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1. DIFFERENTIAL FORMS AND THE EXTERIOR DERIVATIVE

Alternating tensors: Let Sy be the symmetric group of k£ letters. Then any

element o € Sy, defines a permutation o : (1,2,--- ,k) — (c(1),0(2), -+ ,0(k)). We let
sign 0 = 1 if o is even (i.e., a product of even number transpositions) and sign o = —1
if o is odd.

Definition 1.1. Let V be a real vector space of dimension n. For any T' € T*(V),
o € Sk, we define

T°(X1, Xoy -, Xi) = T(Xo1), Xo2)y s Xoy)), VX1, Xo, -+, Xp €V

We say T is alternating if for any o € Sy, T? = sign o- T, and the subspace of T*(V)
consisting of alternating tensors is denoted by A¥(V).

We fix a basis e1,ea, -+ ,e, of V, and let €', €2, - -, €" be the dual basis of V*.

Example 1.2. (1) A°(V) =T°(V) =R, AY(V) =TYV) = V*. o
(2) Consider the case of k = 2. For any T' € A*(V), we write T = Tjje’ ® ¢/. Then
T is alternating means that T;; = —T); for any 4, j. Consequently,

T = ZTZj(ei @e —d @),

i<j
Set €) ;= ¢ @ & — & @ €. Tt follows that {e()]i < j} is a basis of A%(V); in
particular, dim A%(V) = in(n — 1).

(3) Consider the case of k =n. For any T' € A™(V),
T =T ipin€ ®€? @+ @€ =Tig. - T,

where Tp := ) g sign o- (!®e2®---®€")?. Consequently, A"(V) is 1-dimensional,
generated by the element 7y. Furthermore, observe that for any X1, X, -, X, € V,

To(X1, Xo, -+, Xp) = det(€'(X;)).
1
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As a corollary, observe that if F': V' — V is a linear map, then the induced map (i.e.,
the pull-back) F*: A™(V) — A™(V) is given by the multiplication by det F'.

Definition 1.3. (1) For any k, we define a linear map Alt : T%(V) — T*(V) by
Alt(T) = % > signo-T7, VT € TH(V).
oES),
(2) For any multi-index (i1, 42, -+ ,ix), we define
elniz i) .= EIAL (" @ €2 @ - - @ €F).

It is clear from the definition that for any T € A*(V), Alt(T) = T.

Lemma 1.4. (1) For any T € T*(V), 7 € Sy,
(1) Al(T™) = sign - AT, and (i1) (AW(T))" = sign T - AlK(T).

In particular, the latter implies that Alt(T) is an alternating tensor for any T

(2) eliniz, k) — if there is a repeated index in iy,1i9,- - , 1. Furthermore, the set
{eli2 )|y < iy < --- < iy} is a basis of A*(V). In particular, A*(V) = {0} if
k> n.

Proof. (1). For any T € T*(V), 7 € Sy,

1 . 1 . .
Al(TT) = i Z sign o - (1T7)7 = i Z sign o - T77 =sign 7 - Alt(7T),
o€Sy €Sk
and
1 ) 1 . :
(Alt(T"))" = i Z sign o - (T7)" = o Z sign o - T97 = sign 7 - Alt(T).
o€Sk o€Sy
(2). It follows easily from Alt(T7) = sign 7 - Alt(T") that if there is a repeated
index in 1,9, - - 4, €270%) = 0. On the other hand, for each multi-index
(i1,49,- - - ,ix) where there is no repeated index, €(":2+%) € AF(V') and is nonzero,
as €@t (ep ep oo ey ) = 1. To see that {e(2%)|i) < iy < -+ < i} is a
basis of A¥(V), we note that for any 7' € A*(V),
T=Thipiy @2 @ @b = D Ty, - ez,
11 <ig<-<ip

O

The wedge product: For any w € A*(V), n € AY(V), we define the wedge product
of w and 7, denoted by w A n € A¥(V), by the formula

(k+0)!
W A1 = e Alb(w @ 7).
Lemma 1.5. For any multi-indices (i1,42,-- i) and (j1,J2, -+, j1),

6(i1’i2"" )ik) A E(jl’j27"' 7jl) — 6(7:177;27"' ks J1.J25 7jl) .
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Proof. For any o € S, 7 € S;, we note that
sign (€1 ®- - -@e*)7-sign T-('@- - - @) = sign (0, 7)-(€1@- - -RE* R @- - @) @T),
where (0,7) € Sg4y. It follows immediately from Lemma 1.4(1)(i) that

Al i) @ 1200y = FINAI(E' @ 2 ® - Qe* QN Q2 ® - @ ),

from which Lemma 1.5 follows.

The following follows easily from Lemmas 1.4 and 1.5.

Proposition 1.6. (1) (aw + a'W') A =aw An+d'w’ An, Va,a' € R.

(2) (WA AE=wA(nAE).
(3) For any w € A*(V), n € AL(V),

wAn=(—DknAw.
(4) For any wy,wa,- -+ ,wx € V*, X1, X9, X €V,
wi Awa A - Awg(Xq, Xo, -+, Xi) = det(w;(X5)).
In particular, for any multi-indez (iy,i2,- -+ ,ik), liniz,in) — ¢l A gl2 A A gl
Exercise: Prove Proposition 1.6.

With Proposition 1.6 at hand, we let A*(V) := @2_,A*(V). Then under the wedge
product, (A*(V'),A) is a graded, anticommutative algebra, called the exterior alge-
bra of V. Note dim A*(V') = 2™

Interior multiplication: For any X € V, we define the interior multiplication
ix : AF(V) — A*=1(V), for any k > 0, by the following formula

in(Xl)X2a e ,Xk—l) = W(Xa Xl’X2a e ?Xk—l)?vw S Ak(v)aX17X27' o 7Xk—1 S V.

Proposition 1.7. (1) For any X € V, ix oix =0.
(2) iaxspyw = aixw + biyw, Yw € A¥(V), X, Y €V and a,b € R.
(3) For any w € A¥(V), ne A(V), X €V,

ix(wAn) = (ixw) An+ (=1 w A (ixn).

