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1. Integral curves and flows

Let X ∈ X (M) be a smooth vector field on a smooth manifold M . An integral
curve of X is a smooth curve γ : (a, b)→M such that

γ′(t) = X(γ(t)), ∀t ∈ (a, b).

More generally, let Xt ∈ X (M) be a time-dependent smooth vector field, where t ∈ J
lies in an interval J (of any type), where we assume Xt depends on t smoothly. An
integral curve of Xt is a smooth curve γ : (a, b) ∩ J →M , such that

γ′(t) = Xt(γ(t)), ∀t ∈ (a, b) ∩ J.

Let’s examine the integral curve equation in local coordinates. Suppose γ(t) ⊂ U
for t ∈ (a, b), and let x1, x2, · · · , xn be a system of local coordinate functions on U .
Then there are smooth functions γ1(t), γ2(t), · · · , γn(t) on (a, b) such that the smooth
curve γ(t) is given by xi = γi(t), i = 1, 2, · · · , n. With this understood, note that
γ′(t) =

∑n
i=1 γ

′
i(t)

∂
∂xi
|γ(t). On the other hand, Xt(p) =

∑n
i=1X

i(t, p) ∂
∂xi
|p for some

functions Xi(t, p) which are smooth in both t and p, where t ∈ J , p ∈ U . With
this understood, the time-dependent integral curve equation γ′(t) = Xt(γ(t)), ∀t ∈
(a, b) ∩ J , with initial value condition γ(s) = p, where s ∈ J , p ∈ U , becomes

γ′i(t) = Xi(t, γ1(t), · · · , γn(t)), γi(s) = xi(p), i = 1, 2, · · · , n,

which is a system of (time-dependent) ODEs in γ1(t), γ2(t), · · · , γn(t). The correspond-
ing theory of ODEs implies the following results which are relevant in our discussion:

Local Existence: For any p0 ∈ M , s0 ∈ J , there are open neighborhoods U0

of p0, J0 ⊂ J of s0, such that for any p ∈ U0, s ∈ J0, there is an interval (a, b),
with J0 ⊂ (a, b) ∩ J , and a smooth curve γs,p : (a, b) ∩ J → M , which satisfies
γ′s,p(t) = Xt(γs,p(t)), with initial value condition γs,p(s) = p.
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Uniqueness: For fixed p ∈ U0, s ∈ J0, if γ : (a, b) ∩ J → M , γ̃ : (ã, b̃) ∩ J → M
are two solutions of the integral curve equation with the same initial value condition,
i.e., γ(s) = γ̃(s) = p, then γ = γ̃ on the overlap (a, b) ∩ (ã, b̃) ∩ J .

Smoothness: Let θ : ((a, b) ∩ J) × J0 × U0 → M be the map sending (t, s, p) to
γs,p(t). Then θ is a smooth map.

Exercise: Let M = R, and let γ : R → M defined by γ(t) = t3. Explain why the
tangent vectors γ′(t) define only a continuous, not smooth, vector field on M .

Fundamental Question: Concerning global properties of integral curves on smooth
manifolds, the fundamental question is under what conditions on the vector field Xt,
the integral curve γs,p(t) is maximally defined, i.e., is defined for all t ∈ J , for any
s ∈ J and any p ∈ M (resp. a subset U of M). We will call such a Xt complete
(resp. over subset U). A special case worth of attention is the following: let K ⊂ M
be the subset such that Xt(p) = 0 for all p ∈ K, t ∈ J . Then for any p ∈ K, the
constant curve γs,p(t) ≡ p, where s ∈ J , t ∈ J , is the unique solution to the integral
curve equation with the initial value condition determined by s and p.

Suppose Xt is a complete vector field. Then for any fixed s0 ∈ J , we define a smooth
family (in t) of smooth maps θs0t : M →M , where t ∈ J , by setting

θs0t (p) := θ(t, s0, p) = γs0,p(t).

Note that θs0s0 = IdM , and for each t ∈ J , θs0t is a diffeomorphism, as θts0 ◦ θ
s0
t = IdM .

(Intuitively speaking, the map θs0t is defined by moving along the integral curves of
Xt from time s0 to time t.) Furthermore, if Xt ≡ 0 on a subset K ⊂M for all t ∈ J ,
θs0t ≡ Id on K for any t ∈ J . This construction allows us, by choosing Xt properly, to
construct diffeomorphisms on M with various geometrical or topological significance.

Example 1.1. Consider M = R2 \ {(0, 0)}, and let x, y be the standard coordinate
functions on R2. Let Xt = ∂

∂x , where t ∈ J = R, which is time-independent. It is
easy to see that for any initial value condition s ∈ J , p ∈ M , if p lies on the x-axis,
the corresponding integral curve can not be defined for all t ∈ J = R, because of
the existence of a “hole” (0, 0) in M . Thus the vector field Xt in this example is not
complete, and its non-completeness is related to certain non-compactness, which will
be made more precise in the following lemma (i.e., Escape Lemma).

First, note that for any fixed initial value condition s ∈ J , p ∈M , there is a maximal
sub-interval Js,p ⊂ J , over which the integral curve γs,p is defined (i.e., γs,p can not
be extended over a sub-interval of J strictly containing Js,p), due to the Uniqueness
property mentioned earlier.

Lemma 1.2. (Escape Lemma) For any s ∈ J , p ∈M , if Js,p 6= J , then γs,p(Js,p) can
not lie in a compact subset of M .

Proof. Since Js,p 6= J , there is a sequence ti ∈ Js,p which converges to t0 ∈ J , such
that t0 ∈ J \ Js,p. Suppose to the contrary that γs,p(Js,p) lies in a compact subset of
M . Then the sequence pi := γs,p(ti) ∈M has a convergent subsequence, which is still
denoted by {pi} without loss of generality. We denote the limit of {pi} by p0 ∈ M .
By the Local Existence, there are open neighborhoods U0 of p0, J0 of t0, such that
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for any initial value condition s ∈ J0, q ∈ U0, there is an integral curve γs,q : J0 →M
such that γs,q(s) = q. With this understood, we pick a ti ∈ J0 for i large enough, such
that pi ∈ U0. Then both γti,pi and γs,p satisfies γti,pi(ti) = pi, γs,p(ti) = pi. By the
Uniqueness property, γti,pi = γs,p on the overlap of their domains. Consequently, we
may extend γs,p over to the sub-interval Js,p ∪ J0 of J , which is strictly larger than
Js,p. This contradiction shows that γs,p(Js,p) can not lie in a compact subset of M .

�

For a time-dependent vector field Xt, t ∈ J , we define and denote its support by

supp Xt := {p ∈M | there is a t ∈ J such that Xt(p) 6= 0}.

