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1. Differential forms and the exterior derivative

Alternating tensors: Let Sk be the symmetric group of k letters. Then any
element σ ∈ Sk defines a permutation σ : (1, 2, · · · , k) 7→ (σ(1), σ(2), · · · , σ(k)). We let
sign σ = 1 if σ is even (i.e., a product of even number transpositions) and sign σ = −1
if σ is odd.

Definition 1.1. Let V be a real vector space of dimension n. For any T ∈ T k(V ),
σ ∈ Sk, we define

T σ(X1, X2, · · · , Xk) := T (Xσ(1), Xσ(2), · · · , Xσ(k)), ∀X1, X2, · · · , Xk ∈ V.

We say T is alternating if for any σ ∈ Sk, T σ = sign σ ·T , and the subspace of T k(V )
consisting of alternating tensors is denoted by Λk(V ).

We fix a basis e1, e2, · · · , en of V , and let ε1, ε2, · · · , εn be the dual basis of V ∗.

Example 1.2. (1) Λ0(V ) = T 0(V ) = R, Λ1(V ) = T 1(V ) = V ∗.
(2) Consider the case of k = 2. For any T ∈ Λ2(V ), we write T = Tijε

i ⊗ εj . Then
T is alternating means that Tij = −Tji for any i, j. Consequently,

T =
∑
i<j

Tij(ε
i ⊗ εj − εj ⊗ εi).

Set ε(i,j) := εi ⊗ εj − εj ⊗ εi. It follows that {ε(i,j)|i < j} is a basis of Λ2(V ); in
particular, dim Λ2(V ) = 1

2n(n− 1).
(3) Consider the case of k = n. For any T ∈ Λn(V ),

T = Ti1i2···inε
i1 ⊗ εi2 ⊗ · · · ⊗ εin = T12···n · T0,

where T0 :=
∑

σ∈Sn sign σ ·(ε1⊗ε2⊗· · ·⊗εn)σ. Consequently, Λn(V ) is 1-dimensional,
generated by the element T0. Furthermore, observe that for any X1, X2, · · · , Xn ∈ V ,

T0(X1, X2, · · · , Xn) = det(εi(Xj)).
1



2 WEIMIN CHEN

As a corollary, observe that if F : V → V is a linear map, then the induced map (i.e.,
the pull-back) F ∗ : Λn(V )→ Λn(V ) is given by the multiplication by detF .

Definition 1.3. (1) For any k, we define a linear map Alt : T k(V )→ T k(V ) by

Alt(T ) =
1

k!

∑
σ∈Sk

sign σ · T σ, ∀T ∈ T k(V ).

(2) For any multi-index (i1, i2, · · · , ik), we define

ε(i1,i2,··· ,ik) := k!Alt(εi1 ⊗ εi2 ⊗ · · · ⊗ εik).

It is clear from the definition that for any T ∈ Λk(V ), Alt(T ) = T .

Lemma 1.4. (1) For any T ∈ T k(V ), τ ∈ Sk,

(i) Alt(T τ ) = sign τ ·Alt(T ), and (ii) (Alt(T ))τ = sign τ ·Alt(T ).

In particular, the latter implies that Alt(T ) is an alternating tensor for any T .

(2) ε(i1,i2,··· ,ik) = 0 if there is a repeated index in i1, i2, · · · , ik. Furthermore, the set

{ε(i1,i2,··· ,ik)|i1 < i2 < · · · < ik} is a basis of Λk(V ). In particular, Λk(V ) = {0} if
k > n.

Proof. (1). For any T ∈ T k(V ), τ ∈ Sk,

Alt(T τ ) =
1

k!

∑
σ∈Sk

sign σ · (T τ )σ =
1

k!

∑
σ∈Sk

sign σ · T τσ = sign τ ·Alt(T ),

and

(Alt(T ))τ =
1

k!

∑
σ∈Sk

sign σ · (T σ)τ =
1

k!

∑
σ∈Sk

sign σ · T στ = sign τ ·Alt(T ).

(2). It follows easily from Alt(T τ ) = sign τ · Alt(T ) that if there is a repeated

index in i1, i2, · · · , ik, ε(i1,i2,··· ,ik) = 0. On the other hand, for each multi-index
(i1, i2, · · · , ik) where there is no repeated index, ε(i1,i2,··· ,ik) ∈ Λk(V ) and is nonzero,

as ε(i1,i2,··· ,ik)(ei1 , ei2 , · · · , eik) = 1. To see that {ε(i1,i2,··· ,ik)|i1 < i2 < · · · < ik} is a
basis of Λk(V ), we note that for any T ∈ Λk(V ),

T = Ti1i2···ikε
i1 ⊗ εi2 ⊗ · · · ⊗ εik =

∑
i1<i2<···<ik

Ti1i2···ik · ε
(i1,i2,··· ,ik).