Proof. (1) and (2) are straightforward from the definition. For (3), it follows easily
from the following formula:

Ge (€T AE2 N NER) = (1)L A€ Aol Ao A T = g,

and i, (€ A €2 A+ Ae®) =0 if | # i, for any s.
U

Differential forms: Let M be a smooth manifold of dimension n. For any 0 < k <
n, let AKM := UpepsA*(T,M). By standard construction, A*M is a smooth vector
bundle over M. More concretely, let (z%) be a system of local coordinate functions
over U. Then {dz® A dx® A--- Ada*|iy < iy < --- < i} is a local frame of AFM
over U. A smooth section of A*M is called a differential k-form on M, and the
space of differential k-forms is denoted by Q¥(M), which is a C°°(M)-module. Note
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that QF(M) is a sub-module of T*M, the space of covariant k-tensor fields. Locally,
a differential k-form can be written as

w= g Wiyigeipgdx™t A dz' A -+ A dx'™, where wj,iy...i, € C(U).
11 <ta<--<ip

Note that for any smooth map F : M — N, the pull-back map F* : TFN — TFM
induces a map F* : QF(N) — QF(M).

For any w € Q*(M), n € QY(M), we define the wedge product of w and 7, denoted
by w An € QFFL(M), by

wAn(p) :==w(p) An(p), Vp € M.

Then the analog of Proposition 1.6 holds true (with R replaced by C*°(M)). Let
Q* (M) = @P_,Q%(M). Then under the wedge product A, Q*(M) is a graded, anti-
commutative algebra, called the exterior algebra of M. Finally, it is easy to check
that for any smooth map F': M — N, F*(w An) = F*(w) A F*(n).

We observe that in Theorem 3.1 of Part 2, if the multilinear map  is alternating,
then the resulting tensor field o is a differential k-form (assuming the case of [ = 0).
This observation allows us to define the interior multiplication for differential forms.
More concretely, for any smooth vector field X € X (M), we define ix : QF(M) —
QF=1(M) by the following formula: for any w € QF(M),

(iXW)(Xl)X27"' 7Xk—1) = W(Xle)X27"' )Xk—1)7 \V/Xl)X27"' )Xk—l S X(M)

We note that the analog of Proposition 1.7 holds true (with R replaced by C*°(M)).
Moreover, for any smooth map F' : M — N, X € X(M), Y € X(N), if X,Y are
F-related, i.e., Fix(X}) = Yp(y), Vp € M, then

ix(F*w) = F*(iyw), Yw € QF(N).

The exterior derivative: Recall for smooth vector fields, there is an operation
called Lie bracket. For differential forms, the corresponding operation is the so-called
exterior derivative.

Theorem 1.8. Let M be a smooth manifold. There exists unique R-linear maps,
called the exterior derivative, d : Q¥ (M) — QFY(M) for k > 0, such that

(1) for any f € C®(M) = QYM), df € QY (M) = T'M is the differential of f,
i.e., foranype M, X € T,M, df(p)(X) = X(f),
(2) for any w € QF(M), n € QY(M),
dwAn) =dwAn+(—1)*w Adn,

(3) dod=0:QFM) — Q¥2(M) for any k >0, and

(4) for any smooth map F : M — N, d(F*w) = F*(dw), Yw € QF(N).
Proof. We first address the existence part. To this end, we choose a smooth atlas
{(Uqa, ¢a)}, and fix a smooth partition of unity {f,} subordinate to {U,}, and then

write any w € QF(M) as w = Y o Wa, Where wy := fow, with supp we C U,. We shall
define dw := )  dwa,.



MATH 703: PART 3: DIFFERENTIAL FORMS AND INTEGRATION 5

With this understood, we shall deal with the special case of M = U, where U is
a local coordinate chart on M, with local coordinate functions (z'). In this case, for
any differential k-form w € QF(U), we can write

w= Z Wiyigipdx™ A dz™ A -+ Ada'™, where wiy..;,, € C(U).
11 <tg<---<ip
We define dw by the following formula:
dw = Z dwiyinip, Adx™ Adx A - N da'™ € QFL(),
11 <t <---<ip

where dwiiy..i, € QL(U) is the differential of the smooth function wjy..;. It is
straightforward to check that (1)-(3) are satisfied in this case.

Lemma 1.9. Let d : QF(M) — QF1(M), for k > 0, be R-linear maps satisfying
(1)-(3) in Theorem 1.8. Then the following are true.
(i) For any p € M, the value dw(p) depends only on the values of w on any open
neighborhood of p; in particular, for any open subset W of M, the restriction
of dw on W only depends on the restriction of w on W.
(ii) Let U be any open subset of M and let (z*) be any local coordinate func-
tions on U. If w = Zi1<i2<~~<ik wiliQ...ikdxil Adx® A - Ada', then dw =
Ei1<i2<~-<ik dwiliz“'ik Adz Ndx® A A dak

As a consequence of (i) and (ii), the maps d are unique.
Proof. For (i), it suffices to show that if w = 0 on an open neighborhood W of p, then

dw(p) = 0. To see this, we pick a smooth partition of unity {¢,v} subordinate to
{W, M\ {p}}. Then

dw = d(¢w + Yw) = d(¢w) + dip A w + Pdw.

Note that ¢w = 0 on M, so that d(¢w) = 0. Furthermore, ¢y = 0 in a neighborhood
of p so that dip(p) = 0 and ¥ (p) = 0, which implies that dw(p) = 0.
For (ii), we observe that by property (2),

dw = Z Awiyigeiy AT NdT N - AdT™ + Wiy gy.q, d(dT™ Ada A A da™).
i1 <ip<---<i,
Further application of (2), together with (1) and (3), easily implies that
d(dz™ A dx™ A - Ada™) = 0.

Hence dw = Ei1<i2<m<ik dwiyiyeiy, A dx™ Ndx® A - A date,

0

Next we show that the definition dw := )  dw, satisfies (1)-(3), hence establish
the existence part. For (1), consider the case w = f € C*°(M). Then

do =" d(faf) = S(F - dfo+ fu-df) = 1 (O dfa) + (3 fu) - df = df.

«
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verifying (1). Observe that by the same argument, for any w € QF(M) such that
supp w C U, where U is a local coordinate chart, and for any local coordinate functions

) on U such that w =" _. _ . Wi iy dz™ Adz® A--- Adaz,
11 <12 <---<1 122k

dw = Zdwa = Z dw;yiy...iy, N dz’t Adz A - A dx®.
a i1 <iz <<y,
With this understood, we verify (2) and (3). For (2), let w € Q¥(M), n € QY{(M).

