MATH 704: PART 1: PRINCIPAL BUNDLES AND CONNECTIONS

WEIMIN CHEN

CONTENTS
1. Lie Groups 1
2. Principal Bundles 3
3. Connections and curvature 6
4. Covariant derivatives 11
References 13

1. L1 GROUPS

A Lie group G is a smooth manifold such that the multiplication map G x G — G,
(g,h) — gh, and the inverse map G — G, g + g~ !, are smooth maps. A Lie subgroup
H of GG is a subgroup of G which is at the same time an embedded submanifold. A Lie
group homomorphism is a group homomorphism which is a smooth map between the
Lie groups. The Lie algebra, denoted by Lie(G), of a Lie group G consists of the set
of left-invariant vector fields on G, i.e., Lie(G) = {X € X(G)|(Lg)«+X = X}, where
Ly : G — G is the left translation Ly(h) = gh. As a vector space, Lie(G) is naturally
identified with the tangent space T.G via X — X(e). A Lie group homomorphism
naturally induces a Lie algebra homomorphism between the associated Lie algebras.
Finally, the universal cover of a connected Lie group is naturally a Lie group, which
is in one to one correspondence with the corresponding Lie algebras.

Example 1.1. Here are some important Lie groups in geometry and topology.

e GL(n,R), GL(n,C), where GL(n,C) can be naturally identified as a Lie sub-
group of GL(2n,R).

e SL(n,R), O(n), SO(n) = O(n) N SL(n,R), Lie subgroups of GL(n,R).

e SL(n,C), U(n), SU(n) =U(n) N SL(n,C), Lie subgroups of GL(n,C).

e Sp(2n), Lie subgroup of GL(2n,R), defined as the subgroup preserving the
standard symplectic form on R?". Sp(2n) N O(2n) = U(n), under the natural
identification of GL(n,C) as a subgroup of GL(2n,R).

e St C C, S* C H, the spin group Spin(n), n > 2, which is the universal cover
of SO(n). Note that Spin(n) — SO(n) is a double cover as m(SO(n)) = Zs
for n > 2; Spin(n) = Spin(n) x (413 S'.

e Lie groups of low dimensions: S' = SO(2) = U(1), S$*/{*£1} = SO(3), S* =
SU(2) = Spin(3), Spin®(3) = U(2), Spin(4) = S x §* = SU(2) x SU(2).
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1-parameter subgroups: Given any X € Lie(G), one can associate a 1-parameter
subgroup of G to X as follows. Let ¢;* : G — G denote the flow generated by the
vector field X. Then due to X being left-invariant, we have L, o X = ¥ o L, for any
g € G. This easily implies the following: (1) the flow ¢;* is complete, i.e., it is defined
for all t € R, (2) for any s,t € R, ¢X ()X (e) = ¢2X,4(e), (3) the flow ¢ : G — G is
given by the right translation Ryx . By (2), ¢ (e) € G is a 1-parameter subgroup
of G, which we associate to X € Lie(G).

Example 1.2. Consider G = GL(n,R). In this case, T.G = M(n,R) is the space
of all n x n matrices, and Lie(G) consists of maps A : GL(n,R) — M(n,R), where
Ae M(n,R), and A: X € GL(n,R) = XA € M(n,R). Hence the flow ¢;* generated
by A € Lie(G) obeys the ODE 4¢/ = ¢! A, which implies easily that ¢{'(e) = e/
It is clear that one can replace G by any other matrix groups.

Exponential Map: We define exp : Lie(G) — G by exp(X) = ¢ (e). It is
clear that ¢;¥(e) = exp(tX). One can check easily that exp : Lie(G) — G is a local
diffeomorphism from a neighborhood of 0 € Lie(G) onto a neighborhood of e € G,
with d(exp) equaling identity at 0 € Lie(G). By Example 1.2, for G = GL(n,R), the
exponential map exp is given by exp(X) = eX for any X € Lie(G).

The Adjoint Representation: For any g € G, the map Ad(g) : G — G defined by
h +— ghg~! is an automorphism of G. There is the induced Lie algebra automorphism,
which is also denoted by Ad(g) : Lie(G) — Lie(G) for simplicity. The corresponding
homomorphism Ad : G — GL(Lie(G)) sending g to Ad(g) is called the Adjoint Rep-
resentation of G. Note that Ad is a Lie group homomorphism. The corresponding Lie
algebra representation is denoted by ad : Lie(G) — M (Lie(G)), where M(Lie(G))
stands for the Lie algebra of GL(Lie(G)).