Corollary 1.3. If supp Xt is compact, in particular, if M is compact, then Xt is
complete.

Proof. For any s ∈ J , p ∈ M , if γs,p(Js,p) ⊂ supp Xt, then J = Js,p by Lemma
1.2. If γs,p(Js,p) is not contained in supp Xt, then there is a t0 ∈ Js,p such that
p0 := γs,p(t0) ∈ M \ supp Xt. In this case, Xt(p0) = 0 for all t ∈ J . Consequently,
the integral curve γt0,p0(t) = p0 for all t ∈ J . Since γs,p(t0) = p0, we see immediately
γs,p(t) = p0 for all t ∈ J by the Uniqueness property. In particular, J = Js,p as well.
Hence Xt is complete. �

In general, for non-complete vector fields Xt, we can still define the smooth maps
θs0t locally, for t sufficiently close to s0. The following lemma makes this precise.

Lemma 1.4. Fix any s0 ∈ J . Then for any p0 ∈ M , there is an open neighborhood
V of p0 and an ε > 0, such that for t ∈ (s0 − ε, s0 + ε) ∩ J , the maps θs0t defined by
θs0t (p) := γs0,p(t) form a smooth family of smooth open embeddings from V into M .

We remark that one may regard the maps θs0t as germs of open embeddings centered
at points of M , defined for |t− s0| sufficiently small. With this in mind, note that

θs1s2 ◦ θ
s0
s1 = θs0s2

holds true for s0, s1, s2 sufficiently close.

Proof. By the Local Existence, there is an open neighborhood U0 of p0, an open
neighborhood J0 of s0 in J , such that the integral curve γs,p : J0 → M exists for any
s ∈ J0 and p ∈ U0. Moreover, γs,p is unique, and the map θ : J0×J0×U0 →M , sending
(t, s, p) to γs,p(t) is smooth. We consider the restriction of θ on J0 × {s0} ×U0, which
is also smooth, and choose an ε > 0 sufficiently small, such that θ(t, s0, p0) ∈ U0 when
|t− s0| ≤ ε and t ∈ J0. In other words, ([−ε+ s0, s0 + ε]∩J0)×{p0} ⊂ θ−1(U0). Since
([−ε+s0, s0+ε]∩J0)×{p0} is compact, there is an open neighborhood V of p0, such that
([−ε+s0, s0+ε]∩J0)×V ⊂ θ−1(U0). In particular, for any t ∈ (s0−ε, s0+ε)∩J ⊂ J0,
γs0,p(t) ⊂ U0 for any p ∈ V . Since there is a unique integral curve γs,p : J0 → M for
any s ∈ J0 and p ∈ U0, the map θs0t defined by θs0t (p) := γs0,p(t), for p ∈ V , has a
smooth inverse, which is defined by moving along the integral curves backwards. This
proves that each θs0t is a smooth open embedding. �



4 WEIMIN CHEN

Besides local versions of θs0t for |t− s0| small, θs0t can be defined for all t ∈ J under
certain additional conditions. The following result is frequently used in the proof of
various “neighborhood theorems” in symplectic/contact geometry.

Theorem 1.5. Let J = [0, 1], and let K ⊂ M be a compact subset. Suppose Xt is a
time-dependent vector field on M , such that Xt ≡ 0 on K for any t ∈ J . Then there
is an open neighborhood V of K such that for any p ∈ V , θt(p) := γ0,p(t) is defined
for all t ∈ J (here γ0,p(t) denotes an integral curve of Xt). Moreover, θt : V →M , for
t ∈ J , form a smooth family of open smooth embeddings, with θ0 = Id, and θt = Id
on K for all t ∈ J .

In applications, K is either a point in M or a compact closed embedded submanifold
of M .

Proof. Since K is compact, there is an open neighborhood U of K such that the closure
U is compact. We first show that there is an open neighborhood U0 ⊂ U of K, such
that for any s ∈ J , p ∈ U0, the integral curve γs,p(t) ⊂ U of Xt is defined for all t ∈ J .
Suppose to the contrary this is not true. Then there is a sequence {pi} converging
to a point p0 ∈ K, a sequence si ∈ J , such that γsi,pi(t) ⊂ U is not defined for all

t ∈ J . Let (ai, bi) be the maximal interval over which γsi,pi(t) ⊂ U . Then since U is
compact, by the same argument as in Lemma 1,2, either γsi,pi(ai) or γsi,pi(bi) must

lie on U \ U . Suppose si converges to s0 ∈ J . Then it is easy to see that the integral
curves γsi,pi(t) converges to the integral curve γs0,p0(t). But since Xt(p0) = 0 for all
t ∈ J , γs0,p0(t) ≡ p0, which contradicts the fact that either γsi,pi(ai) or γsi,pi(bi) must

lie on U \ U . Hence the claim that there is an open neighborhood U0 ⊂ U of K, such
that for any s ∈ J , p ∈ U0, the integral curve γs,p(t) ⊂ U of Xt is defined for all t ∈ J .

Consider the smooth map θ : J ×U0 → U , where θ(t, p) = γ0,p(t). Since γ0,p(t) = p
for all t ∈ J if p ∈ K, we see that J ×K ⊂ θ−1(U0). Since J ×K is compact, there is
an open neighborhood V of K such that J × V ⊂ θ−1(U0), which means that for any
p ∈ V , γ0,p(t) ⊂ U0 for all t ∈ J . This implies that for each t ∈ J , the map θt : V → U0,
defined by θt(p) := γ0,p(t), has a smooth inverse, which is defined by moving along the
integral curves backwards. This shows that θt, t ∈ J , form a smooth family of smooth
open embeddings from V into M . Other claims about θt are straightforward. �

Exercise: Prove an extension of Theorem 1.5, where we assume K is a compact
closed embedded submanifold of M , and ∀t ∈ J, ∀p ∈ K, Xt(p) ∈ TpK.

Flows on manifolds – the time-independent case: Consider the case where
Xt = X, which is a time-independent vector field on M . In this case, J = R, and X
is complete if the integral curves of X are defined for all t ∈ R, for any initial value
condition s ∈ R and p ∈M .

Lemma 1.6. (Translation Invariance) Let γ : (a, b) → M be an integral curve of a
time-independent vector field X. Then for any c ∈ R, the curve γc(t) := γ(t − c),
defined on (a+ c, b+ c), is also an integral curve of X.

Proof. γ′c(t) = γ′(t− c) = X(γ(t− c)) = X(γc(t)). �
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Due to Lemma 1.6, we can always set the initial value of the time to t = 0 without
loss of generality.