�

The wedge product: For any ω ∈ Λk(V ), η ∈ Λl(V ), we define the wedge product
of ω and η, denoted by ω ∧ η ∈ Λk+l(V ), by the formula

ω ∧ η :=
(k + l)!

k!l!
Alt(ω ⊗ η).

Lemma 1.5. For any multi-indices (i1, i2, · · · , ik) and (j1, j2, · · · , jl),

ε(i1,i2,··· ,ik) ∧ ε(j1,j2,··· ,jl) = ε(i1,i2,··· ,ik,j1,j2,··· ,jl).
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Proof. For any σ ∈ Sk, τ ∈ Sl, we note that

sign σ·(εi1⊗· · ·⊗εik)σ·sign τ ·(εj1⊗· · ·⊗εjl)τ = sign (σ, τ)·(εi1⊗· · ·⊗εik⊗εj1⊗· · ·⊗εjl)(σ,τ),
where (σ, τ) ∈ Sk+l. It follows immediately from Lemma 1.4(1)(i) that

Alt(ε(i1,i2,··· ,ik) ⊗ ε(j1,j2,··· ,jl)) = k!l!Alt(εi1 ⊗ εi2 ⊗ · · · ⊗ εik ⊗ εj1 ⊗ εj2 ⊗ · · · ⊗ εjl),
from which Lemma 1.5 follows.

�

The following follows easily from Lemmas 1.4 and 1.5.

Proposition 1.6. (1) (aω + a′ω′) ∧ η = aω ∧ η + a′ω′ ∧ η, ∀a, a′ ∈ R.
(2) (ω ∧ η) ∧ ξ = ω ∧ (η ∧ ξ).
(3) For any ω ∈ Λk(V ), η ∈ Λl(V ),

ω ∧ η = (−1)klη ∧ ω.
(4) For any w1, w2, · · · , wk ∈ V ∗, X1, X2, · · · , Xk ∈ V ,

w1 ∧ w2 ∧ · · · ∧ wk(X1, X2, · · · , Xk) = det(wi(Xj)).

In particular, for any multi-index (i1, i2, · · · , ik), ε(i1,i2,··· ,ik) = εi1 ∧ εi2 ∧ · · · ∧ εik .

Exercise: Prove Proposition 1.6.

With Proposition 1.6 at hand, we let Λ∗(V ) := ⊕nk=0Λ
k(V ). Then under the wedge

product, (Λ∗(V ),∧) is a graded, anticommutative algebra, called the exterior alge-
bra of V . Note dim Λ∗(V ) = 2n.

Interior multiplication: For any X ∈ V , we define the interior multiplication
iX : Λk(V )→ Λk−1(V ), for any k > 0, by the following formula

iXω(X1, X2, · · · , Xk−1) := ω(X,X1, X2, · · · , Xk−1), ∀ω ∈ Λk(V ), X1, X2, · · · , Xk−1 ∈ V.

Proposition 1.7. (1) For any X ∈ V , iX ◦ iX = 0.
(2) iaX+bY ω = aiXω + biY ω, ∀ω ∈ Λk(V ), X, Y ∈ V and a, b ∈ R.
(3) For any ω ∈ Λk(V ), η ∈ Λl(V ), X ∈ V ,

iX(ω ∧ η) = (iXω) ∧ η + (−1)kω ∧ (iXη).

Proof. (1) and (2) are straightforward from the definition. For (3), it follows easily
from the following formula:

iel(ε
i1 ∧ εi2 ∧ · · · ∧ εik) = (−1)s+1εi1 ∧ εi2 ∧ · · · ε̂is ∧ · · · ∧ εik if l = is,

and iel(ε
i1 ∧ εi2 ∧ · · · ∧ εik) = 0 if l 6= is for any s.