To determine Ad, we let X € Lie(G) and consider the corresponding 1-parameter
subgroup exp(tX). Then for any g € G, Ad(g) : Lie(G) — Lie(G) is given by X, €
TG (g~ eap(tX) - g Vlico = (Ry (68 (9))lio = (Ry1).(X,) € T.G. To de-
termine ad, for any X,Y € Lie(G), ad(X)(Ye) is given by %(Ad(e:cp(tX))(Ye))]t:g =
%(Rexp(ftX))*(Yrexp(tX))|t:0 = %((b)ft)*(yqbg((e))’t:() = (LXY)e = [Xa Y]eu which im-
plies that ad(X)(Y) = [X,Y] for any X,Y € Lie(G). Note that ad is a Lie algebra
homomorphism, i.e., ad([X,Y]) = ad(X)ad(Y) — ad(Y)ad(X), which is equivalent to
the Jacobi identity [X,[Y, Z]] + [Y,[Z, X]]| + [Z, [ X, Y]] = 0.

Exercise: For G = GL(n,R), show that Ad(X)(A) = XAX~! for any X €
GL(n,R) and A € M(n,R), and ad(A)(B) = AB — BA for any A, B € M(n,R).

The Canonical 1-Form: The canonical 1-form 6 on G is the Lie(G)-valued, left
invariant 1-form determined by 6(X) = X for any X € Lie(G). If we pick a basis
{X;} of Lie(G) and let {6’} be the dual basis of Lie(G)*, then 6 = >, 0°X;. Let
(X5, Xi]) = >, cékXi (here c;.k are called the structure constants which completely

determine the Lie bracket). Then df' = —1 >° ik cé-kHj A 0% called the Maurer-Cartan
equation.
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Exercise: Show that for G = GL(n,R), the canonical 1-form 6 is given by A —
A"'dA, A € GL(n,R).

Let p : G — G’ be any Lie group homomorphism, and let 6,6 be the canonical
1-forms on G, G’ respectively. We denote by p*#’, p.60 the Lie(G’')-valued 1-forms on
G defined as follows: for any tangent vector X on G,

(p"0")(X) = 0'(p«(X)), (p0)(X) = pu(0(X)).
Then by taking X to be a left-invariant vector field on G, it follows easily that
p 0 = p.b.
For reference see Chapter 20 of J. Lee [2]

2. PrRINCIPAL BUNDLES

Fix a smooth manifold M (assume M is connected without loss of generality) and
a Lie group G, a principal G-bundle over M is a smooth manifold P with a surjective
smooth map 7 : P — M (called projection), which satisfies the following conditions:

e The space P is equipped with a smooth, free, right action of G: P x G — P,
denoted by (p, g) — pg.

e For any (p,g9) € P x G, n(pg) = 7(p), and furthermore, 7 induces a diffeomor-
phism between the quotient space P/G and M.

e P is locally trivial, i.e., for any x € M, there is a neighborhood U and a G-
equivariant diffeomorphism ¢y : 71 (U) — U x G, py(p) = (7(p),%(p)), such
that oy (pg) = (w(p), ¥(p)g)-

The space P is called the total space, M is called the base, and G is called the the
structure group of the principal G-bundle. Two principal G-bundles P, P’ over M
are called isomorphic if there is a G-equivariant diffeomorphism from P to P’ which
induces the identity map on the base M. (Note: P being locally trivial is equivalent
to the G-action being proper.)

An alternative definition via transition functions: Suppose {U,} is an open
cover of M such that P is trivial over each U,, with a trivialization oy, : 7~ (Uy) —
Us x G. For any «, § such that U, NUg # 0, goUBogo{]i UaNUgx G = U, NUg x G
is given by (z,9) — (z,¢ga(z)g) for some smooth map ¢gq : Uy NUg — G. It is
easy to check that {yg.}, called the transition functions associated to {U,}, satisfy
the cocycle conditions p~g(x)pga(x) = Pya(x) for any € U,NUzNU,. On the other
hand, if we are given with an open cover {U,} of M and a set of smooth functions
{¥ga : UsNUg — G} satisfying the cocycle conditions ¢, 5(x)pga () = @ya(x) for any
x € U,NUgNU,, we can construct a principal G-bundle over M canonically as follows:
let P = UqUqy x G/ ~, where for any x € Uy, NUp, (x,9) € Uy X G ~ (z,¢p4(x)g) €
Ug x G. Then P is a smooth manifold with a natural projection 7 : P — M, induced
by the projections U, x G — U,, and a canonical smooth, free, right G-action on P,
induced by the right translations of G' on the G-factor of U, x G, making P a principal
G-bundle over M.