A smooth map θ : R×M →M is called a global flow on M , if the maps θt : M →
M defined by θt(p) := θ(t, p), p ∈M , obeys

(i) θ0 = Id on M ,
(ii) θs ◦ θt = θs+t, for any s, t ∈ R.

Note that by (i) and (ii), θ−t is the inverse of θt, so that each θt is a diffeomorphism.

Theorem 1.7. There is a one to one correspondence between global flows on M and
time-independent, complete, vector fields on M , in which a global flow θ corresponds
to a vector field X such that θ(t, p) is the integral curve γ0,p(t) of X.

Proof. Given a global flow θ, we define an X ∈ X (M) as follows: for any p ∈ M , let
X(p) be the tangent vector ∂

∂tθ(t, p)|t=0. We claim that for each p ∈M , γp(t) := θ(t, p)
is an integral curve of X with the initial value condition γp(0) = p. To see this, we
compute γ′p(t). By the property θs ◦ θt = θs+t, for any s, t ∈ R, we have

θ(s, θ(t, p)) = θ(s+ t, p).

It follows that γ′p(t) = ∂
∂sθ(s + t, p)|s=0 = X(θ(t, p)) = X(γp(t)). This in particular

implies that X is complete. The claim γp(0) = p follows from θ0 = Id.
Let X be a complete vector field. Then θ : R×M →M defined by θ(t, p) = γ0,p(t),

where γ0,p(t) is the integral curve of X with initial value condition determined by
s = 0 and p, is a smooth map. Clearly θ0 = Id. To see θs ◦ θt = θs+t, for any s, t ∈ R,
we let q = θ(t, p) = γ0,p(t). Then

θ(s, θ(t, p)) = γ0,q(s) = γt,q(s+ t) = γ0,p(s+ t) = θ(s+ t, p).

Note that γ0,q(s) = γt,q(s + t) by Lemma 1.6, and γt,q(s + t) = γ0,p(s + t) by the
Uniqueness property. �

In general for any X ∈ X (M), a certain local version of flows θ is well-defined. More
precisely, in Lemma 1.4, we choose s0 = 0, and set θXt := θs0t . Then θXt is a germ of
local smooth open embeddings defined for |t| sufficiently small, which obeys

θXs ◦ θXt = θXs+t

for |s|, |t| sufficiently small.
In the next few examples, we outline some applications of flows on manifolds in

differential topology. We leave the details out as exercises.

Example 1.8. Let p, q ∈ M be two distinct points, which can be connected by a
continuous path. Then it is easy to show that there is a smooth curve γ : [0, 1]→ M
such that γ(0) = p and γ(1) = q, and furthermore, γ can be arranged to be an
embedding. With this understood, we extend the tangent vectors γ′(t) to a smooth
vector field over a compact neighborhood of the curve γ(t), t ∈ [0, 1], and then use
a partition of unity argument to extend it over to the whole manifold M by zero.
Call this vector field X, which is of compact support, hence complete by Lemma 1.2.
Then observe that the global flow θ associated to X as given in Theorem 1.7 has the
property that θ1(p) = q. As a consequence, the diffeomorphism group of a connected
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manifold acts on the manifold transitively. As a topological application, the connected
sum operation of smooth manifolds is well-defined.

Example 1.9. Let f ∈ C∞(M), such that for any c ∈ R, the level set Mc := f−1(c)
is compact. Pick a Riemannian metric g on M , we define the gradient vector field of
f , denoted by grad f , by the following formula

g(grad f, Y ) = df(Y ), ∀Y ∈ X (M).

Suppose [a, b] is an interval which contains no critical values of f . Then in an open
neighborhood U of f−1([a, b]), we define X := grad f/g(grad f, grad f) ∈ X (U). We
observe that df(X) = 1 on U . Using the flow associated to X, one can show that there
is a diffeomorphism ψ : f−1([a, b])→Ma × [a, b], such that for any c ∈ [a, b], the map
ψ restricts to a diffeomorphism from Mc := f−1(c) to Ma × {c}.

More generally, let F : M → N be a smooth map such that for any q ∈ N , the level
set F−1(q) is compact. Suppose the set of regular values of F in N is path-connected.
Then for any regular values q0, q1 ∈ N of F , we can choose a smooth embedding
γ : [0, 1]→ N , such that γ(0) = q0, γ(1) = q1, and γ(t) ∈ N is a regular value of F for
any t ∈ [0, 1]. Then there is a diffeomorphism ψ : F−1(γ([0, 1])) → F−1(q0) × [0, 1],
such that ψ maps F−1(γ(t)) diffeomorphically onto F−1(q0)× {t} for any t ∈ [0, 1].

Example 1.10. Let M be a compact closed, connected, 1-dimensional smooth mani-
fold. We shall explain how to prove that M is diffeomorphic to S1. First, by passing to
a double cover if necessary, we may assume M is orientable, which means TM is trivial
as dimM = 1. Pick a X ∈ X (M) which is nowhere vanishing. Since M is compact,
X is complete. Then the global flow θ associated to X gives rise to a diffeomorphism
from S1 to M . Finally, if a double cover of M is diffeomorphic to S1, so is M .

2. The Lie derivative, Cartan’s formula, and Lie groups revisited

Let X ∈ X (M), and for simplicity, let θt denote the local flows generated by X
(i.e., θXt in Section 1), which are germs of local open smooth embeddings defined for
|t| sufficiently small, and which satisfy θs ◦ θt = θs+t.

Definition 2.1. Let ω denote a covariant tensor field on M , and Y ∈ X (M). We
define the Lie derivative LX of ω and Y as follows: for any p ∈M ,

(LXω)(p) = lim
t→0

θ∗t (ω(θt(p)))− ω(p)

t
, (LXY )(p) = lim

t→0

(θ−t)∗(Y (θt(p)))− Y (p)

t
.

The following are straightforward from the definitions.

Lemma 2.2. (1) d
dt(θ

∗
tω) = θ∗t (LXω), (2) d

dt((θ−t)∗Y ) = (θ−t)∗(LXY ).

Proof. (1) Note that LXω = d
dt(θ

∗
tω)|t=0. It follows that

d

dt
(θ∗tω) =

d

ds
(θ∗s+tω)|s=0 =

d

ds
(θ∗t ◦ θ∗sω)|s=0 = θ∗t (

d

ds
(θ∗sω)|s=0) = θ∗t (LXω).

The proof for (2) is similar. �

Proposition 2.3. (Properties of LX) Let X ∈ X (M).