�

Differential forms: Let M be a smooth manifold of dimension n. For any 0 ≤ k ≤
n, let ΛkM := tp∈MΛk(TpM). By standard construction, ΛkM is a smooth vector
bundle over M . More concretely, let (xi) be a system of local coordinate functions
over U . Then {dxi1 ∧ dxi2 ∧ · · · ∧ dxik |i1 < i2 < · · · < ik} is a local frame of ΛkM
over U . A smooth section of ΛkM is called a differential k-form on M , and the
space of differential k-forms is denoted by Ωk(M), which is a C∞(M)-module. Note
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that Ωk(M) is a sub-module of T kM , the space of covariant k-tensor fields. Locally,
a differential k-form can be written as

ω =
∑

i1<i2<···<ik

ωi1i2···ikdx
i1 ∧ dxi2 ∧ · · · ∧ dxik , where ωi1i2···ik ∈ C

∞(U).

Note that for any smooth map F : M → N , the pull-back map F ∗ : T kN → T kM
induces a map F ∗ : Ωk(N)→ Ωk(M).

For any ω ∈ Ωk(M), η ∈ Ωl(M), we define the wedge product of ω and η, denoted
by ω ∧ η ∈ Ωk+l(M), by

ω ∧ η(p) := ω(p) ∧ η(p), ∀p ∈M.

Then the analog of Proposition 1.6 holds true (with R replaced by C∞(M)). Let
Ω∗(M) := ⊕nk=0Ω

k(M). Then under the wedge product ∧, Ω∗(M) is a graded, anti-
commutative algebra, called the exterior algebra of M . Finally, it is easy to check
that for any smooth map F : M → N , F ∗(ω ∧ η) = F ∗(ω) ∧ F ∗(η).

We observe that in Theorem 3.1 of Part 2, if the multilinear map ψ is alternating,
then the resulting tensor field σ is a differential k-form (assuming the case of l = 0).
This observation allows us to define the interior multiplication for differential forms.
More concretely, for any smooth vector field X ∈ X (M), we define iX : Ωk(M) →
Ωk−1(M) by the following formula: for any ω ∈ Ωk(M),

(iXω)(X1, X2, · · · , Xk−1) := ω(X,X1, X2, · · · , Xk−1), ∀X1, X2, · · · , Xk−1 ∈ X (M).

We note that the analog of Proposition 1.7 holds true (with R replaced by C∞(M)).
Moreover, for any smooth map F : M → N , X ∈ X (M), Y ∈ X (N), if X,Y are
F -related, i.e., F∗(Xp) = YF (p), ∀p ∈M , then

iX(F ∗ω) = F ∗(iY ω), ∀ω ∈ Ωk(N).

The exterior derivative: Recall for smooth vector fields, there is an operation
called Lie bracket. For differential forms, the corresponding operation is the so-called
exterior derivative.

Theorem 1.8. Let M be a smooth manifold. There exists unique R-linear maps,
called the exterior derivative, d : Ωk(M)→ Ωk+1(M) for k ≥ 0, such that

(1) for any f ∈ C∞(M) = Ω1(M), df ∈ Ω1(M) = T 1M is the differential of f ,
i.e., for any p ∈M , X ∈ TpM , df(p)(X) = X(f),

(2) for any ω ∈ Ωk(M), η ∈ Ωl(M),

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη,

(3) d ◦ d = 0 : Ωk(M)→ Ωk+2(M) for any k ≥ 0, and
(4) for any smooth map F : M → N , d(F ∗ω) = F ∗(dω), ∀ω ∈ Ωk(N).

Proof. We first address the existence part. To this end, we choose a smooth atlas
{(Uα, φα)}, and fix a smooth partition of unity {fα} subordinate to {Uα}, and then
write any ω ∈ Ωk(M) as ω =

∑
α ωα, where ωα := fαω, with supp ωα ⊂ Uα. We shall

define dω :=
∑

α dωα.
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With this understood, we shall deal with the special case of M = U , where U is
a local coordinate chart on M , with local coordinate functions (xi). In this case, for
any differential k-form ω ∈ Ωk(U), we can write

ω =
∑

i1<i2<···<ik

ωi1i2···ikdx
i1 ∧ dxi2 ∧ · · · ∧ dxik , where ωi1i2···ik ∈ C

∞(U).

We define dω by the following formula:

dω :=
∑

i1<i2<···<ik

dωi1i2···ik ∧ dx
i1 ∧ dxi2 ∧ · · · ∧ dxik ∈ Ωk+1(U),

where dωi1i2···ik ∈ Ω1(U) is the differential of the smooth function ωi1i2···ik . It is
straightforward to check that (1)-(3) are satisfied in this case.