Example 2.1. (1) (Trivial bundles) P = M x G.
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(2) (Frame bundles) Let E — M be a smooth rank n real vector bundle. We define
the bundle of frames of E as follows: for any =z € M, let P, be the set of bases
(e1,€9,- -+ ,ey) of the vector space E,, the fiber of F at x, and set P := L,¢cp Py, with
a natural projection 7 : P — M such that 7~!(z) = P,, Vo € M. Let G = GL(n,R).
Then P admits a natural free right G-action, sending any basis (e1, ez, -+ ,€,) € Py to
(e1,€2,- -+ ,en)A € P, under the action of A € GL(n,R). To give a smooth structure to
P, for any open set U of M over which E admits a local frame o = (01,09, -+ ,0,), we
define a map ¢y, : U x G — P, sending (z, A) € U x G to (o1(z), -+ ,0n(2))A € Py,
which is clearly one to one, and is onto the image 7~ 1(U) C P. Using {¢v,}, we
can define a smooth structure on P with respect to which the G-action is smooth,
7w : P — M is smooth, inducing a diffeomorphism between the quotient space P/G
and M, and furthermore, P is locally trivial, with local trivializations given by (]55,10 :

7Y (U) — UxG. We remark that in terms of transition functions, P and E correspond
to the same set of transition functions. Similar arguments apply to the case where E
is a complex vector bundle, in which case the frame bundle is a principal GL(n, C)-
bundle. If E is a real vector bundle equipped with a metric, then the bundle of
orthonormal frames of F is naturally a principal O(n)-bundle.

(3) (Hopf fibration) Let S* be the unit sphere in C2, and let 7 : S* — CP! be the
map which sends p € S? to the complex line in C? which contains p. Then 7 is a
smooth surjective map. There are two free, right S'-actions on S3, defined by sending
(p,A) € S? x S! to pA and pA~! in S? respectively. These two S'-actions define S? as a
principal S'-bundle over CP! in two different ways (note that the local triviality of the
principal bundles follows automatically from the fact that S! is a compact Lie group).
Question: Are these two principal S*-bundles over CP' isomorphic?

Fiber bundles associated to a principal bundle: Let P be a principal G-bundle
over M, and let F' be a smooth manifold equipped with a smooth, left G-action. Then
on P x F we can define a smooth, free, left G-action as follows: for any (p,y) € P x F
and g € G, g- (p,y) = (pg~ ', gy) € P x F. One can check easily that this G-action is
proper, hence the quotient space is naturally a smooth manifold, denoted by P x g F.
Then P x ¢ F is naturally a fiber bundle (locally trivial) over M with fiber diffeomorphic
to F. Finally, if F' possesses some additional “structure” which is preserved under the
G-action on F', then the fibers of P x ¢ F' will inherit the “structure” from F.

Here are some important examples of this construction.

Example 2.2. (1) Consider the case where F' = V is a finite dimensional vector
space, with a given linear representation p : G — GL(V). In this case, G naturally
acts on V by (g,v) — p(g)v. For example, F' = R"™ and p : G — GL(n,R). Under this
assumption, the associated fiber bundle, denoted by E = P x, F, is a smooth real
vector bundle of rank n, and moreover, in terms of transition functions, F is given by
{powsa : UsNUg = GL(n,R)} where {¢g, : Uy NUg — G} is the set of transition
functions of P associated to a cover {Uy} of M. Note that in some sense, this is the
inverse procedure of the frame bundle construction described in Example 2.1(2).

(2) Suppose F = G is a Lie group and p : G — G’ is a Lie group homomorphism.
Then there is an induced smooth left G-action on G’ by (g,¢’) — p(g)g’. Note that
this G-action on G’ commutes with the right G’-action on G’ by right translations.



MATH 704: PART 1: PRINCIPAL BUNDLES AND CONNECTIONS 5

In this case, the associated fiber bundle, denoted by P’ := P X, F, is naturally a
principal G’-bundle over M, called the induced bundle of P by p. We remark that if
{¢Ba : UaNUz — G} is the set of transition functions of P associated to a cover {U,},
then the set of transition functions of P’ associated to {Uas} is {p o ¢ga : Ua NUz —
G'}. Finally, note that there is a canonical smooth map f : P — P’ defined as a
composition P — P x G’ — P xg G, where P — P x G' is by p — (p,e). Then it
is easy to see that f is fiber-preserving, equivariant with respect to p : G — G’ (i.e.,
f(pg) = f(p)p(g)), and induces the identity map on M.

When p : G — G’ is some canonical surjective homomorphism, i.e., p : Spin(n) —
SO(n), P is called a lifting of P', and when p: G — G’ defines G as a Lie subgroup
of G', P is called a reduction of P'. Note that in the latter case, f : P — P’ is an
embedding, which is equivariant with respect to the right G-actions on P, P'.

(3) Consider the case F' = G/H is a homogeneous space, where P is a principal
G-bundle and H is a Lie subgroup of G. Recall that G/H = {gH|g € G} is the
set of right H-cosets, so there is a natural smooth left G-action on G/H, given by
(9,9H)— gg'H. Set E := P xg G/H.

There is a canonically defined smooth, surjective map 7 : P — E, as the composition
of maps P — P x G/H — E, where the first map is the embedding p — (p,eH) and
the second map is the natural projection P x G/H — P xg G/H to the quotient
space. Since the first map P — P x G/H is equivariant with respect to the H-actions
(the H-action is from the right on P and from the left on P x G/H), it follows easily
that w(ph) = m(p) for any p € P and h € H. Note that the right H-action on P
is smooth, free and proper, and note that 7w induces a diffeomorphism between the
quotient manifold P/H and the associated fiber bundle E. In other words, with 7, P
becomes a principal H-bundle over E.