(1) LXf = Xf , for any f ∈ C∞(M).
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(2) LX(ω1 ⊗ ω2) = LXω1 ⊗ ω2 + ω1 ⊗ LXω2.
(3) LX(ω1 ∧ ω2) = LXω1 ∧ ω2 + ω1 ∧ LXω2.
(4) LX(ω(Y1, · · · , Yk)) = (LXω)(Y1, · · · , Yk)+ω(LXY1, · · · , Yk)+· · ·+ω(Y1, · · · , LXYk).
(5) LX(dω) = d(LXω).
(6) LX(iY ω) = iLXY ω + iY LXω.
(7) LXY = [X,Y ].

Proof. (1) LXf(p) = limt→0
f(θt(p))−f(p)

t = limt→0
f(γp(t))−f(γp(0))

t = Xp(f), ∀p ∈ M ,
because Xp = γ′p(0). Hence LXf = Xf for any f ∈ C∞(M).

(2)-(4) are consequences of the Leibniz Rule. (5) follows from the commutativity of
d and θ∗t . (6) uses the identity iY θ

∗
tω = θ∗t (i(θt)∗Y ω).

For (7), we apply (4) with ω = df , ∀f ∈ C∞(M), which gives

LX(df(Y )) = LX(df)(Y ) + df(LXY ).

Applying (1) and (5), we obtain X(Y f) = Y (Xf) + LXY (f), which implies that
LXY (f) = [X,Y ](f) for any f ∈ C∞(M). Hence LXY = [X,Y ]. �

The fact that LXY = [X,Y ], ∀X,Y ∈ X (M), has some important consequences.
The following are straightforward from the properties of the Lie bracket.

Corollary 2.4. Let X,Y, Z ∈ X (M), f ∈ C∞(M).

(1) LXY = −LYX.
(2) LX [Y,Z] = [LX , Y ] + [Y, LXZ].
(3) L[X,Y ]Z = LX(LY Z)− LY (LXZ).
(4) LX(fY ) = (LXf)Y + fLXY .

(5) If X,Y are F -related to X̃, Ỹ respectively, then so is LXY to LX̃ Ỹ .

On the other hand, we observe that Lemma 2.2(1) holds true more generally.

Lemma 2.5. Let Xt be a time-dependent vector field, and let θs0t be the local open
embeddings associated to Xt (cf. Lemma 1.4). Then for any covariant tensor field ω,

(1) LXtω = d
ds(θ

t
s)
∗ω|s=t.

(2) d
dt(θ

s0
t )∗ω = (θs0t )∗LXtω.

Proof. For (1), we observe that Proposition 2.3 (1)-(3), (5) determines the Lie de-
rivative LX on covariant tensor fields ω uniquely by the local expression of ω. With
this understood, LXtω = d

ds(θ
t
s)
∗ω|s=t follows easily by checking that d

ds(θ
t
s)
∗|s=t obeys

Proposition 2.3 (1)-(3), (5) on the covariant tensor fields.
For (2), we note θts ◦ θ

s0
t = θs0s , and apply the argument in the proof of Lemma 2.2.

�

Theorem 2.6. (Cartan’s Formula). For any ω ∈ Ωk(M), X ∈ X (M),

LXω = iX(dω) + d(iXω).

In other words, LX = iX ◦ d+ d ◦ iX .

Proof. Set QX := iX ◦ d + d ◦ iX . We need to check that QX obeys Proposition 2.3
(1),(3),(5). Then Cartan’s formula follows from the local expression of ω.
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For (1), for any f ∈ C∞(M), QXf = iX(df) + d(iXf) = Xf , as iXf = 0 trivially.
For (2), let ω ∈ Ωk(M), η ∈ Ωl(M), we compute

iX(d(ω∧η)) = iX(dω∧η+(−1)kω∧dη) = iXdω∧η+(−1)k+1dω∧iXη+(−1)kiXω∧dη+ω∧iX(dη),

and

d(iX(ω∧η)) = d(iXω∧η+(−1)kω∧iXη) = d(iXω)∧η+(−1)k−1iXω∧dη+(−1)kdω∧iXη+ω∧d(iXη).

It follows immediately that QX(ω ∧ η) = QXω ∧ η + ω ∧QXη, proving (2). Finally,

QX(dω) = d(iX(dω)) = d(iX(dω) + d(iXω)) = d(QXω),

which verifies (5) of Proposition 2.3. Hence LX = QX = iX ◦ d+ d ◦ iX . �

We give some applications in symplectic geometry.

Example 2.7. Let ω be a symplectic structure on M , and let H ∈ C∞(M). We define
a smooth vector field X by the formula iXω = dH, where we used the fact that ω is
non-degenerate. Note that supp X = supp dH, which we assume is compact. Then
X is complete.

Let θt be the global flow associated to X. Observe that LXω = iX(dω)+d(iXω) = 0.
This implies that d

dtθ
∗
tω = θ∗t (LXω) = 0, so that θ∗tω = θ∗0ω = ω. In other words, the

flow θt preserves the symplectic structure ω, which is called a Hamiltonian flow.
More generally, let Ht, t ∈ [0, 1], be a time-dependent smooth family of smooth

functions on M . We let Xt, t ∈ [0, 1], be the time-dependent vector field defined by
iXtω = dHt. Then we continue to have LXtω = iXt(dω) + d(iXtω) = 0. Denote by ψt
the smooth family of maps θs0t associated to Xt, with s0 = 0, we have by Lemma 2.5

that d
dtψ
∗
t ω = ψ∗t (LXtω) = 0. Consequently, ψ∗t ω = ψ∗0ω = ω, as ψ0 = Id. The maps

ψt are called Hamiltonian symplectomorphisms.
A (time-dependent) smooth vector field Xt is called a symplectic vector field

if LXtω = 0, or equivalently, the maps ψt associated to Xt preserves the symplectic
structure ω. Cartan’s formula implies that Xt is a symplectic vector field if and only
if iXtω is closed for each t, i.e., d(iXtω) = 0.

Theorem 2.8. (Darboux’s Theorem) Let ω be a symplectic structure on M . For any
p ∈M , there is an open neighborhood U of p, and a system of local coordinate functions
on U , denoted by x1, y1, x2, y2, · · · , xm, ym, where dimM = 2m, such that

ω = dx1 ∧ dy1 + dx2 ∧ dy2 + · · ·+ dxm ∧ dym.