Then writing w = >, wa, 1 = >_3ng, We have w Am = >, swa Ang. By the above
observation, we have

dwAn) = Z d(wa A1g)
a76
= Zdwa/\ng + (=) w, A dng

a,B
= (D dwa) A mp) + (1) wa) A (D dig)
« B @ B

= dwAn+(=1)kwAdn.

For (3), note that dw = ) dw,, and dodw = d(}_, dwa) = >, d o dw, (using the
observation). Since each supp w, C U, which is a local coordinate chart, dod = 0
holds true there. This shows that d o dw = 0, verifying (3).

Finally, (4) follows easily from the following facts: (i) F*(df) = d(F*f) for any
smooth function f, (ii) F*(w An) = F*w A F*n, (iii) the local expression for dw (cf.
Lemma 1.9), and (iv) dod = 0.

O
Exterior derivative and Lie bracket:
Theorem 1.10. For any w € QY (M), X,Y € X(M),
dw(X,Y) = X(w(Y)) = Y(w(X)) - w([X,Y]).

More generally, for any w € QF(M), X1, X, -+, Xp41 € X(M),
dw(X17X27"' 7Xk+1) = Z (_1)Z+1Xl(w(X17 73(\1'7”' 7Xk+1))

1<i<k+1

+ Z (_1)Z+]w([X’L7XJ]7X17 75(:7"' 75(;7'” 7Xk'+1)‘
1<i<j<k+1

Proof. We shall only prove for the case of k = 1; the general case is completely similar.
First, set Q(X,Y) := X(w(Y)) =Y (w(X)) —w([X,Y]). Then Q(X,Y) = —Q(Y, X).
Moreover, for any f € C*°(M),

QfX,Y) = fX(w(Y)) =Y (f)w(X) = fY(w(X)) —w(f[X, Y] -Y(f)X) = fQX,Y).
Consequently, Q(X,Y") defines a differential 2-form. It follows easily that it suffices to

check the identity dw(X,Y) = X (w(Y)) — Y(w(X)) — w([X, Y]) locally for the special

case of X = 8‘21, Y = from a local coordinate frame (

oxJ Oxt )
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To this end, write w = widz®. Then dw = dwy, A dz*, which gives
g 0. 0w &ui_Qa 8).

Wi 57 = 2t~ o907 — N5 oad

0

Symplectic structures: A differential 2-form w € Q?(M) is said to be non-
degenerate if for any point p € M, the map X + ixw(p) defines an isomorphism
between T),M and T; M. Locally, we can write w =}, . wjjdz’ Ada’. Let A := (wjj)
where w;; = —wj;, be the skew-symmetric matrix. Then with respect to the bases

(8?&) and (dz'), the map X ~ ixw is given by the matrix A. Consequently, if w is

non-degenerate, then M must be even-dimensional.
Definition 1.11. (1) A symplectic structure on a smooth manifold M is a differ-
ential 2-form w € Q%(M) such that (i) w is non-degenerate, (ii) dw = 0.

(2) A half-dimensional embedded submanifold L C M is called Lagrangian if for
any p € L, w(p)(X,Y) =0 for any X,Y € T),L.

Example 1.12. Consider M = R?® = C", and let 2, = z + iy, k = 1,2,--- ,n,
be the complex coordinates on C". Note that zp,yx, £ = 1,2,--- ,n, are the real
coordinates on R?". It is easy to check the following is a symplectic structure, called
the standard symplectic structure:

wo 1= dx1 Adyy +deo Adys + - - + dzp, A dy,.

Let L be an affine subspace defined by either y, = ci, Vk, or zp = ¢, Vk. Then L is a
Lagrangian submanifold. More generally, for any smooth function f(z1,z2, -, 2n),
we consider the graph of df, ie., L = {y; = %“{} = 1,2,---,n}. Then L is La-
grangian.

Example 1.13. For any smooth manifold M, the cotangent bundle T* M has a canon-
ical symplectic structure wy.

Let 7 : T*M — M be the projection sending (p,v) to p, where p € M and v € T, M.
We define a 1-form 7 on T*M as follows: for any (p,v) € T*M, 7(p,v) := o) (v),
where mp o TPM — T3, ) (T*M) is the dual of 7, () : T(pw)(T*M) — T, M.

We compute 7 locally. Let (2') be a system of local coordinate functions on M.
Then each cotangent vector v can be uniquely written as v =), y;dzt. Consequently,
(x%,7;) is a system of local coordinate functions on 7*M. Moreover, the projection
7 T*M — M is given by (z%,5;) + x'. It follows immediately that at (p,v) where
v=7>, yidat, T = > y;dx’. The canonical symplectic structure on T*M is defined to
be wp := —dr. In local coordinates (z*,y;),

wo = —dT = —d(z yidl‘i) = Zdazi A dy;.

As for Lagrangian submanifolds, let o € Q'(M) be a differential 1-form on M.
Then as « is a smooth section of T*M, its graph L C T*M is a half-dimensional
submanifold. We observe that L is a Lagrangian if and only if the pull-back of wg via
a: M — T*M is zero. With this understood, note that a*wg = —d«, which implies
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that L is Lagrangian if and only if « is closed, i.e., dao = 0. In particular, for any
f € C®(M), the graph of df is a Lagrangian submanifold of 7M.

2. ORIENTATION, INTEGRATION AND STOKES THEOREM

Orientation: Let M be a smooth manifold of dimension n. Observe that the
bundle of n-forms A™M is of rank 1, i.e., a line bundle.

Definition 2.1. The smooth manifold M is called orientable if A™M is trivial, which
is equivalent to M admitting a nowhere vanishing n-form. Moreover, if M is orientable,
then an orientation on M is the equivalence class of nowhere vanishing n-forms on
M in the following sense: let 21,29 be two nowhere vanishing n-forms on M, then
there exists a A € C°°(M) such that Qy = AQq, where A(p) # 0 for any p € M. We
say Q1,9 are equivalent, and write [2;] = [Q2], if A(p) > 0 for any p € M. An
oriented manifold is a manifold equipped with a specific orientation.

Exercise: Suppose M is orientable. Show that if M is connected, then there are
precisely two orientations on M.

Lemma 2.2. A smooth manifold M is orientable if and only if TM admits a set
of local trivializations over an open cover {Uy}, such that the associated transition
functions {134 : Uy NUg — GL(n,R)} satisfy the following condition: det 74 (p) > 0
for any o, B and p € U, N Upg.