Pull-back bundles: Fix P, a principal G-bundle over M, and let N be a smooth
manifold. For any smooth map f : N — M, we can define a principal G-bundle P’
over N, called the pull-back bundle of P by f, as follows: As a smooth manifold, P’
is the submanifold of N x P, consists of points (y,p) such that f(y) = w(p) in M,
where m : P — M is the bundle projection. Since w : P — M is a submersion, P’
is a submanifold of N x P for any smooth map f : N — M. The dimension of P’
equals dim N + dim P — dim M = dim N + dim G. To see P’ is a principal G-bundle
over N, we define 7’ : P’ — N by sending (y,p) € P/ to y € N. Then it is clear that
(')~ (y) = Py(y), the fiber of P at f(y) € M. We define a right G-action on P' by
((y,p),9) — (y,pg), which is clearly smooth and free, and with 7’ : P’ — N inducing
a diffeomorphism between P’/G and N. Finally, note that if P is trivial over U C M,
then P’ is trivial over V := f~1(U) C N. Hence 7’ : P’ — N is a principal G-bundle.
We end with the observation that if {¢gs : Uy N Ug — G} is the set of transition
functions of P associated to a cover {Uy} of M, then {pgq0f : VoNVg — G} is the set
of transition functions of P’ associated to the cover {V,} of N, where V, = f~}(U,).
Finally, we observe that there is a canonical principal G-bundle map f : P/ — P,
sending (y,p) € P’ to p € P, covering the map f: N — M.

Example 2.3. Consider the fiber bundle £ — M associated to a principal G-bundle
P described in Example 2.2(3), where the fiber of E' is the homogeneous space G/H.
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Suppose there is a smooth section of the bundle f : M — E, and let P’ be the
principal H-bundle over M which is the pull-back bundle of the principal H-bundle
P — E by f. Then there is a corresponding principal H-bundle map f : P’ — P,
which defines P’ as a reduction of the principal G-bundle P to a principal H-bundle.
On the other hand, it is easy to see that any reduction P’ — P of a principal G-bundle
to a principal H-bundle gives rise to a smooth section of the associated fiber bundle
E — M, where E = P xg G/H. Thus the problem of existence of a reduction to a
principal H-bundle is reduced to the problem of existence of smooth sections of the
associated fiber bundle £ — M, which is a problem solvable using homotopy theory.
For example, for G = GL(n,R), H = O(n), it is known that G/H is a contractible
space. This implies that every principal GL(n,R)-bundle admits a reduction to a
principal O(n)-bundle, or equivalently, every real vector bundle has a metric.

3. CONNECTIONS AND CURVATURE

Fix a principal G-bundle P over M. First of all, for any A € Lie(G), we define
a vector field A* on P, called the fundamental vector field corresponding to A, as
follows: for any u € P, A}, is the tangent vector of the smooth curve ug; in P where
gy = exp(tA). Tt is clear that A* is nowhere vanishing. In what follows, we shall adapt
the following notation: for any g € G, let R, : P — P be the map u > ug. Then
observe that (R,).A* = (Ad(g~1)(A))*.

For any u € P, let G, be the subspace of T, P consisting of vectors tangent to the
fiber of P through u. Then a connection in P, denoted by I, is an assignment of a
subspace Q,, of T, P to each u € P depending smoothly on u, such that

(a) T,P = Gy, + Q as a direct sum,
(b) ng = (Rg)*QlH for any g € G.

A connection I" in P can be equivalently defined by a Lie(G)-valued 1-form w on
P, where w is uniquely characterized by the properties that (1) w(A*) = A for any
A € Lie(G), (2) wu(X) =0 for any X € Q, and any u € P. It is clear that w obeys
the following two conditions:

(a’) w(A*) = A for any A € Lie(G),
(1) (Ry)*w = Ad(g~1)w, where for any tangent vector X on P, (Ry)*w(X) =
w((Ry)-(X)), and Ad(g~H)w(X) = Ad(g~)(@(X)).
Conversely, any Lie(G)-valued 1-form w on P obeying (a’), (b’) defines a connection
in P by setting Q, = kerwy, i.e., Q, = {X € T, P|lw,(X) = 0}. Such a form is called
a connection form.

There is a third way to describe a connection in P, which is through a system of lo-
cally defined, Lie(G)-valued 1-forms on M satisfying certain compatibility conditions.
To see this, let {U,} be an open cover of M such that over each Uy, a localization of P
is given by ¢ : 71 (Us) — Uy x G, and we let {¢p,} be the associated transition func-
tions, such that ygoy, 1 (z, g) = (7, psalr)g). For each a, set 04 (x) := Y 1 (z,€) € Py,
x € U,, which is a local smooth section of P over U,. Then note that o, = og¢g.
over U, N Ug. With this understood, for any given connection form w on P, we set
Wq = 0w, which is a Lie(G)-valued 1-form on U,. Let € be the canonical 1-form on
G, and for any «, 3, set 0o = ¢},0, which is a Lie(G)-valued 1-form on U, N Up.