Proof. First, we can choose a local coordinate system x1, y1, x2, y2, · · · , xm, ym near
p, such that ω(p) = ω0(p), where ω0 = dx1 ∧ dy1 + dx2 ∧ dy2 + · · · + dxm ∧ dym.
We consider a smooth family of differential 2-forms ωt := (1 − t)ω0 + tω. Note that
ωt = ω0 at t = 0, ωt = ω at t = 1, and dωt = 0 for all t ∈ [0, 1]. Furthermore, note
that ωt(p) = ω0(p) for all t, so that there is an open neighborhood U of p such that ωt
is non-degenerate for all t ∈ [0, 1]. Finally, observe that d

dtωt = ω − ω0 = dα, because
dω = dω0 = 0 and locally the de Rham cohomology is trivial. We can even choose α
such that α(p) = 0.

We let Xt be the time-dependent vector field defined by iXtωt = −α. Observe that
Xt(p) = 0 for all t ∈ [0, 1], as α(p) = 0. Let θt, t ∈ [0, 1], be the smooth family of
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open embeddings associated to Xt in Theorem 1.5 (with K = {p}), where θt : V → U
for a neighborhood V of p. Then d

dtθ
∗
tωt = θ∗t (LXtωt + d

dtωt) = θ∗t (d(iXtωt) + dα) = 0.

Consequently, θ∗tωt = θ∗0ω0 = ω0, as θ0 = Id. Now if we set ψ := θ−11 , then

ω = ψ∗ω0 = dx̃1 ∧ dỹ1 + dx̃2 ∧ dỹ2 + · · ·+ dx̃m ∧ dỹm,
where x̃i := ψ∗(xi), ỹi := ψ∗(yi), i = 1, 2, · · · ,m, is a new system of local coordinate
functions near p. �

Lie groups revisited: Let G be a Lie group. We first consider the flows generated
by the left-invariant vector fields on G. But first, observe

Lemma 2.9. Let F : M → M̃ be any smooth map, and Xt, X̃t be time-dependent
smooth vector fields on M , M̃ respectively, such that for each t, Xt and X̃t are F -
related. Let θs0t , θ̃s0t denote the open embeddings associated to Xt, X̃t respectively (cf.

Lemma 1.4). Then F ◦ θs0t = θ̃s0t ◦ F holds for any t.

Proof. Let p̃ := F (p), ∀p ∈ M , let γs0,p(t), γ̃s0,p̃(t) be the integral curves of Xt, X̃t,
with initial value conditions γs0,p(s0) = p, γ̃s0,p̃(s0) = p̃. Then note that

d

dt
F (γs0,p(t)) = F∗(γ

′
s0,p(t)) = F∗(Xt(γs0,p(t))) = X̃t(F (γs0,p(t))).

With F (γs0,p(s0)) = F (p) = p̃, it follows by uniqueness that γ̃s0,p̃(t) = F (γs0,p(t)). By

the definition of θs0t and θ̃s0t , this is the same as F ◦ θs0t = θ̃s0t ◦ F . �

Lemma 2.10. Let X ∈ Lie(G) be a left-invariant vector field on G. Then X is
complete. Moreover, if θXt denotes the global flow generated by X, then for any g ∈ G,
Lg ◦ θXt = θXt ◦ Lg.

Proof. Let γe(t), −ε0 < t < ε0, be the integral curve of X with initial value condition
γe(0) = e. Suppose to the contrary that X is not complete. Then there is an h ∈ G
such that the integral curve γh(t) of X with initial value condition γh(0) = h is only
defined maximally on an interval (a, b) 6= R. Without loss of generality, assume b <∞.
We let c := b−ε0/2, and let g := γh(c). Then we observe that, as (Lg)∗X = X, γg(t) =
gγe(t), −ε0 < t < ε0, is an integral curve of X with initial value condition γg(0) = g by
Lemma 2.9. By translation invariance (cf. Lemma 1.6) and the Uniqueness property,
we can extend γh(t) over to the larger interval (a, b + ε0/2), which is a contradiction
to the maximality of (a, b). Hence X is complete. Lg ◦ θXt = θXt ◦ Lg for any g ∈ G
follows from (Lg)∗X = X for any g ∈ G by Lemma 2.9. �

Corollary 2.11. Let X ∈ Lie(G).
(1) θXt (e), t ∈ R, is a 1-parameter subgroup of G, i.e., for any s, t ∈ R,

θXs (e)θXt (e) = θXs+t(e).

(2) The flow θXt : G→ G is given by the right translation RθXt (e).

Example 2.12. Consider G = GL(n,R). For any A ∈ M(n,R), the left-invariant

vector field Ã determined by A, i.e., Ã(e) = A, is given by X ∈ GL(n,R) 7→ XA ∈
M(n,R). With this understood, it is easy to check that etA is the integral curve which
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passes through e at t = 0, i.e., θÃt (e) = etA. For any B ∈ GL(n,R), the integral curve

which passes through B at t = 0 is BetA, i.e., θÃt (B) = BetA = RetA(B).

The above example motivates the definition of the exponential map of G, denoted
by exp : Lie(G) → G, defined by exp(X) = θX1 (e), ∀X ∈ Lie(G). It is easy to check
that θXt (e) = exp(tX).

For any g ∈ G, the automorphism h 7→ ghg−1 of G induces an automorphism of the
Lie algebra Lie(G), to be denoted by Ad(g) : Lie(G)→ Lie(G). The corresponding Lie
group representation Ad : G → GL(Lie(G)) is called the Adjoint Representation
of G. The corresponding Lie algebra representation is denoted by ad : Lie(G) →
End(Lie(G)).

Lemma 2.13. (1) For any g ∈ G, Ad(g)(X) = (Rg−1)∗(X), ∀X ∈ Lie(G).
(2) For any X ∈ Lie(G), ad(X)(Y ) = [X,Y ], ∀Y ∈ Lie(G).

Proof. For (1), Ad(g)(X)(e) = d
dt(gθ

X
t (e)g−1)|t=0 = (Rg−1)∗(X(g)) = (Rg−1)∗(X)(e).

Hence Ad(g)(X) = (Rg−1)∗(X).

For (2), ad(X)(Y )(e) = d
dt(Ad(θXt (e))(Y )(e))|t=0 = d

dt(RθX−t(e)
)∗(Y (θXt (e)))|t=0. By

Corollary 2.11(2), d
dt(RθX−t(e)

)∗(Y (θXt (e)))|t=0 = (LXY )(e) = [X,Y ]e. This proves that

ad(X)(Y ) = [X,Y ]. �

Example 2.14. For the case of G = GL(n,R), Ad : GL(n,R) → GL(M(n,R))
is given by Ad(X)(A) = XAX−1, ∀X ∈ GL(n,R), A ∈ M(n,R). Furthermore,
ad : M(n,R)→ End(M(n,R)) is given by ad(A)(B) = AB −BA, ∀A,B ∈M(n,R).