Lemma 1.9. Let d : Ωk(M) → Ωk+1(M), for k ≥ 0, be R-linear maps satisfying
(1)-(3) in Theorem 1.8. Then the following are true.

(i) For any p ∈M , the value dω(p) depends only on the values of ω on any open
neighborhood of p; in particular, for any open subset W of M , the restriction
of dω on W only depends on the restriction of ω on W .

(ii) Let U be any open subset of M and let (xi) be any local coordinate func-
tions on U . If ω =

∑
i1<i2<···<ik ωi1i2···ikdx

i1 ∧ dxi2 ∧ · · · ∧ dxik , then dω =∑
i1<i2<···<ik dωi1i2···ik ∧ dx

i1 ∧ dxi2 ∧ · · · ∧ dxik .

As a consequence of (i) and (ii), the maps d are unique.

Proof. For (i), it suffices to show that if ω = 0 on an open neighborhood W of p, then
dω(p) = 0. To see this, we pick a smooth partition of unity {φ, ψ} subordinate to
{W,M \ {p}}. Then

dω = d(φω + ψω) = d(φω) + dψ ∧ ω + ψdω.

Note that φω = 0 on M , so that d(φω) = 0. Furthermore, ψ = 0 in a neighborhood
of p so that dψ(p) = 0 and ψ(p) = 0, which implies that dω(p) = 0.

For (ii), we observe that by property (2),

dω =
∑

i1<i2<···<ik

dωi1i2···ik ∧ dx
i1 ∧ dxi2 ∧ · · · ∧ dxik +ωi1i2···ikd(dxi1 ∧ dxi2 ∧ · · · ∧ dxik).

Further application of (2), together with (1) and (3), easily implies that

d(dxi1 ∧ dxi2 ∧ · · · ∧ dxik) = 0.

Hence dω =
∑

i1<i2<···<ik dωi1i2···ik ∧ dx
i1 ∧ dxi2 ∧ · · · ∧ dxik .

�

Next we show that the definition dω :=
∑

α dωα satisfies (1)-(3), hence establish
the existence part. For (1), consider the case ω = f ∈ C∞(M). Then

dω =
∑
α

d(fαf) =
∑
α

(f · dfα + fα · df) = f · (
∑
α

dfα) + (
∑
α

fα) · df = df,
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verifying (1). Observe that by the same argument, for any ω ∈ Ωk(M) such that
supp ω ⊂ U , where U is a local coordinate chart, and for any local coordinate functions
(xi) on U such that ω =

∑
i1<i2<···<ik ωi1i2···ikdx

i1 ∧ dxi2 ∧ · · · ∧ dxik ,

dω :=
∑
α

dωα =
∑

i1<i2<···<ik

dωi1i2···ik ∧ dx
i1 ∧ dxi2 ∧ · · · ∧ dxik .

With this understood, we verify (2) and (3). For (2), let ω ∈ Ωk(M), η ∈ Ωl(M).
Then writing ω =

∑
α ωα, η =

∑
β ηβ, we have ω ∧ η =

∑
α,β ωα ∧ ηβ. By the above

observation, we have

d(ω ∧ η) =
∑
α,β

d(ωα ∧ ηβ)

=
∑
α,β

dωα ∧ ηβ + (−1)kωα ∧ dηβ

= (
∑
α

dωα) ∧ (
∑
β

ηβ) + (−1)k(
∑
α

ωα) ∧ (
∑
β

dηβ)

= dω ∧ η + (−1)kω ∧ dη.

For (3), note that dω =
∑

α dωα, and d ◦ dω = d(
∑

α dωα) =
∑

α d ◦ dωα (using the
observation). Since each supp ωα ⊂ Uα which is a local coordinate chart, d ◦ d = 0
holds true there. This shows that d ◦ dω = 0, verifying (3).

Finally, (4) follows easily from the following facts: (i) F ∗(df) = d(F ∗f) for any
smooth function f , (ii) F ∗(ω ∧ η) = F ∗ω ∧ F ∗η, (iii) the local expression for dω (cf.
Lemma 1.9), and (iv) d ◦ d = 0.

�

Exterior derivative and Lie bracket:

Theorem 1.10. For any ω ∈ Ω1(M), X,Y ∈ X (M),

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

More generally, for any ω ∈ Ωk(M), X1, X2, · · · , Xk+1 ∈ X (M),

dω(X1, X2, · · · , Xk+1) =
∑

1≤i≤k+1

(−1)i+1Xi(ω(X1, · · · , X̂i, · · · , Xk+1))

+
∑

1≤i<j≤k+1

(−1)i+jω([Xi, Xj ], X1, · · · , X̂i, · · · , X̂j , · · · , Xk+1).