MATH 704: PART 1: PRINCIPAL BUNDLES AND CONNECTIONS 7

Then the system of Lie(G)-valued 1-forms {w,} obeys the following compatibility
conditions

wa () = Ad(pga(z) Hws(w) + Osa(z), Yo € UyNUs.
Conversely, any such a system of Lie(G)-valued 1-forms {w,} defines a connection
form w on P, such that w, = o}w, Vo

Example 3.1. In the case of G = GL(n,R), each w, is a n x n matrix-valued 1-form
on Uy, and 03, = cpgolldgo/ga as § = A~'dA for G = GL(n,R). Furthermore, recall that
Ad(X)(A) = XAX ! for any X € GL(n,R) and A € M (n,R). With this understood,
the compatibility conditions for {w,} read as

Wa = PgawsPpa + PaadPsa-

Theorem 3.2. (Existence of connections) There exists a connection in P. Moreover,
the space of connections in P can be identified with the space of smooth sections of
the vector bundle (P X aq Lie(G)) @ T*M, where P X a4 Lie(G) is the vector bundle
associated to P by the adjoint representation Ad : G — Lie(G).

Induced connections: Let P’ be a principal G’-bundle which is the induced
bundle of P by p : G — G, and let f : P — P’ be the corresponding bundle
map. Then for any given connection I' in P, there is an induced connection I in P’
defined as follows. Suppose u € P +— @, C T,P is the assignment which defines
I'. We define an assignment v’ € P’ — Q. C TP by first setting Q. = f«(Qu)
for some v’ = f(u), Vx € M and 7(u) = x, and then for any other points in the
fiber P, which is of the form u'¢" for some ¢' € G’, we define Qg = (Ry)+Qu-
This assignment is well-defined due to the fact that f : P — P’ is equivariant with
respect to p: G — G', and it automatically satisfies condition (b) in the definition of
connections. On the other hand, note that m, sends the subspace @), isomorphically
onto T, M, x = w(u), and since f induces the identity map on M, it follows easily
that condition (a) is also satisfied by the assignment «' — Q.. Hence we obtain
the induced connection I'V. We observe that if w,w’ are the corresponding connection
forms of I', I, then f*w’ = p.w holds true as Lie(G’)-valued 1-forms on P. This is
because for any A € Lie(G), f« sends the fundamental vector field A* on P to the
fundamental vector field corresponding to p«(A) on P’. Finally, we point out that
another, equivalent definition of induced connection is as follows: let {U,} be an open
cover of M such that over each Uy, a trivialization 1, is given for P, with associated
transition functions {¢ga}. If {ws} is a system of locally defined, Lie(G)-valued 1-
forms on M which gives a connection I" in P, then the system of Lie(G’)-valued 1-forms
{wl}, where w!, := p.w,, satisfies the compatibility conditions

wh(z) = Ad(nplﬁa(a:)*l)w%(x) + 03, (z), Vo e UyNUs,

o
where {¢}, = po @ga} is the corresponding set of transition functions for P', and
050 = (P3,)"0. This is because p, o Ad(g) = Ad(p(g)) o p« and p*¢' = p.0. Hence
{w!,} defines a connection in P’, which is the induced connection of T'.

Pull-back connections: Let P’ be the pull-back bundle of P by a smooth map
f: N — M, and let f : P — P denote the corresponding bundle map. Then for
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any connection I' in P, the pull-back connection of ' is a connection I in P’ defined
as follows: let w be the connection form for T, then one can easily check that the
pull-back form f*w on P’ is also a connection form (i.e., obeying (a’) and (b’)), which
defines the pull-back connection I'. Finally, one can easily check that if {w,} is a
system of locally defined Lie(G)-valued 1-forms defining I', then the pull-back forms
{f*wq} defines I".

Parallel transport: We fix a connection I' in P, as assignment u — @,,. For any
x € M and any tangent vector X € T, M, we can define its horizontal lift X* for any
u € Py, such that X is the unique vector in @, sent to X under 7. It is clear that
Xog = (Rg)«Xu, Vg € G. If X is a vector field on M, then we obtain a vector field X*
on P, called the horizontal lift of X.

For any smooth curve 7 = x4, 0 < ¢t < 1, in M, a smooth curve u; in P is called a
horizontal lift of T if w(u;) = x4 for all ¢t and the tangent vectors of u; are horizontal.

Theorem 3.3. For any smooth curve T = x¢, and any ug € Py, there exists a unique
horizontal lift uy of T such that the initial point of us is ug.