Exercise: Note that ad : Lie(G)→ End(Lie(G)) is a Lie algebra homomorphism,
which means ad([X,Y ]) = ad(X)ad(Y ) − ad(Y )ad(X). Check that this is equivalent
to the Jacobi identity.

3. Tangent distributions, Frobenius theorem, and contact structures

For any X ∈ X (M), let θXt denote the local flow generated by X. Then the identity
LXY = [X,Y ], ∀X,Y ∈ X (M), has the following important consequence:

θXs ◦ θYt = θYt ◦ θXs , ∀s, t, if [X,Y ] = 0.

To see this, we note that d
ds((θ

X
−s)∗Y ) = (θX−s)∗(LXY ) = 0, which implies that

(θX−s)∗Y = Y , ∀s. Our claim follows easily from Lemma 2.9.

Lemma 3.1. Let M be a smooth manifold of dimension n. Let p ∈M be a point, and
X1, X2, · · · , Xk, k ≤ n, be smooth vector fields defined in a neighborhood of p such that
X1(p), X2(p), · · · , Xk(p) are linearly independent in TpM . If furthermore [Xi, Xj ] = 0
for any i, j = 1, 2, · · · , k, then there is a neighborhood W of p with a system of local
coordinate functions x1, x2, · · · , xn such that Xi = ∂

∂xi
for i = 1, 2, · · · , k.

Proof. First, we choose a local coordinate chart (U, φ) centered at p, with local coor-
dinate functions y1, y2, · · · , yn such that {X1(p), X2(p), · · · , Xk(p),

∂
∂yk+1 |p, · · · , ∂

∂yn |p}
form a basis of TpM . For each i = 1, 2, · · · , k, we inductively define maps θi as follows:
there is a neighborhood U1 ⊂ U and ε1 > 0 such that θ1 : (−ε1, ε1)× U1 → U , where
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θ1(t, q) = θX1
t (q) is defined, and there is a neighborhood U2 ⊂ U1 and ε2 > 0 such

that θ2 : (−ε2, ε2) × U2 → U1, where θ2(t, q) = θX2
t (q) is defined. Continuing in this

process, at the last step there is a neighborhood Uk ⊂ Uk−1 and εk > 0 such that

θk : (−εk, εk) × Uk → Uk−1, where θk(t, q) = θXkt (q) is defined. We set V = Uk and
ε = min(εi). Moreover, let S ⊂ V be the slice defined by y1 = y2 = · · · = yk = 0.

With the proceeding understood, for any i = 1, 2, · · · , k, and any t ∈ (−ε, ε), let

θti : Ui → Ui−1 be the restriction of θi to {t} ×Ui. Define ψ :
∏k
i=1(−ε, ε)× φ(S)→ U

by the following formula:

ψ(t1, t2, · · · , tk, tk+1, · · · , tn) = θt11 ◦ θ
t2
2 ◦ · · · ◦ θ

tk
k ◦ φ

−1(0, 0, · · · , 0, tk+1, · · · , tn).

So far we have not used the assumptions in the lemma. Now consider the fact
that {X1(p), X2(p), · · · , Xk(p),

∂
∂yk+1 |p, · · · , ∂

∂yn |p} is a basis of TpM . It is easy to see

that this implies that ψ∗ is an isomorphism from the tangent space at (0, 0, · · · , 0) ∈∏k
i=1(−ε, ε)×φ(S) onto TpM . By the inverse function theorem, ψ is a local diffeomor-

phism from a neighborhood of (0, 0, · · · , 0) onto a neighborhood W of p. Secondly,
the assumption that [Xi, Xj ] = 0 for any i, j = 1, 2, · · · , k implies the commutativ-

ity θtii ◦ θ
tj
j = θ

tj
j ◦ θ

ti
i for any i, j = 1, 2, · · · , k, which in turn implies easily that

ψ∗(
∂
∂ti

) = Xi for any i = 1, 2, · · · , k. It follows easily that (W,ψ−1) is a local coordi-
nate chart centered at p with the desired property. �

Definition 3.2. Let M be a smooth manifold of dimension n.
(1) A k-dimensional tangent distribution D on M , k ≤ n, is an assignment p 7→ Dp,

for p ∈M , where Dp ⊂ TpM is a k-dimensional subspace. D is said to be smooth if for
any p ∈ M , there are smooth vector fields X1, X2, · · · , Xk defined in a neighborhood
U of p such that for any q ∈ U , X1(q), X2(q), · · · , Xk(q) is a basis of Dq. Furthermore,
such a D is called integrable (or involutive) if [Xi, Xj ](q) ∈ Dq for any q ∈ D,
i, j = 1, 2, · · · , k.

(2) An immersed submanifold (i.e., an injective immersion) N ⊂ M is called an
integral manifold of D if for any p ∈ N , TpN = Dp.

Note that a smooth tangent distribution D = tp∈MDp on M forms a (smooth)
sub-bundle of TM .

It is easy to see that if for any p ∈ M , there is an integral manifold N of D such
that p ∈ N , then D must be integrable. The converse is given by the following

Theorem 3.3. (The Frobenius Theorem) Let D be a k-dimensional, integrable, smooth
tangent distribution on M of dimension n. Then for any p ∈ M , there exists a local
coordinate chart U centered at p, with local coordinate functions (xi), such that each
slice in U defined by xk+1 ≡ c1, · · · , xn ≡ cn−k is an integral manifold of D.

Proof. We will show that for any p ∈ M , there is a neighborhood W of p and a set
of smooth vector fields X1, X2, · · · , Xk on W , such that X1(q), X2(q), · · · , Xk(q) is a
basis of Dq for any q ∈W , and [Xi, Xj ] = 0 on W for any i, j = 1, 2, · · · , k. Then the
theorem follows from Lemma 3.1.

To this end, we fix a local coordinate chart (U, φ) centered at p, with local co-
ordinate functions (xi) on U . Without loss of generality, we assume TpM = Dp ⊕
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Span ( ∂
∂xk+1 |p, · · · , ∂

∂xn |p). Let π : Rn → Rk be the projection onto the first k co-

ordinates. We consider the smooth map F : U → Rk, where F := π ◦ φ. We
observe that at p, F∗ : Dp → T0Rk is an isomorphism by the assumption that

TpM = Dp ⊕ Span ( ∂
∂xk+1 |p, · · · , ∂

∂xn |p). Consequently, there is a smaller neighbor-

hood W of p such that for any q ∈W , F∗ : Dq → TF (q)Rk is an isomorphism.