Proof. We shall only prove for the case of k = 1; the general case is completely similar.
First, set Ω(X,Y ) := X(ω(Y ))−Y (ω(X))−ω([X,Y ]). Then Ω(X,Y ) = −Ω(Y,X).

Moreover, for any f ∈ C∞(M),

Ω(fX, Y ) = fX(ω(Y ))− Y (f)ω(X)− fY (ω(X))−ω(f [X,Y ]− Y (f)X) = fΩ(X,Y ).

Consequently, Ω(X,Y ) defines a differential 2-form. It follows easily that it suffices to
check the identity dω(X,Y ) = X(ω(Y ))− Y (ω(X))−ω([X,Y ]) locally for the special
case of X = ∂

∂xi
, Y = ∂

∂xj
from a local coordinate frame ( ∂

∂xi
).
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To this end, write ω = ωkdx
k. Then dω = dωk ∧ dxk, which gives

dω(
∂

∂xi
,
∂

∂xj
) =

∂ωj
∂xi
− ∂ωi
∂xj

= Ω(
∂

∂xi
,
∂

∂xj
).

�

Symplectic structures: A differential 2-form ω ∈ Ω2(M) is said to be non-
degenerate if for any point p ∈ M , the map X 7→ iXω(p) defines an isomorphism
between TpM and T ∗pM . Locally, we can write ω =

∑
i<j ωijdx

i ∧ dxj . Let A := (ωij)
where ωij = −ωji, be the skew-symmetric matrix. Then with respect to the bases

( ∂
∂xi

) and (dxi), the map X 7→ iXω is given by the matrix A. Consequently, if ω is
non-degenerate, then M must be even-dimensional.

Definition 1.11. (1) A symplectic structure on a smooth manifold M is a differ-
ential 2-form ω ∈ Ω2(M) such that (i) ω is non-degenerate, (ii) dω = 0.

(2) A half-dimensional embedded submanifold L ⊂ M is called Lagrangian if for
any p ∈ L, ω(p)(X,Y ) = 0 for any X,Y ∈ TpL.

Example 1.12. Consider M = R2n = Cn, and let zk = xk + iyk, k = 1, 2, · · · , n,
be the complex coordinates on Cn. Note that xk, yk, k = 1, 2, · · · , n, are the real
coordinates on R2n. It is easy to check the following is a symplectic structure, called
the standard symplectic structure:

ω0 := dx1 ∧ dy1 + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn.
Let L be an affine subspace defined by either yk = ck, ∀k, or xk = ck, ∀k. Then L is a
Lagrangian submanifold. More generally, for any smooth function f(x1, x2, · · · , xn),

we consider the graph of df , i.e., L = {yk = ∂f
∂xk
|k = 1, 2, · · · , n}. Then L is La-

grangian.

Example 1.13. For any smooth manifold M , the cotangent bundle T ∗M has a canon-
ical symplectic structure ω0.

Let π : T ∗M →M be the projection sending (p, v) to p, where p ∈M and v ∈ T ∗pM .
We define a 1-form τ on T ∗M as follows: for any (p, v) ∈ T ∗M , τ(p, v) := π∗(p,v)(v),

where π∗(p,v) : T ∗pM → T ∗(p,v)(T
∗M) is the dual of π∗,(p,v) : T(p,v)(T

∗M)→ TpM .

We compute τ locally. Let (xi) be a system of local coordinate functions on M .
Then each cotangent vector v can be uniquely written as v =

∑
i yidx

i. Consequently,
(xi, yi) is a system of local coordinate functions on T ∗M . Moreover, the projection
π : T ∗M → M is given by (xi, yi) 7→ xi. It follows immediately that at (p, v) where
v =

∑
i yidx

i, τ =
∑

i yidx
i. The canonical symplectic structure on T ∗M is defined to

be ω0 := −dτ . In local coordinates (xi, yi),

ω0 = −dτ = −d(
∑
i

yidx
i) =

∑
i

dxi ∧ dyi.

As for Lagrangian submanifolds, let α ∈ Ω1(M) be a differential 1-form on M .
Then as α is a smooth section of T ∗M , its graph L ⊂ T ∗M is a half-dimensional
submanifold. We observe that L is a Lagrangian if and only if the pull-back of ω0 via
α : M → T ∗M is zero. With this understood, note that α∗ω0 = −dα, which implies
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that L is Lagrangian if and only if α is closed, i.e., dα = 0. In particular, for any
f ∈ C∞(M), the graph of df is a Lagrangian submanifold of T ∗M .