Exercise: The problem is essentially local, so prove Theorem 3.3 for the case when
P=MxG.

With Theorem 3.3, we can now define parallel transport. Given any smooth curve
T =24, 0 <t <1 (in fact it can be more generally a piecewise smooth curve), we
define the parallel transport long 7 as follows: for any u € Py, we let 7(u) € Py,
be the end point of the horizontal lift of 7 whose initial point is uw. Clearly this
defines an isomorphism 7 from the fiber P,; to the fiber P, . Note that the inverse
71 P, — P,, is the parallel transport along the curve 14, 0 <¢ < 1.

Application: Here is a nice application of parallel transport: suppose fy, f1 : N —
M be two smooth maps which are homotopic. Then the pull-back bundles of P by
fo, f1 must be isomorphic. To see this, let f : N x [0,1] — M be the homotopy
between fo, f1, and let P’ — N x [0, 1] be the pull-back bundle of P by f. We pick a
connection in P’. Then the parallel transport along the curves 7, in N x [0,1], y € N,
where 7,(t) = (y,t), defines an isomorphism between the pull-back bundles of P by
fo, fi. This fact is fundamental for the classification of principal G-bundles up to
isomorphism. In fact, for any Lie group G, there is a classifying space of G, denoted
by Bg, and a (universal) principal G-bundle E¢ over Bg, such that for any principal
G-bundle P over M, there is a map f from M to Bg such that P is isomorphic to the
pull-back bundle of Eg by f.

Holonomy: For any x € M, let C(z) be the set of piecewise smooth curves whose
initial point and end point are x. We define a product structure on C(z) as follows:
for any p, 7 € C(x), the product u - 7 is the piecewise smooth curve obtained from 7
followed by p. With this understood, the parallel transport defines a map ¢ : C(z) —
Aut(P,), the automorphism group of the fiber P,. Its image, denoted by ®(z), is called
the holonomy group based at x. One can identify the holonomy group ®(x) with a
subgroup of G as follows: pick a point u € P, then for any 7 € C(z), 7(u) = ug for
a unique element g € G. The assignment ¢ : 7 +— g satisfies ¢(u - 7) = ¢(u)o(7). Its
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image ®(u), which is a subgroup of G, is isomorphic to the holonomy group ®(x). Note
that ®(u) is uniquely determined up to conjugacy. A proof of the following theorem
can be found in [1].

Theorem 3.4. The holonomy group ®(u) is a Lie subgroup of G. Moreover, the
principal G-bundle P admits a reduction to a principal ®(u)-bundle.

If we let P(u) be the subspace of P which consists of points that can be connected to
u by a piecewise smooth, horizontal curve in P. Then P(u) is a principal ®(u)-bundle
and the embedding P(u) — P defines the reduction. Compare Example 2.3.

Curvature: Let w be a connection form on P. Then dw is a Lie(G)-valued 2-form
on P. On the other hand, for any tangent vectors X,Y of P, [w(X),w(Y)] also defines
a Lie(G)-valued 2-form on P, where the bracket is the Lie bracket of Lie(G). We set
QX,)Y) =dw(X,Y) + [w(X),w(Y)], called the curvature of w.

Lemma 3.5. Q(X,Y) = 0 if one of X orY is vertical (i.e., tangent to the fibers).
Moreover, if X*,Y* are horizontal vector fields, then Q(X*,Y™*) = —w([X*, Y™]).

By the first sentence of Lemma 3.5, 2 can be regarded as a smooth section of
(P X aq Lie(G)) @ A>M. If P is given by transition functions {¢s,} and accordingly
w is given by a system of Lie(G)-valued 1-forms {w,}, then 2 is given by a system
of Lie(G)-valued 2-forms {Qq}, where Q4 := dws + 3[wa, wa]. One can check directly
that {Q,} obeys

Qo = Ad(p5,)2-

Note that this particularly shows that 2 is a smooth section of (P x 4q Lie(G)) @ A2M.
Let P’ be a principal G’-bundle which is the induced bundle of P by p : G — G’, and
let f: P — P’ be the corresponding bundle map. Let w’ be the induced connection
of w. Since f*w' = pyw, it follows easily that the corresponding curvatures €2, €, as
2-forms on M, obey the equation ' = p,Q. Likewise, if P’ is the pull-back bundle
of P by a smooth map f : N — M, and w’ is the pull-back connection of w, the
corresponding curvatures 2, €', as 2-forms on M, are related by Q' = f*Q.

Exercise: For the case G = GL(n,R), recall that each w, is a n X n matrix-valued
1-form on U,. Show that €, = dw, + wa A ws as a n X n matrix-valued 2-form on U,
and obeys {2y, = @[;;Qggpﬂa.