For each i = 1, 2, · · · , k, we let Xi ∈ D be the inverse image of ∂
∂xi

under F∗. Then
clearly, for any q ∈ W , X1(q), X2(q), · · · , Xk(q) is a basis of Dq. Furthermore, for

any i, j = 1, 2, · · · , k, note that F∗([Xi, Xj ]) = [F∗(Xi), F∗(Xj)] = [ ∂
∂xi
, ∂
∂xj

] = 0. On
the other hand, by the assumption that D is integrable, [Xi, Xj ] ∈ D, we must have
[Xi, Xj ] = 0 because F∗ is injective when restricted to D. Hence the theorem.

�

Example 3.4. We consider a 2-dimensional tangent distribution D on R3, D =
Span (X,Y ), where X = x ∂

∂x + ∂
∂y + x(y + 1) ∂∂z , Y = ∂

∂x + y ∂
∂z . D is integrable

as [X,Y ] = −Y can be easily verified. Let’s find the integral manifolds of D.
At 0 = (0, 0, 0) ∈ R3, X = ∂

∂y , Y = ∂
∂x , so D0 ⊕ Span ( ∂∂z ) = T0R3. Consider

F : R3 → R2, given by F (x, y, z) = (x, y), then F∗ : Dq → TF (q)R2 is an isomorphism

for q near 0. Let X1, X2 ∈ D such that F∗(X1) = ∂
∂x , F∗(X2) = ∂

∂y . We shall determine

X1, X2 explicitly.
Let a, b, c, d, u, v be smooth functions such that

X1 =
∂

∂x
+ u

∂

∂z
= aX + bY, X2 =

∂

∂y
+ v

∂

∂z
= cX + dY.

Then a = 0, b = 1, c = 1, d = −x, and X1 = ∂
∂x + y ∂

∂z , X2 = ∂
∂y + x ∂

∂z .

Next we determine the flows of X1, X2. Let θt1 be the flow generated by X1, and
write θt1(x, y, z) = (x1(t), y1(t), z1(t)). Then x′1(t) = 1, y′1(t) = 0, and z′1(t) = y1(t). It
follows easily that

x1(t) = x+ t, y1(t) = y, z1(t) = z + yt.

A similar calculation shows that the flow generated by X2 is given by θt2(x, y, z) =
(x, y + t, z + xt). Now computing the map ψ, we have

ψ(t1, t2, t3) = θt11 ◦ θ
t2
2 (0, 0, t3) = θt11 (0, t2, t3) = (t1, t2, t3 + t2t1) = (x, y, z).

Consequently, ψ−1(x, y, z) = (x, y, z − xy), and the integral manifolds of D are given
by z − xy = constant. (One easily check that X(z − xy) = 0, Y (z − xy) = 0.)

We remark that there is an alternative way to determine the integral manifolds of D.
We consider 1-forms α such that α(X) = α(Y ) = 0. If we write α = fdx+ gdy + hdz
for some smooth functions f, g, h. Then α(X) = α(Y ) = 0 gives

fx+ g + hx(y + 1) = 0, f + hy = 0.

Combining the two equations, we get g + hx = 0. Choosing h = 1, we have f = −y,
g = −x, and α = −ydx− xdy + dz = d(z − xy). It follows that the integral manifolds
of D are given by z − xy = constant.

Set Ω∗(M) := ⊕nk=0Ω
k(M). Then Ω∗(M) is an algebra under the wedge product ∧.
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Definition 3.5. (1) A linear subspace J ⊂ Ω∗(M) is called an ideal if for any ω ∈ J ,
η ∧ ω ∈ J for any η ∈ Ω∗(M). J is called a differential ideal if d(J ) ⊂ J , i.e, for
any ω ∈ J , dω ∈ J .

(2) Let D be a smooth tangent distribution on M . A k-form ω ∈ Ωk(M) is said
to annihilate D if ω(X1, X2, · · · , Xk) = 0 for any X1, X2, · · · , Xk ∈ D. Denote by
J k(D) the space of annihilating k-forms, and set J (D) = ⊕nk=0J k(D).

Lemma 3.6. Let D be a smooth tangent distribution of co-dimension k on M (i.e.,
k = dimM − dimD).

(1) For any p ∈M , there is a neighborhood U of p, and a set of 1-forms α1, α2, · · · , αk
on U , such that

Dq = kerα1(q) ∩ kerα2(q) ∩ · · · ∩ kerαk(q), ∀q ∈ U.
(2) A r-form ω ∈ J r(D)|U if and only if there are (r− 1)-forms β1, β2, · · · , βk on

U , such that ω =
∑k

i=1 βi ∧ αi on U .
(3) D is integrable if and only if dαi ∈ J 2(D)|U for any i = 1, 2, · · · , k.

The 1-forms α1, α2, · · · , αk are called local defining 1-forms of D.

Proof. (1) Let X1, X2, · · · , Xn−k be smooth vector fields defined in a neighborhood
U of p such that for any q ∈ U , X1(q), X2(q), · · · , Xn−k(q) is a basis of Dq. We
add smooth vector fields Xn−k+1, · · · , Xn to them, and shrink U if necessary, so that
X1, X2, · · · , Xn is a local frame of TM over U . Let ω1, ω2, · · · , ωn be the corresponding
local frame of the cotangent bundle T ∗M over U which is dual to X1, X2, · · · , Xn.
We set α1 := ωn−k+1, · · · , αk := ωn. Then αi(Xj) = 0 for any i = 1, 2, · · · , k,
j = 1, 2, · · · , n − k. This implies that Dq ⊂ kerα1(q) ∩ kerα2(q) ∩ · · · ∩ kerαk(q),
∀q ∈ U . On the other hand, for any X ∈ X (U) such that

X(q) ∈ kerα1(q) ∩ kerα2(q) ∩ · · · ∩ kerαk(q), ∀q ∈ U,
i.e., αi(X) = 0 for any i = 1, 2, · · · , k, if we write X =

∑n
j=1 ajXj , where aj ∈ C∞(U),

we must have aj ≡ 0 for j = n− k+ 1, · · · , n, which implies X(q) ∈ Dq for any q ∈ U .
This proves Dq = kerα1(q) ∩ kerα2(q) ∩ · · · ∩ kerαk(q), ∀q ∈ U .

(2) Since ω1, ω2, · · · , ωn is a local frame of T ∗M over U , for any ω ∈ Ωr(U), we can
write

ω =
∑

i1<i2<···<ir

ωi1i2···irωi1 ∧ ωi2 ∧ · · · ∧ ωir , ωi1i2···ir ∈ C∞(U).