2. Orientation, integration and Stokes Theorem

Orientation: Let M be a smooth manifold of dimension n. Observe that the
bundle of n-forms ΛnM is of rank 1, i.e., a line bundle.

Definition 2.1. The smooth manifold M is called orientable if ΛnM is trivial, which
is equivalent to M admitting a nowhere vanishing n-form. Moreover, if M is orientable,
then an orientation on M is the equivalence class of nowhere vanishing n-forms on
M in the following sense: let Ω1,Ω2 be two nowhere vanishing n-forms on M , then
there exists a λ ∈ C∞(M) such that Ω2 = λΩ1, where λ(p) 6= 0 for any p ∈ M . We
say Ω1,Ω2 are equivalent, and write [Ω1] = [Ω2], if λ(p) > 0 for any p ∈ M . An
oriented manifold is a manifold equipped with a specific orientation.

Exercise: Suppose M is orientable. Show that if M is connected, then there are
precisely two orientations on M .

Lemma 2.2. A smooth manifold M is orientable if and only if TM admits a set
of local trivializations over an open cover {Uα}, such that the associated transition
functions {τβα : Uα ∩ Uβ → GL(n,R)} satisfy the following condition: det τβα(p) > 0
for any α, β and p ∈ Uα ∩ Uβ.

Proof. First, suppose TM admits a set of local trivializations with the said property.
For each α, let eα1 , e

α
2 , · · · , eαn be the local frame defining the trivialization of TM over

Uα, and let ε1α, ε
2
α, · · · , εnα be the dual frame. Then

Ωα := ε1α ∧ ε2α ∧ · · · ∧ εnα
is a nowhere vanishing n-form on Uα. On the overlap Uα ∩ Uβ, Ωβ = det τβαΩα

holds. Now let {fα} be a smooth partition of unity subordinate to {Uα}. Then
Ω :=

∑
α fαΩα is a differential n-form on M , which is nowhere vanishing due to the

fact that det τβα(p) > 0 for any α, β and p ∈ Uα ∩ Uβ.
On the other hand, let Ω be a nowhere vanishing n-form on M . Given any set of

local trivializations of TM over an open cover {Uα}, let eα1 , e
α
2 , · · · , eαn be the local

frame defining the trivialization of TM over Uα. Then by re-arranging the order of
eα1 , e

α
2 , · · · , eαn, we may assume without loss of generality that Ω(eα1 , e

α
2 , · · · , eαn) > 0

for each α. Note that for any α, β such that Uα ∩ Uβ 6= ∅, Ω(eα1 , e
α
2 , · · · , eαn) =

det τβαΩ(eβ1 , e
β
2 , · · · , e

β
n), implying det τβα(p) > 0 for any α, β and p ∈ Uα ∩ Uβ.

�

Recall that TM is always an O(n)-bundle. Lemma 2.2 implies that M is orientable
if and only if TM is a SO(n)-bundle.

Example 2.3. Every complex manifold M is orientable. This is because TM is a
GL(n,C)-bundle, and the determinant function is positive on the subgroupGL(n,C) ⊂
GL(2n,R).

More generally, recall that a mixed tensor field of type (1, 1) defines an endomor-
phism of TM (cf. Theorem 3.1 of part 2). A tensor field J ∈ T 1

1 M is called an almost
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complex structure if J2 = −Id. Every complex manifold admits a canonical almost
complex structure J0, i.e., if zk = xk + iyk is a system of local holomorphic coordinate
functions, then J0(

∂
∂xk

) = ∂
∂yk

, J0(
∂
∂yk

) = − ∂
∂xk

.

Now let J be an almost complex structure on M . Then for any p ∈M , Jp : TpM →
TpM obeys J2

p = −IdTpM . With this understood, TM can be made into a smooth
complex vector bundle as follows: for each p ∈M , we define a complex multiplication
on TpM by z · v := av + bJp(v), where z = a + ib, v ∈ TpM . Consequently, TM is a
GL(n,C)-bundle. Thus if M admits an almost complex structure, M is orientable.