Flat connections: A connection is called a flat connection if its curvature vanishes.
By the second statement of Lemma 3.5, if a connection I', u — @Q,, is flat, then for
any horizontal vector fields X*, Y*, its Lie bracket [X*, Y*] continues to be horizontal,
which means that I' as a distribution is integrable. By Frobenius Theorem (cf. [2]),
for any u € P, there is a maximally defined, connected submanifold P(u) such that
for any v’ € P(u), Qu = TwP(u). Note that the restriction of 7 : P — M to the
submanifold P(u) is a covering map. It follows that the holonomy groups of a flat
connection are discrete subgroups of G, and the corresponding map ¢ : C'(z) — G can
be factored through to a homomorphism 71 (M, z) — G. It follows easily that

{flat connections on principal G-bundles over M}/ som <— {m1 (M) — G}/conjugacy.
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Gauge transformations: Let I' : u — @, be a connection in P and f: P — P be
any automorphism of P. Then the pushforward of f, fI' : u — f.Qf-1(,), naturally
defines a connection in P, called the gauge transformation of I' by f. Note that the
gauge transformation of a flat connection is again a flat connection.

Exercise: Show that an automorphism of P can be identified with a smooth section
of the associated fiber bundle P x 44 G, where the left action of G on F' = G is given
by (g9,9') — Ad(g9)(¢') = gg'g~*. Moreover, suppose a connection I' is given by a
system of local Lie(G)-valued 1-forms {w,} and a bundle automorphism of P is given
by a system of local smooth maps to G, {g.}, then the gauge transformation of I" is
given by the local Lie(G)-valued 1-forms { Ad(ga)(wa — ¢50) }, where 6 is the canonical

1-form on G.

Example 3.6. In this example, we revisit the principal S'-bundles over CP' where

P =S3 (see Example 2.1(3)). First consider the case where the S'-action is given by

the first choice in Example 2.1(3). Before we begin, note that Lie(S') = iR C C.
Consider the connection form w on S3, where at z = (21,91, T2, y2) € S,

2
w(z) = iZ(iﬁkdykz — yrdzy).
k=1

One can check easily that w is S'-equivariant. On the other hand, note that the S'-
action is generated by the vector field X := Zizl(mkayk — YOy, ), whose corresponding
Lie algebra generater is i (i.e., X is the fundamental vector field corresponding to
i € Lie(S')). Note that w(X) = i. Since the adjoint representation Ad of S! is trivial
(S is Abelian), it follows that w is a connection form on S3.

Next we compute the curvature of w, 2 = dw, as an ¢-valued 2-form on the base
CP!. To this end, we consider a local coordinate chart (U, #) of CP! and a local
section to S® over U. As a map defined on ¢(U) = C, the local section is given by
z (\/1;2'2, \/1i‘z|2>. Then the pull-back of Q by this local section is the 2-form

we are looking for. An easy calculation shows that it equals —%. Note that

the integral of this form over C equals 27i. Consequently, the integral of € over CP!
equals 27, or [rp: iQ = —1.

Now we make the following three observations: (1) if w’ is any other connection form,
then w’ = w+in*a for some 1-form @ on CP! (cf. Theorem 3.2). Hence ) = Q+in*da,
and as a consequence, [ep1 5= = [p1 52 = —1. (2) If we change the S'-action to
the second choice, then note that the vector field generating the S'-action becomes
— X, so the connection form changes to —w. The curvature also changes by sign, so
is the integral f(C]Pl ﬁﬂ (3) Isomorphic principal S!-bundles have the same integral

Jepr 292
Conclusion: The two principal S'-bundle structures on S? are not isomorphic.

This is perhaps the simplest example in the Chern-Weil theory; the integral fmﬂ ﬁQ
is the so-called the first Chern number.
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A side note: There is a symplectic geometry aspect in this example. Consider
the standard symplectic structure on R*, wy := Zzzl dxy A dyg, and the vector field
V = %Zi:l 20z, + YOy, , which obeys Lywy = wp (such a V' is called a Liouville
vector field). Since V is transverse to S3, the 1-form o := 4y wy is a contact form on S?,
and € := ker o is called a contact structure on S3. We observe that in the example, the
connection form w = 2ia, in particular, the connection distribution ker w = kera = ¢
is the contact structure.

Reference for most of this section and the previous section is [1].

4. COVARIANT DERIVATIVES

Connections in a vector bundle: Let E be a vector bundle of rank n over M,
and let T'(E) denote the space of smooth sections of E. A covariant derivative on
['(E) is a R-linear map V : I'(E) — I'(E) ® Q' (M) satisfying the following condition:
for any f € C°(M), £ e T'(E),

V(f€) = £ @ df + fVE.
Note that for any vector field X, there is an associated R-linear map Vx : I'(E) —
['(E) satisfying Vx(f&) = Xf- £+ fVx€E.
Exercise: Show that the difference of two covariant derivatives defines a smooth

section of End(E) @ T*M. Conversely, if V is a covariant derivative on I'(E), A is a
smooth section of End(F)® T*M, then V + A is also a covariant derivative on I'(E).