Note that ω(Xi1 , Xi2 , · · · , Xir) = ωi1i2···ir . If there is a multi-index (i1, i2, · · · , ir)
which does not contain any j ∈ {n− k+ 1, · · · , n}, such that ωi1i2···ir(q) 6= 0 for some
q ∈ U , then ω(Xi1 , Xi2 , · · · , Xir)(q) 6= 0 for some Xi1 , Xi2 , · · · , Xir ∈ Dq, implying ω

does not belong to J r(D)|U . This shows that if ω ∈ J r(D)|U , then ω =
∑k

i=1 βi∧αi on

U for some βi ∈ Ωr−1(U). Conversely, if ω =
∑k

i=1 βi∧αi on U for some βi ∈ Ωr−1(U),
then ω(X1, X2, · · · , Xr) = 0 for any X1, X2, · · · , Xr ∈ D, hence ω ∈ J r(D)|U .

(3) For any X,Y ∈ X (U), where X,Y ∈ D,

dαi(X,Y ) = X(αi(Y ))− Y (αi(X))− αi([X,Y ]) = −αi([X,Y ]).

It follows immediately that D is integrable, which means [X,Y ] ∈ D, if and only if
dαi ∈ J 2(D)|U for any i = 1, 2, · · · , k.
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�

As an easy corollary, we obtain the following characterization of integrability of
tangent distributions.

Theorem 3.7. Let D be a smooth tangent distribution on M . Then J (D) is an ideal
of Ω∗(M), and moreover, D is integrable if and only if J (D) is a differential ideal.

Exercise: Prove Theorem 3.7.

Consider a smooth tangent distribution D on M of co-dimension 1, and let α be
a local defining 1-form of D. Then D is integrable if and only if dα = 0 on D. At
the other end of the spectrum, i.e., the 2-form dα is non-degenerate on D, we arrive
at the notion of contact structures. Note that if dα is non-degenerate on D, then D
must be even-dimensional, so that M must be odd-dimensional.

Definition 3.8. Let M be a smooth manifold of dimension 2m + 1, and let D be a
co-dimension 1 smooth tangent distribution on M . D is called a contact structure
if for any local defining 1-form α of D, dα is non-degenerate on D. Equivalently,
(dα)m ∧ α is nowhere vanishing. Such a 1-form α is called a contact form.

Exercise: Show that dα is non-degenerate on D if and only if (dα)m∧α is nowhere
vanishing.

Exercise: Suppose m is odd in Definition 3.8. Show that if M admits a contact
structure, then M must be orientable.

Example 3.9. Consider M = R2n+1. Let D = kerα, where α = dz −
∑n

i=1 yidxi,
where x1, y1, · · · , xn, yn, z are a system of standard coordinates on R2n+1. Computing
dα, we get dα =

∑n
i=1 dxi ∧ dyi. It follows easily that

(dα)n ∧ α = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn ∧ dz.
D is called the standard contact structure on R2n+1.

Example 3.10. Consider M = S2m+1 ⊂ Cm+1, the unit sphere. Let D be the
co-dimension 1 smooth tangent distribution on S2m+1 which is invariant under the
complex structure J on Cm+1. Then D is a contact structure on S2m+1, called the
standard contact structure of S2m+1.

To see this, let φ = |z0|2 + |z1|2 + · · ·+ |zm|2. Then D = kerα, where α := dφ ◦ J .
Furthermore, dα = −2i

∑m
j=0 dzj ∧dz̄j , which is non-degenerate on the tangent spaces

of Cm+1. Since D is invariant under J , Dq, ∀q ∈ S2m+1, is a complex subspace of
the tangent space TqCm+1. It follows that dα must be non-degenerate on D as well.
Hence D is a contact structure.

Exercise: Let ω = dλ be a symplectic structure on M , and let N = R×M . Let z
be the coordinate on R. Show that α := dz + λ is a contact form on N .

Let α be a contact form on M . It is easy to check that ω := d(etα) is a symplectic
structure on R × M , which is called the symplectization of (M,α). Note that
L ∂
∂t
ω = ω. The flow θt generated by ∂

∂t is simply the translations in t. It is easy to

see that θ∗tω = etω.
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Exercise: More generally, let ω be a symplectic structure on M . A Liouville
vector field on M is an X ∈ X (M) such that LXω = ω. Show that

(1) The set of Liouville vector fields X on M is in one to one correspondence with
the set of 1-forms λ on M such that ω = dλ, in the sense that iXω = λ.

(2) Let S ⊂ M be a co-dimension 1 embedded submanifold. Then the restriction
of λ on S is a contact form if and only if X is a normal vector field along S.

Exercise: Let S ⊂M be a compact closed, embedded submanifold of co-dimension
1. Suppose X is a Liouville vector field (i.e., LXω = ω) defined in a neighborhood
of S, which is a normal vector field along S. Let α := iXω be the contact form on
S. Prove that there is an ε > 0, and a smooth map ψ : (−ε, ε) × S → M , which is a
diffeomorphism onto a neighborhood of S in M , such that (i) ψ(0, p) = p, ∀p ∈ S, (ii)
ψ∗ω = d(etα).

Exercise: Let S ⊂M be a compact closed, embedded submanifold of co-dimension
1. S is said to be of contact type if there is a contact form α on S such that ω|S = dα.
Show that there is a Liouville vector field X defined in a neighborhood of S such that
iXω = α. (Note that X is necessarily normal along S.)

Example 3.11. Consider M = R2n, with the standard symplectic structure ω0 =∑n
i=1 dxi ∧ dyi. Let X := 1

2

∑n
i=1(xi

∂
∂xi

+ yi
∂
∂yi

). Then LXω0 = ω0. Note that X is

normal along S2n−1. Let α0 := iXω0 be the contact form on S2n−1. Then D := kerα0

is the standard contact structure on S2n−1 discussed in Example 3.10.

Let α be a contact form on M . The Reeb vector field associated to α, denoted
by Rα, is the vector field on M uniquely determined by

α(Rα) = 1, iRαdα = 0.

Exercise: Show that Rα exists for any contact form α. Moreover, the flow θt
generated by Rα (called the Reeb flow) preserves α, i.e., θ∗tα = α.

Exercise: Let M be a compact closed manifold, and let αt, t ∈ [0, 1], be a smooth
family of contact forms onM . LetDt := kerαt be the corresponding contact structures
on M . Show that there is a time-dependent vector field Xt, where Xt ∈ Dt for each
t ∈ [0, 1], such that the family of diffeomorphisms θt : M →M generated by Xt (with
θ0 = Id) have the property that

θ∗tαt = eftα0

for some smooth family ft of smooth functions on M . Note that (θt)∗(D0) = Dt for
each t ∈ [0, 1]. (This is usually referred to as Gray’s Theorem.)
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