Exercise: Let V be a real vector space of dimension n = 2m. Let ω ∈ Λ2(V ).
(1) Show that if ω is non-degenerate, i.e., X 7→ iXω defines an isomorphism between

V and V ∗, then there exists a basis ε1, δ1, ε2, δ2, · · · , εm, δm of V ∗, such that

ω = ε1 ∧ δ1 + ε2 ∧ δ2 + · · ·+ εm ∧ δm.
(2) Show that ω is non-degenerate if and only if ω ∧ ω ∧ · · · ∧ ω (m-fold wedge

product) is nonzero.

Example 2.4. Every symplectic manifold is orientable. More concretely, let ω be a
symplectic structure on M of dimension 2m. Then the 2m-form Ω := ω ∧ ω ∧ · · · ∧ ω
is nowhere vanishing.

Example 2.5. A smooth manifold M is called parallelizable if TM is trivial. An
important class of parallelizable manifolds is given by Lie groups; a basis of left-
invariant vector fields on a Lie group gives rise to a global frame of its tangent bundle.
Clearly, every parallelizable manifold is orientable.

Proposition 2.6. Let S ⊂ M be a co-dimension 1 submanifold. Suppose M is ori-
entable. Then S is orientable if and only if the normal bundle of S in M is trivial.

Proof. First, we show that if the normal bundle is trivial, S must be orientable. Since
S is of co-dimension 1, the normal bundle is of rank 1. Thus triviality of the bundle
implies that there is a global frame, i.e., a smooth, non-zero section of the normal
bundle. This smooth nonzero section is given by a smooth vector field X along S,
such that for any p ∈ S, Xp is not in TpS. With this understood, let ΩM be a nowhere
vanishing n-form on M , where n = dimM . Then ΩS := iXΩM is a differential (n−1)-
form on S, which is nowhere vanishing. Hence S is orientable.

Conversely, suppose S is orientable, and let ΩS be a nowhere vanishing (n−1)-form
on S. We cover S by a smooth atlas {Uα} of slice charts, where if x1α, x

2
α, · · · , xnα are

the local coordinate functions on Uα, S ∩ Uα is given by xnα = constant. With this
understood, for each α, we let Xα = ∂

∂xnα
or − ∂

∂xnα
, where there is a unique choice

such that iXαΩM = λαΩS for a positive smooth function λα on S ∩ Uα. Let {fα}
be a smooth partition of unity subordinate to {Uα}. Then X :=

∑
α fαXα defines a

smooth nonzero section of the normal bundle of S. �

Example 2.7. The n-sphere Sn ⊂ Rn+1 has a trivial normal bundle. Hence each Sn
is orientable.

Let M,N be oriented manifolds, with ΩM , ΩN defining the orientation respec-
tively. For simplicity, we assume both M,N are connected. Let F : M → N be
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a local diffeomorphism. Then F ∗ΩN is nowhere vanishing on M , and there are two
possibilities: (i) [F ∗ΩN ] = [ΩM ], or (ii) [F ∗ΩN ] = [−ΩM ]. In case (i), F is called
orientation-preserving and in case (ii), orientation-reversing. We remark that
when M = N and ΩM = ΩN , F is orientation-preserving or not is independent of
the choice of the orientation ΩM itself. Furthermore, note that if F is an odd order
periodic diffeomorphism of M , F is always orientation-preserving.

Example 2.8. We consider τ = −Id : Rn+1 → Rn+1, which leaves Sn invariant. We
claim that the involution τ : Sn → Sn is orientation-preserving if and only if n is odd.

To see this, we let x0, x1, · · · , xn be the standard coordinates on Rn+1, and let
Ω̂ := dx0 ∧ dx1 ∧ · · · ∧ dxn, which defines an orientation on Rn+1. On the other hand,
consider the normal vector field X on Sn, where at p ∈ Sn, Xp is the vector from the
origin of Rn+1 to p ∈ Sn. It is easy to see that τ∗(X) = X. With this understood, we

let Ω := iXΩ̂. Then Ω is nowhere vanishing on Sn, thus defining an orientation on Sn.
Finally, we compute the action of τ on Ω:

τ∗Ω = τ∗(iXΩ̂) = τ∗(iτ∗XΩ̂) = iX(τ∗Ω̂) = iX((−1)n+1Ω̂) = (−1)n+1Ω.

It follows that τ : Sn → Sn is orientation-preserving if and only if n is odd. As a
consequence, RPn is orientable if and only if n is odd (cf. Prop. 2.10 below).