Proof. First, suppose T'M admits a set of local trivializations with the said property.

For each a, let e, €5, - - - , e be the local frame defining the trivialization of TM over
U,, and let €., €2,--- € be the dual frame. Then

Qo =€ NE NN

is a nowhere vanishing n-form on U,. On the overlap U, N Ug, Qg = det 75,2,
holds. Now let {f,} be a smooth partition of unity subordinate to {U,}. Then
Q=" fafdq is a differential n-form on M, which is nowhere vanishing due to the
fact that det 75,(p) > 0 for any «, 8 and p € U, N Up.

On the other hand, let 2 be a nowhere vanishing n-form on M. Given any set of
local trivializations of T'M over an open cover {U,}, let ef, €9, - ,e% be the local
frame defining the trivialization of T'M over U,. Then by re-arranging the order of
ef,es, - ,eY, we may assume without loss of generality that Q(ef,ed,---,ed) > 0
for each a. Note that for any o, such that U, N Ug # 0, Q(ef, €S, ,e5) =
det TﬁaQ(ef, eg, e ,eg), implying det 73, (p) > 0 for any «, 8 and p € U, N Ug.

O

Recall that TM is always an O(n)-bundle. Lemma 2.2 implies that M is orientable
if and only if TM is a SO(n)-bundle.

Example 2.3. Every complex manifold M is orientable. This is because TM is a
GL(n,C)-bundle, and the determinant function is positive on the subgroup GL(n,C) C
GL(2n,R).

More generally, recall that a mixed tensor field of type (1,1) defines an endomor-
phism of TM (cf. Theorem 3.1 of part 2). A tensor field J € T;!M is called an almost
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complex structure if J?> = —Id. Every complex manifold admits a canonical almost
complex structure Jo, i.e., if 2¥ = ¥ 4 iy is a system of local holomorphic coordinate
functions, then Jo(a%k) = a%k’ Jo(%) = _a%k'

Now let J be an almost complex structure on M. Then for any p € M, J, : T,M —
T,M obeys Jg = —Idg,p. With this understood, T'M can be made into a smooth
complex vector bundle as follows: for each p € M, we define a complex multiplication
on T,M by z-v := av + bJy(v), where z = a +ib, v € T,M. Consequently, T'M is a
GL(n,C)-bundle. Thus if M admits an almost complex structure, M is orientable.

Exercise: Let V be a real vector space of dimension n = 2m. Let w € A%(V).
(1) Show that if w is non-degenerate, i.e., X — ixw defines an isomorphism between
V and V*, then there exists a basis €', 61, €2,62,--- , €™, 6™ of V*, such that

w=€e NS +ENF+ AT
(2) Show that w is non-degenerate if and only if w A w A -+ A w (m-fold wedge
product) is nonzero.

Example 2.4. Every symplectic manifold is orientable. More concretely, let w be a
symplectic structure on M of dimension 2m. Then the 2m-form Q :=wAWA - Aw
is nowhere vanishing.

Example 2.5. A smooth manifold M is called parallelizable if T'M is trivial. An
important class of parallelizable manifolds is given by Lie groups; a basis of left-
invariant vector fields on a Lie group gives rise to a global frame of its tangent bundle.
Clearly, every parallelizable manifold is orientable.

Proposition 2.6. Let S C M be a co-dimension 1 submanifold. Suppose M is ori-
entable. Then S is orientable if and only if the normal bundle of S in M is trivial.

Proof. First, we show that if the normal bundle is trivial, S must be orientable. Since
S is of co-dimension 1, the normal bundle is of rank 1. Thus triviality of the bundle
implies that there is a global frame, i.e., a smooth, non-zero section of the normal
bundle. This smooth nonzero section is given by a smooth vector field X along S,
such that for any p € S, X, is not in 7,,S. With this understood, let €25, be a nowhere
vanishing n-form on M, where n = dim M. Then Qg := ixQ,/ is a differential (n—1)-
form on S, which is nowhere vanishing. Hence S is orientable.

Conversely, suppose S is orientable, and let Qg be a nowhere vanishing (n — 1)-form
on S. We cover S by a smooth atlas {U,} of slice charts, where if 2}, 22, - 2% are
the local coordinate functions on U,, S N U, is given by z = constant. With this

understood, for each o, we let X, = % or —8%1, where there is a unique choice

such that ix Qy = Aofg for a positive smooth function A\, on S NU,. Let {fs}
be a smooth partition of unity subordinate to {U,}. Then X := )"  foX, defines a
smooth nonzero section of the normal bundle of S. ]

Example 2.7. The n-sphere S C R"*! has a trivial normal bundle. Hence each S™
is orientable.

Let M, N be oriented manifolds, with Q;;, Qy defining the orientation respec-
tively. For simplicity, we assume both M, N are connected. Let F' : M — N be
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a local diffeomorphism. Then F*Qy is nowhere vanishing on M, and there are two
possibilities: (i) [F*Qn] = [Qur], or (i) [F*Qn] = [-Qa). In case (i), F is called
orientation-preserving and in case (ii), orientation-reversing. We remark that
when M = N and Q) = Qp, F is orientation-preserving or not is independent of
the choice of the orientation €2, itself. Furthermore, note that if F' is an odd order
periodic diffeomorphism of M, F' is always orientation-preserving.

Example 2.8. We consider 7 = —Id : R**! — R"*! which leaves S" invariant. We
claim that the involution 7 : S® — S” is orientation-preserving if and only if n is odd.
To see this, we let zg,z1,--- , 2, be the standard coordinates on R"*! and let

Q= dxo Adzy A -- - Adz,, which defines an orientation on R”*!. On the other hand,
consider the normal vector field X on S", where at p € S", X, is the vector from the
origin of R"*! to p € S"™. It is easy to see that 7,(X) = X. With this understood, we
let © := ix{. Then € is nowhere vanishing on S”, thus defining an orientation on S™.
Finally, we compute the action of 7 on €:

70 = 7*(ixQ) = 7 (i xQ) = ix(7*Q) = ix((—1)""1Q) = (-1)"*1Q.
It follows that 7 : S™ — S™ is orientation-preserving if and only if n is odd. As a
consequence, RP" is orientable if and only if n is odd (cf. Prop. 2.10 below).

