This is perhaps the simplest example in the Chern-Weil theory; the integral
∫
CP1

i
2πΩ

is the so-called the first Chern number.
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A side note: There is a symplectic geometry aspect in this example. Consider
the standard symplectic structure on R4, ω0 :=

∑2
k=1 dxk ∧ dyk, and the vector field

V = 1
2

∑2
k=1 xk∂xk + yk∂yk , which obeys LV ω0 = ω0 (such a V is called a Liouville

vector field). Since V is transverse to S3, the 1-form α := iV ω0 is a contact form on S3,
and ξ := kerα is called a contact structure on S3. We observe that in the example, the
connection form ω = 2iα, in particular, the connection distribution kerω = kerα = ξ
is the contact structure.

Reference for most of this section and the previous section is [1].

4. Covariant derivatives

Connections in a vector bundle: Let E be a vector bundle of rank n over M ,
and let Γ(E) denote the space of smooth sections of E. A covariant derivative on
Γ(E) is a R-linear map ∇ : Γ(E)→ Γ(E)⊗Ω1(M) satisfying the following condition:
for any f ∈ C∞(M), ξ ∈ Γ(E),

∇(fξ) = ξ ⊗ df + f∇ξ.

Note that for any vector field X, there is an associated R-linear map ∇X : Γ(E) →
Γ(E) satisfying ∇X(fξ) = Xf · ξ + f∇Xξ.

Exercise: Show that the difference of two covariant derivatives defines a smooth
section of End(E)⊗ T ∗M . Conversely, if ∇ is a covariant derivative on Γ(E), A is a
smooth section of End(E)⊗ T ∗M , then ∇+A is also a covariant derivative on Γ(E).

Now we describe a covariant derivative ∇ in terms of a given localization of E. To
begin with, let {Uα} be an open cover of M , such that E is trivial over each Uα, and
we let {τβα : Uα∩Uβ → GL(n,R)} be the set of associated transition functions. Since
E is trivial over Uα, a smooth section of E over Uα is simply a smooth Rn-valued
function on Uα. As such, the usual exterior differential d defines a natural covariant
derivative. By the above Exercise, over Uα, ∇ = d + Aα for some Aα, where Aα is
a n × n matrix whose entries are 1-forms on Uα. Thus ∇ corresponds to a system
of n × n matrix valued 1-forms {Aα}. The crucial observation is that for any α, β,
Aα, Aβ satisfy the following compatibility condition over Uα ∩ Uβ:

Aα = τ−1
βαAβτβα + τ−1

βα dτβα.

On the other hand, from the discussion in the previous section, {Aα} defines a connec-
tion in the principal GL(n,R)-bundle P , which is the frame bundle of E (cf. Example
2.1(2)). Conversely, given any connection in P . there is a {Aα} satisfying the above
compatibility condition, which determines a covariant derivative ∇ on Γ(E), where
over each Uα, ∇ = d + Aα. This establishes a one to one correspondence between
covariant derivatives on Γ(E) and connections in the associated frame bundle P of E.

Exercise: Let Ω be the curvature of the connection in P corresponding to ∇, which
is viewed as a smooth section of End(E)⊗ Λ2M (note that P ×Ad Lie(G) = End(E)
here). Show that for any vector fields X,Y on M , and any ξ ∈ Γ(E),

∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ = Ω(X,Y )ξ.
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More generally, let P be any principal G-bundle over M , V be any finite dimensional
vector space, and ρ : G→ GL(V ) be any given linear representation. Let E := P ×ρV
be the associated vector bundle. Then for any given connection ω in P , there is an
associated covariant derivative ∇ on Γ(E). Moreover, for any vector fields X,Y on
M , and any ξ ∈ Γ(E),

∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ = ρ∗Ω(X,Y )ξ,

where ρ∗Ω is the image of Ω in End(V ) under ρ∗ : Lie(G)→ End(V ).

Parallel transport and holonomy: Let E be a vector bundle of rank n over
M , and let P be the corresponding frame bundle. Let ∇ be a covariant derivative on
Γ(E), and let ω be the corresponding connection form on P , with curvature Ω. The
notion of parallel transport and holonomy in P has a corresponding explanation in
the setting of vector bundle E. To be more precise, let τ = xt, t ∈ [0, 1], be a smooth
curve in M , and let ut ∈ P be a horizontal lift of xt. Then the parallel transport τ
sends u0 ∈ Px0 to u1 ∈ Px1 . Note that in the current situation, ut is a basis of the
fiber Ext . Thus τ sending u0 to u1 induces naturally an isomorphism, still denoted by
τ : Ex0 → Ex1 , which is independent of the choice of the basis u0 of Ex0 . This is the
parallel transport in the setting of vector bundles. We note that ut is a horizontal lift
of xt if and only if ∇ d

dt
xt
ut = 0, where d

dtxt denotes the tangent vector of xt.

Exercise: (Infinitesimal holonomy and curvature) In a local coordinate {xi} of M ,
suppose Ts,t is the holonomy around the rectangular loop in the x1x2-plane, which
runs from (x1, x2) = (0, 0) to (s, 0), followed by (s, 0) to (s, t), then (s, t) to (0, t), then
(0, t) back to (0, 0). Prove that

Ts,t = Id+ (−Ω(
∂

∂x1
,
∂

∂x2
)(0, 0, · · · , 0) +O(s) +O(t))st.

In particular, the infinitesimal holonomy ∂2

∂s∂tTs,t|s=t=0 = −Ω( ∂
∂x1

, ∂
∂x2

)(0, 0, · · · , 0).

Exterior covariant derivatives: Fix any covariant derivative ∇ on Γ(E), we
can extend the exterior derivatives d : Ωk(M)→ Ωk+1(M) uniquely to R-linear maps
d∇ : Γ(E) ⊗ Ωk(M) → Γ(E) ⊗ Ωk+1(M), with d∇ = ∇ when k = 0, such that the
following equation is satisfied: for ξ ∈ Γ(E)⊗ Ωk(M), η ∈ Ωl(M),

d∇(ξ ∧ η) = d∇ξ ∧ η + (−1)kξ ∧ dη.

The maps d∇ are called exterior covariant derivatives.
Unlike the exterior derivative d, in general d2

∇ 6= 0. For any ξ ∈ Γ(E) ⊗ Ωk(M),
f ∈ C∞(M), let’s compute d2

∇(fξ):

d2
∇(fξ) = d∇(fd∇ξ+(−1)kξ∧df) = fd2

∇ξ+(−1)k+1d∇ξ∧df+(−1)kd∇ξ∧df+ξ∧d2f,

which implies d2
∇(fξ) = fd2

∇ξ. In other words, d2
∇ defines a smooth section of

End(E)⊗ Λ2M . The following gives another interpretation of curvature.

Exercise: Show that d2
∇ξ = Ω∇ ∧ ξ, where Ω∇ denotes the curvature of ∇, as a

smooth section of End(E)⊗ Λ2M .
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The Bianchi identity: Let P be any principal G-bundle over M , and let ω be any
connection in P , with curvature Ω viewed as a smooth section of (P×AdLie(G))⊗Λ2M .
Let ∇ be the associated covariant derivative on Γ(P ×Ad Lie(G)). Then

d∇Ω = 0,

which is called the Bianchi identity.

Exercise: Prove the Bianchi identity.
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