Now we describe a covariant derivative V in terms of a given localization of E. To
begin with, let {U,} be an open cover of M, such that E is trivial over each U,, and
we let {734 : UsNUg — GL(n,R)} be the set of associated transition functions. Since
FE is trivial over U,, a smooth section of F over U, is simply a smooth R"-valued
function on U,. As such, the usual exterior differential d defines a natural covariant
derivative. By the above Exercise, over U,, V = d + A, for some A, where A, is
a n X n matrix whose entries are 1-forms on U,. Thus V corresponds to a system
of n x n matrix valued 1-forms {A,}. The crucial observation is that for any «, 3,
An, Ag satisfy the following compatibility condition over U, N Ug:

Ay = TE;Anga + Tﬂ_aldTga.

On the other hand, from the discussion in the previous section, { A, } defines a connec-
tion in the principal GL(n,R)-bundle P, which is the frame bundle of E (cf. Example
2.1(2)). Conversely, given any connection in P. there is a {A,} satisfying the above
compatibility condition, which determines a covariant derivative V on I'(E), where
over each U,, V = d + A,. This establishes a one to one correspondence between
covariant derivatives on I'(F) and connections in the associated frame bundle P of E.

Exercise: Let €2 be the curvature of the connection in P corresponding to V, which
is viewed as a smooth section of End(E) ® A?M (note that P x 44 Lie(G) = End(E)
here). Show that for any vector fields X,Y on M, and any ¢ € I'(E),

VxVy&—VyVxé—Vixyé =QX,Y).
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More generally, let P be any principal G-bundle over M, V' be any finite dimensional
vector space, and p : G — GL(V) be any given linear representation. Let E := P x,V
be the associated vector bundle. Then for any given connection w in P, there is an
associated covariant derivative V on I'(E). Moreover, for any vector fields X,Y on
M, and any ¢ € T'(E),

VxVy{ = VyVx{ = Vixy€ = p(X,Y)E,
where p, ) is the image of 2 in End(V') under p, : Lie(G) — End(V).

Parallel transport and holonomy: Let E be a vector bundle of rank n over
M, and let P be the corresponding frame bundle. Let V be a covariant derivative on
['(E), and let w be the corresponding connection form on P, with curvature 2. The
notion of parallel transport and holonomy in P has a corresponding explanation in
the setting of vector bundle E. To be more precise, let 7 = x4, t € [0, 1], be a smooth
curve in M, and let uy € P be a horizontal lift of ;. Then the parallel transport
sends ug € P, to u1 € P;,. Note that in the current situation, u; is a basis of the
fiber E;,. Thus 7 sending ug to u; induces naturally an isomorphism, still denoted by
7 : Ey, — E;,, which is independent of the choice of the basis ug of E,,. This is the
parallel transport in the setting of vector bundles. We note that u; is a horizontal lift
of x; if and only if V 4, Ut = 0, where %xt denotes the tangent vector of x;.

Exercise: (Infinitesimal holonomy and curvature) In a local coordinate {z'} of M,
suppose T is the holonomy around the rectangular loop in the x'z2-plane, which
runs from (z!,2%) = (0,0) to (s,0), followed by (s, 0) to (s,t), then (s,t) to (0,t), then
(0,t) back to (0,0). Prove that

0o 0
T57t = Id + (—Q(@, @)(0, 07 e ,O) + O(S) + O(t))st
. P 2
In particular, the infinitesimal holonomy %Ts,tlsztzo = —Q(%7 %)(07 0,---,0).

Exterior covariant derivatives: Fix any covariant derivative V on I'(E), we
can extend the exterior derivatives d : QF(M) — QFF1(M) uniquely to R-linear maps
dy : T(E) @ QF(M) — T(E) @ Q1 (M), with dgy = V when k = 0, such that the
following equation is satisfied: for £ € T'(E) ® Q¥(M), n € QY(M),

dv(§An) = dv€ An+ (—1)F¢E Adn.

The maps dvy are called exterior covariant derivatives.
Unlike the exterior derivative d, in general d3, # 0. For any ¢ € I'(E) ® QF(M),
f € C>®(M), let’s compute dZ (f¢):

A% (f€) = d(fdvé+(—1)FENdf) = fdoé+ (—1)"dvéndf + (—1)Fdvé ndf +END S,

which implies dQV( f& = fd%f. In other words, (12V defines a smooth section of
End(E) ® A2M. The following gives another interpretation of curvature.

Exercise: Show that d%f = Qy A&, where Qv denotes the curvature of V, as a
smooth section of End(E) ® A>M.
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The Bianchi identity: Let P be any principal G-bundle over M, and let w be any
connection in P, with curvature § viewed as a smooth section of (P x s4Lie(G))®@A2M.
Let V be the associated covariant derivative on I'(P x 44 Lie(G)). Then

doQ =0,
which is called the Bianchi identity.

Exercise: Prove the Bianchi identity.
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