Lemma 2.9. Let G be a finite group acting on M smoothly and freely, and let N =
M/G be the quotient manifold. For any w € QF(M), there is an n € QF(N) such that
w = w*n, where m : M — N is the natural projection, if and only if for any g € G,
g*w=w (here g: M — M is the map p+— g-p, Vp € M ).

Exercise: Prove Lemma 2.9.

Proposition 2.10. Let G be a finite group acting on M smoothly and freely, where
M is connected and orientable, and let N = M /G be the quotient manifold. Then N
is orientable if and only if for any g € G, the map g: M — M byp— g-p, Vp € M,
18 orientation-preserving.

Proof. First, suppose N is orientable, and pick an orientation form 2y of N. Then the
form Qpr := 7*Qp, where 7 : M — N is the natural projection, is nowhere vanishing
on M, thus defining an orientation on M. With this understood, observe that for any
g € G, mo g = m, which implies that g*Qy; = ¢*7*Qn = (10 9)*Qn = 7*Qn = Q.
On the other hand, suppose that for any g € G, the map g : M — M is orientation-
preserving. We pick an orientation form Qs on M. Then [¢g*Qas] = [Qar], which im-
plies that g*Qyr = A\g€2ps for some smooth function Ay > 0. Let QM = deG g Q=

(deG Ag)s. Then g*Qar = Qu for any g € G, hence by Lemma 2.9, there is an Qy
such that 7*Qy = Q7. On the other hand, observe that Qur is nowhere vanishing,
which implies that y is nowhere vanishing. It follows that IV is orientable. O

Exercise: Prove that the lens spaces L(p, q) are orientable.

Proposition 2.11. Let M is connected and non-orientable. Then there is a unique
2 : 1 covering M — M such that M is orientable. In particular, a smooth manifold
M is orientable if there is no epimorphism m (M) — Za (e.g. m (M) =0).
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Exercise: Prove Proposition 2.11.

Manifolds with boundary: Let H" := {(x1, 22, - - ,2,)|zy, > 0} be the upper
half-space of R™, where we denote by JH" its boundary x, = 0. A smooth manifold of
boundary M is a Hausdorff and second countable topological space M with a smooth
atlas {(Uq, ¢a)}, where the map ¢, : Uy — R™ or H". An important issue to clarify
here is the smoothness of the map ¢g 0 ¢t @ ¢a(Us NUg) — ¢5(Us N Ug). If the
domain ¢ (U, NUg) contains a point € OH", then ¢go0 ¢, is smooth means that it
admits an extension to an open neighborhood of & which is smooth. Note that while
the smooth extensions are not unique, all the partial derivatives of the extensions at
the point x are uniquely determined —these values are what really matter. With this
understood, it is easy to see that all the things we have developed so far concerning
smooth manifolds can be extended to smooth manifolds with boundary.

Let M be a smooth manifold with boundary. We let

OM := {p € M|3 a chart (U, ¢) such that ¢(p) € OH"}
and
Int M := {p € M|3 a chart (U, ¢) such that ¢(p) € R" or H" \ 0H"}.

Theorem 2.12. Let M be a smooth manifold with boundary of dimension n. Then
(1) M = Int M UOM (disjoint union).
(2) Int M is an open submanifold of M without boundary.
(3) OM is an embedded submanifold of M without boundary, of dimension n — 1.

Exercise: Prove Theorem 2.12.

A smooth vector field X along OM is said to be an inward-pointing normal
vector field if for any p € OM, X,, is not in T,,(OM) and there is a smooth curve
v :[0,€) = M with v(0) = p such that 7/(0) = X,.

Lemma 2.13. There exists an inward-pointing normal vector field along OM. More-
over, a smooth vector field X along OM is an inward-pointing normal vector field if and
only if for any p € OM and any local chart (U, ) containing p, with local coordinate
functions (z'), X, => 1, ai%h, for some a; € R where a, > 0.

Proof. Let X be an inward-pointing normal vector field along OM, and let p € IM be
any point. Let 7 : [0,¢) — M be a smooth curve with v(0) = p such that 7/(0) = X,.
Then for any local chart (U, ¢) containing p, with local coordinate functions (z?), we
write X, = > i, ai%b where a; € R. Then a, = Xp(z,) = %(wn(’y(t)))h:o >0
because the function x,(y(t)) > 0 and z,(7(0)) = z,(p) = 0. Furthermore, if a, =
0, then X, is in T),(0M) which is a contradiction. Hence a, > 0. Conversely, if
X, =>1" ai%\p where a,, > 0. Then we let y(¢) be the smooth curve ¢~ (¢(p) +
(a1t ast, -+ ,ant)) C U where t € [0,€), € > 0 is small. It is clear that v(0) = p and
X, =+/(0), which shows that X is an inward-pointing normal vector field.

For the existence part, we simply cover M by local charts {(Uy, ¢o)} where each
b : Uy — H™. Let (2¢) be the local coordinate functions on U,. We pick a smooth
partition of unity {f.} subordinate to {Uy}. Then X := )| fa% is an inward-
pointing normal vector field along OM. ) 0
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Corollary 2.14. (1) The normal bundle of OM in M is trivial.
(2) For any two inward-pointing normal vector fields Xy, X1, the vector field X; =
(1 —t)Xo + tX1 is an inward-pointing normal vector field for every t € [0,1].

Definition 2.15. Let M be an oriented manifold with boundary. There is a canonical
orientation on OM, called boundary orientation, which is defined as follows: pick
an orientation form €, on M, and an inward-pointing normal vector field X along
OM, we let Qgps := —ix Q. The canonical orientation on dM is defined to be [Qgas].

We remark that by Corollary 2.14 (2), [Qs5/] is independent of the choice of X. On
the other hand, note that [Q9)/] depends only on [Q3/], not on the choice of Qj;.

Integration of differential forms and Stokes Theorem: Let M be an oriented
smooth manifold of dimension n, with or without boundary. Let w € Q™(M) such that
supp w is compact (e.g. M is compact). We will define the integration of w over M,
to be denoted by [, w.

We first consider the special case of M = U, an open subset of R” or H". Let
T1,X2, - , T, be the standard coordinates such that dxq A dxzo A - -+ A dx,, defines the
orientation on U. Let w = fdx; Adxa A--- Adxy, where supp f C U is compact. Then

we define
/ w = / fdxidzs - - - dx,.
U U

Suppose V is another open subset of R"” or H?, and F' : V — U is a diffeomorphism.
Assuming y1,y2, - , yn are the standard coordinates on V', we have

F*w = foFdet(DF)dy; ANdya A+ N\ dyn.

Without loss of generality, we may assume dy; Adya A - - - A dy,, defines the orientation
on V. Then

/ F*w :/ f o Fdet(DF)dyidys - - - dyy.
1% 1%

Observation: fU w= fv F*w if and only if F is orientation-preserving; otherwise,
Juw=—Jy Frw.

Now we define [,,w for any w € Q"(M) such that supp w is compact. We fix
an orientation form Q,; on M. Since supp w is compact, we can choose a finite
cover of supp w by local coordinates charts {(Uas, ¢q)}. For each «, let ¢o(p) =
(zt(p), -+ ,2%(p)), p € Uy, such that QM(%, cee 822) > 0. Moreover, pick a smooth
partition of unity {f,} subordinate to {Ua}fx Then we define

| wi= > / o )

Proposition 2.16. The integral wa is well-defined. Moreover,

o [ylaw+dW)=a [, w+d [, Va,a eR.
o Let Qpr be an orientation form on M, w = Qs for some compactly supported
smooth function f, where f >0 and f(p) >0 at somep € M. Then [;,w > 0.
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o Let F': M — N be a diffeomorphism. Then fM o= fN w if F' is orientation-
preserving, and fM Fro=-— wa if F' is orientation-reversing. In particular,
J oy w=— [y w, where —M is M with the opposite orientation.

Lemma 2.17. Let w € Q"1 (H") where supp w is compact. Then [y, dw = [y, w,
where OH™ is given the boundary orientation.

Proof. Let 1,29, -+ ,x, be the standard coordinates on H" such that dxi A dxo A
-+ A\ dx, defines the orientation on H". Then it is easy to see that the boundary
orientation on OH" is given by (—1)"dx; Adxa A -+ A dxyp_1.

We write w = Y1 widzi A+ A d/@ A -+ Adzy,. Then

n
4 Ow;
dw =Y (=1)"'——day Adawg A+ A day.
w 7;:1( ) oz, 21 A dzxo Zn,
Consequently,

n

/n dw = Z:(—l)i*1 - g;ul dridxs - - - dx, = (—1)"1 /aH (—wp)dz1dxy - - - dxp—1 =
i=1 E "

O

With Lemma 2.17, a straightforward argument involving partition of unity gives
the following

Stokes Theorem: fM dw = faMw for any compactly supported w.

Integration of functions: Let M be an oriented smooth manifold (with or without
boundary). Fix any orientation form 3, on M, we can define the integral of a
compactly supported smooth function f over M, denoted by | vl by

[ [

Integration on Riemannian manifolds: Let g be a Riemannian metric on M. Let
e1,€2, -+ ,e, be any local orthonormal frame of T'M, which is positively oriented in
the sense that Qs(e1,ea,---,e,) > 0. Let €', €2, ---€" be the dual frame. Then it is
easy to see that

dvy = ANEN AT
is independent of the choice of the orthonormal frame eq,es, - ,e,. Furthermore,
note that [dVy] = [Qu]. dVj is called the volume form associated to g. With this
understood, for any compactly supported smooth function f on M, we define

/M /= /M f Vs

Suppose OM is nonempty, and let § be the induced Riemannian metric on M.
Observe that there is a unique unit vector field N along OM, such that (i) —N is
inward-pointing, (ii) N is orthogonal to M. It is easy to see that the volume form
on OM, dVy, is given by dV; = indV.

w.
OH"
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Let X € X(M). Then the divergence of X, denoted by div,(X), is defined to be
the smooth function determined by the equation

divy(X) - dVy = d(ixdVy).
Then the following theorem is an easy consequence of the Stokes Theorem.

Divergence Theorem: [, divy(X) = [,,,9(X,N) for any compactly supported
X € X(M).

Integration on Lie groups: Let G be a Lie group. Fix an orientation on G, we let

!, €2,---€" be the dual basis of a positively oriented basis of Lie(G). Then

Q=" NN A€

is an orientation form on G. Observe that for any g € G, L2 = ().
For any compactly supported smooth function f on G, we define

=l

We note that the integral [, f is left-invariant, i.e., for any g € G, [ Lyf = [, f

Theorem 2.18. When G is compact, the integral fo s bi-invariant, i.e., for any
9€G, JoLyf = JoRof = Jof

Proof. Tt suffices to show that [, Rif = [, f for any g € G. To this end, we note
that for any g € G, R;Q is left-invariant, so that there exists a A(g) # 0 such that
RyQ = Mg)Q2. In particular, Ry : G — G is orientation-preserving if and only if
A(g) > 0. As G is compact, it follows that

ANg)Q = | RyQ=sign A(g) | €,
JRCEEYS /.

implying |A(g)| = 1 for any g € G. Now for any f € C*(G), g € G,
/R*f /R* Q) = sign A(g )/R* Q) = /fQ /f

Lemma 2.19. Let G' be a compact Lie group acting smoothly on M. For any f €
C™®(M), let f be the function on M defined by

g

f(p) := / f(g-p), where f(g-p) is regarded as a function on G, Vp € M.
G

Then f € C®(M), and f is G-invariant, i.e., YVh € G, h*f = f.

Proof. First, f € C°°(M) because f(g-p) is smooth in both g and p. To see that f is
G-invariant, we let h € G be any element. Then

(W F)(p) = F(h-p) = /G flgh-p) = /G B3 f)(gp) = /G flg-p) = F0), VpeM.
]
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Exercise: Let M be a smooth manifold equipped with a smooth action of a compact
Lie group G. Show that M admits a Riemannian metric which is G-invariant.

3. DE RHAM COHOMOLOGY

Definition and homotopy invariance: Let M be a smooth manifold. The p-th
de Rham cohomology group of M is defined to be the vector space over R:
» {kerd : QP(M) — QP (M)}
Hjp(M) := )
{Image d : QP~1(M) — Qr(M)}
Note that in the above definition we used the fact that dod = 0. Clearly, HY,(M) =0
if p<0orp>dmM. Since d commutes with pullback maps, for any smooth map
F: M — N, there is an induced homomorphism F* : HY,(N) — H},(M).
Recall that smooth maps Fy, F1 : M — N are homotopic if there is a smooth map
H : M x[0,1] — N such that for any z € M, F;(x) = H(z,1i) for i =0, 1.
Theorem 3.1. If Fy, Fi : M — N are homotopic, then Fj = Ff : H),(N) —
HgR(M). As a consequence, homotopy equivalent manifolds have isomorphic de Rham
cohomology groups.

Proof. The key is the existence of R-linear maps h : Q¥(M x [0,1]) — QF¥~1(M), which
are defined as follows: for any w € QF(M x [0,1]), h(w) := fol towdt. Fori=0,1, let
ot

I : M — M x [0,1] be the embedding sending x to (z,7). Then the maps h obey the
following equation: doh +hod = I{ — 1.
To verify this, it suffices to compute locally. We write

W = firigeiy (£)dT™ A dz™ A - Ad™ 4 gjyjpeii_, (£)dE A dzI A d2?? A - A daTEr
Then it is easy to check that
ho d(w) = (flllzlk(l) — fi1i2"~ik (O))dl’il Adz2 A - A dxt

1
- (/ AGjy jo--ju_, O)dt) A da?t A dx?? A - o A dadi
0

and .
doh(w) = (/ AGjrjariny (B)dt) A dxt A dzT2 A - A dadh1
0

which implies that doh+hod = I7 —Ij. Consequently, doho H*+hodoH* = F} —F{.
Since do H* = H*od, we have do(ho H*)+ (hoH*)od = F} — F. For any w € QP(N)
such that dw = 0, we let n := h o H*(w) € QP~Y(M), then F}(w) — Ff(w) = dn. Tt
follows that Fjf = Fi : HYL(N) — HP.(M). O

The following are straightforward from the definition or homotopy invariance, where
part (4) also uses Stokes Theorem.

Proposition 3.2. (1) If M = M U M, then H}p(M) = HYp(My) x HYp(Ms).
(2) Let M be connected. Then HY5(M) = R, identified with constant functions.
(3) If M is contractable, e.g., M = R", B", Hi(M) =0 for p # 0.

(4) If m (M) is finite, then Hyn(M) = 0.
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Exercise: Prove Proposition 3.2.

De Rham cohomology under regular finite coverings:

Proposition 3.3. Let G be a finite group acting smoothly and freely on M, and let
m: M — N = M/G be the quotient map. Then m* : HY,(N) — H (M) is injective,
with its image being the G-invariant part of HY (M), i.e.,

HY(M)Y = {a € HYp(M)|g*a = a, Vg € G}.
Proof. First of all, note that for any ¢ € G, m o g = 7, so that for any w € QP(N),
g*(m*w) = m*w. It follows easily that n* : HY,(N) — HYp(M)C.

Now we show that n* : HY,(N) — HY (M) is injective. Let v € Hp(N) such that
m*a = 0. Representing a by w € QP(N), we have 7*w = dn for some n € QP~1(M).
Setting 77 := Tcl:| deG g*n, it is easy to see, as w o g = 7, that m*w = d7n. Note that
g*n = 7 for any g € G, so that by Lemma 2.9, there is an 7' € QP~!1(V) such that
m*n’ = 7. Tt follows that 7*(w —dn’) = 0. Since 7 : M — N is a local diffeomorphism,
7™ QP(N) — QP(M) is injective. This implies that w = dn’ and a = [w] = 0 in
HYo(N). Hence 7* : Hip(N) — HY,(M) is injective.

To see that m* : Ho(N) — HY,(M)C is surjective, we let o € HY,(M)% be any
element. Representing o by w € QP(M), we note that for any g € G, there is an
ng € QP7Y(M) such that g*w = w + dn, (as g*a = a). Let @ = ﬁzgeGg*w,
n = ﬁ deG ng. Then @ = w + dn. On the other hand, by Lemma 2.9, there is
an w’ € QP(N) such that 7*w’ = @. Note that 7*dw’ = d® = 0, which implies that
dw' = 0. Let o € HY,(N) be the class of w’. Then 7"’ = «, which shows that
7™+ Hip(N) — HE o (M)C is surjective.

g

Cup product and Poincaré duality: There is a natural R-bilinear map, called
the cup product, H%,(M) x Hi (M) — H2EU(M), (o, B) + U B, which is defined
as follows: represent «, 5 by w € QP(M), n € Q4(M) respectively. Then as d(w A7) =
dw An+ (—=1)Pw Adn = 0, we define aU S € Hggq(M) to be the de Rham cohomology
class of w A 7. It is easy to check that the cup product is well-defined.

Example 3.4. Let M be a compact closed manifold, w be a symplectic structure on
M. Then M must be even-dimensional, say dim M = 2m. Since w is non-degenerate,
WAWA---Aw (m-fold) is nowhere vanishing. As M is compact, [, WAwA---Aw # 0.
On the other hand, dw = 0, so w defines a de Rham cohomology class [w] € H2p(M).
We note that by Stokes Theorem, w A w A --- Aw # dn for any n, as OM = ().
Consequently, [w]™ := [w] U [w] U+ U [w] € H3%(M) is non-zero. This implies that
for any 0 < k < m, [w]* € H2%(M) is non-zero as well. In conclusion, a necessary
condition for a compact closed manifold M of dimension 2m to admit a symplectic
structure is that for any p, where 0 < p < 2m, p is even, Hip(M) # 0.

Theorem 3.5. Let M be compact closed (i.e., OM = () and oriented, and let n =
dim M. Then each HY,(M) is finite dimensional. Moreover, the R-bilinear map
HOL(M)xH)RP (M) = R, (o, B) = [y, aUB, is non-degenerate, implying the following
duality (called Poincaré duality): HY (M) = (H;,"(M))*.
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Suppose M is compact closed and connected, which is non-orientable. Then there
is a double cover M — M such that M is orientable. It follows from Proposition 3.3
and Theorem 3.5 that each HY,(M) is finite dimensional as well. Similarly,

Exercise: Let M be compact closed and connected, of dimension n. Show that M
is non-orientable if and only if H}5(M) = 0.

Theorem 3.6. (The Kinneth formula) Hjp(M X N) = @prg—nHYz(M) @ Hip(N),
where for any o € HYx(M), B € Hin(N), a®p = nfaUnsB. (Herem : M x N — M,
my: M XN — N.)

The Mayer-Vietoris Theorem: The most useful tool for computing the de Rham
cohomology groups is the Mayer-Vietoris Theorem. We shall illustrate it with some
fundamental examples.

Let M be a smooth manifold, U,V be open subsets such that M = U UV. Let
k:U—->M1:V - M,i:UNV U, j:UnNnV — V denote the inclusion
maps. Then there are R-linear maps ¢ : H),(UNV) — H. gEI(M ) (called connecting
homomorphisms), such that the following exact sequence holds:

s Hi (M) T (U) @ (V) T (U0 V) s B0 TR

The above sequence is called the Mayer-Vietoris sequence.

Example 3.7. Here we use the Mayer-Vietoris Theorem to compute the de Rham
cohomology groups of S”, for n > 0. To this end, note that S* = U UV, where U,V
are the complement of the north pole and south pole respectively. In particular, U, V'
are diffeomorphic to R™, and U NV is diffeomorphic to R™ \ {0}, which is homotopy
equivalent to S"~!. Consequently, H),(U) = HY,(V) = 0 for p > 0, and HL,(UNV) =
HgR(S”_l) for any p. Looking at the p > 0 part of the Mayer-Vietoris sequence, we
obtain immediately that

HE (S 1) = HYEY(S™), Vp > 0.

Looking at the p = 0 part of the Mayer-Vietoris sequence, we note that HC(I)R(S”) =
HY:(U) = HJ,(V) = R. Moreover, when n = 1, H),(S""!) = R & R, which implies
that Hj,(S") =R forn =1. If n > 1, H},(S*™!) = R, which implies that H},(S") =
0 for n > 1. Now using Hi,(S"™1) = Hg;l(S”), Vp > 0 inductively, we obtain that
HLL(S™) =0 for 0 < p < n, and HJR(S") =R.

Example 3.8. In this example we compute the de Rham cohomology groups of CP™
for n > 1. Let lp € CP" be the complex line through the point (0,0,---,1) € C**1,
Let U be an open ball centered at [y and V = CP™\ {ly}. Clearly, CP" =U U V.

Now the key observation is that V is a complex line bundle over CP"~! (in fact,
it is the dual of the tautological line bundle over CP"~1). In particular, H},(V) =
HgR(C]Pm_l) for any p. On the other hand, U NV is homotopy equivalent to S~ 1,
so that HY,(UNV) = HYp(S**~1) for any p. Finally, H),(U) = 0 for p > 0.

With HY(UNV) = HY o (S?1) = 0 for 1 < p < 2n—2, the Mayer-Vietoris sequence
implies that HY,(CP") = HL,(CP"1) for 2 < p < 2n — 2, and H3} '(CP") = 0.
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(Here we also use the fact that dimg CP"~! = 2n — 2.) Inductively, we obtain that
HY-(CP™) = 0 if p is odd and 2 < p < 2n. Looking at the p = 0 part of the Mayer-
Vietoris sequence, it follows that Hln(CP") = H},(CP"™1) as well. As CP! = S,
we conclude that HéR((C]P’”) = 0. Finally, Looking at the p = 2n — 1 part of the
Mayer-Vietoris sequence, we obtain H3%(CP") = Hsz_l(Sznfl) = R. In summary, we
have for 0 < p < 2n,

HYo(CP") =R if p is even, H}o(CP") = 0 if p is odd.

Exercise: Note that by the calculation of HY,(S") in Example 3.7 and applying
Proposition 3.3, we conclude that

HELR(RP™) =0 for 0 < p < n, Hjp(RP") = 0 if n is even, Hjz(RP") = R if n is odd.
Using a similar argument as in Example 3.8, give an independent proof of the above.

Exercise: Let M be compact closed, connected, and of dimension n. Using the
idea in Example 3.8, show that

HE (M N\ {pt}) = HY (M) for 0 < p <n—2,and p=n—1and M is orientable,
and
HE (M \ {pt}) = H)z(M) ® R if p=n—1 and M is non-orientable,
and HJjp(M \ {pt}) = 0.

Exercise: Let M be the quotient space of a free smooth involution 7 on S' x S2,
where 7 acts on the S!'-factor by z — % and on the S?>-factor as the antipodal map.

(1) Show that M = RP3#RP3. Then use the Mayer-Vietoris Theorem to compute
the de Rham cohomology groups of M.

(2) Use Proposition 3.3 and the Kiinneth formula to compute the de Rham coho-
mology groups of M alternatively.

Example 3.9. (Mapping Torus) Here we compute the de Rham cohomology groups
of a mapping torus. Let M be compact closed, connected, and of dimension n, and
let 7: M — M be a diffeomorphism. The mapping torus of 7 is the smooth manifold

N = (M x [0,1])/(z, 1) ~ ((z),0).

It is easy to see that N = U UV, where U,V are a product of M with an interval,
such that U NV is a disjoint union of two products of M with an interval. Moreover,
we can identify both HY,(U) & HYp(V) and HY(U NV) with HY (M) & HY (M),
such that the map ¢, = * — j* : Hi(U) ® Hjp(V) — Hi(UNV) is given by
(z,y) = (x —y,x — 7*(y)), where z,y € Hjp(M). With this understood, it follows
from the Mayer-Vietoris Theorem that HY,(N) = Coker ¢,—1 @ ker ¢,. Identifying
ker ¢, and Coker ¢, we obtain for any p,

H.(N) = Coker (Id—7* : HY-' (M) — H2- (M) @ker(Id—7* : HY (M) — HY,(M)).

Note that if 7 = Id, we recover the Kiinneth formula for N = M x S!.
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Exercise: The Klein bottle K is the quotient space of an involution x on S! x S!,
where k(z1, 22) = (21, —22). Compute the de Rham cohomology groups of K from the
following three viewpoints:

(1) Use Proposition 3.3 and the Kiinneth formula, seeing K = S* x S! /.

(2) Show that K = RP?2#RP?, and use the Mayer-Vietoris Theorem.

(3) Show that K is the mapping torus of 7 : St — S! where 7(z) = 2, and use the
formula in Example 3.9.

Exercise: Let M = S! x §%/k, where k(z,y) = (—z, —y).

(1) Compute the de Rham cohomology groups of M using Proposition 3.3 and the
Kiinneth formula.

(2) Compute the de Rham cohomology groups of M, seeing M as a mapping torus.

(3) Show that M is the non-trivial S!-bundle over RP? (even though M has the
same de Rham cohomology groups of the trivial S'-bundle over RP?).
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