Lemma 2.9. Let G be a finite group acting on M smoothly and freely, and let N =
M/G be the quotient manifold. For any ω ∈ Ωk(M), there is an η ∈ Ωk(N) such that
ω = π∗η, where π : M → N is the natural projection, if and only if for any g ∈ G,
g∗ω = ω (here g : M →M is the map p 7→ g · p, ∀p ∈M).

Exercise: Prove Lemma 2.9.

Proposition 2.10. Let G be a finite group acting on M smoothly and freely, where
M is connected and orientable, and let N = M/G be the quotient manifold. Then N
is orientable if and only if for any g ∈ G, the map g : M →M by p 7→ g · p, ∀p ∈M ,
is orientation-preserving.

Proof. First, suppose N is orientable, and pick an orientation form ΩN of N . Then the
form ΩM := π∗ΩN , where π : M → N is the natural projection, is nowhere vanishing
on M , thus defining an orientation on M . With this understood, observe that for any
g ∈ G, π ◦ g = π, which implies that g∗ΩM = g∗π∗ΩN = (π ◦ g)∗ΩN = π∗ΩN = ΩM .

On the other hand, suppose that for any g ∈ G, the map g : M →M is orientation-
preserving. We pick an orientation form ΩM on M . Then [g∗ΩM ] = [ΩM ], which im-

plies that g∗ΩM = λgΩM for some smooth function λg > 0. Let Ω̂M :=
∑

g∈G g
∗ΩM =

(
∑

g∈G λg)ΩM . Then g∗Ω̂M = Ω̂M for any g ∈ G, hence by Lemma 2.9, there is an ΩN

such that π∗ΩN = Ω̂M . On the other hand, observe that Ω̂M is nowhere vanishing,
which implies that ΩN is nowhere vanishing. It follows that N is orientable. �

Exercise: Prove that the lens spaces L(p, q) are orientable.

Proposition 2.11. Let M is connected and non-orientable. Then there is a unique
2 : 1 covering M̃ → M such that M̃ is orientable. In particular, a smooth manifold
M is orientable if there is no epimorphism π1(M)→ Z2 (e.g. π1(M) = 0).
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Exercise: Prove Proposition 2.11.

Manifolds with boundary: Let Hn := {(x1, x2, · · · , xn)|xn ≥ 0} be the upper
half-space of Rn, where we denote by ∂Hn its boundary xn = 0. A smooth manifold of
boundary M is a Hausdorff and second countable topological space M with a smooth
atlas {(Uα, φα)}, where the map φα : Uα → Rn or Hn. An important issue to clarify
here is the smoothness of the map φβ ◦ φ−1α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ). If the
domain φα(Uα ∩Uβ) contains a point x ∈ ∂Hn, then φβ ◦φ−1α is smooth means that it
admits an extension to an open neighborhood of x which is smooth. Note that while
the smooth extensions are not unique, all the partial derivatives of the extensions at
the point x are uniquely determined –these values are what really matter. With this
understood, it is easy to see that all the things we have developed so far concerning
smooth manifolds can be extended to smooth manifolds with boundary.

Let M be a smooth manifold with boundary. We let

∂M := {p ∈M |∃ a chart (U, φ) such that φ(p) ∈ ∂Hn}
and

Int M := {p ∈M |∃ a chart (U, φ) such that φ(p) ∈ Rn or Hn \ ∂Hn}.
Theorem 2.12. Let M be a smooth manifold with boundary of dimension n. Then

(1) M = Int M t ∂M (disjoint union).
(2) Int M is an open submanifold of M without boundary.
(3) ∂M is an embedded submanifold of M without boundary, of dimension n− 1.

Exercise: Prove Theorem 2.12.

A smooth vector field X along ∂M is said to be an inward-pointing normal
vector field if for any p ∈ ∂M , Xp is not in Tp(∂M) and there is a smooth curve
γ : [0, ε)→M with γ(0) = p such that γ′(0) = Xp.

Lemma 2.13. There exists an inward-pointing normal vector field along ∂M . More-
over, a smooth vector field X along ∂M is an inward-pointing normal vector field if and
only if for any p ∈ ∂M and any local chart (U, φ) containing p, with local coordinate
functions (xi), Xp =

∑n
i=1 ai

∂
∂xi
|p for some ai ∈ R where an > 0.

Proof. Let X be an inward-pointing normal vector field along ∂M , and let p ∈ ∂M be
any point. Let γ : [0, ε)→M be a smooth curve with γ(0) = p such that γ′(0) = Xp.
Then for any local chart (U, φ) containing p, with local coordinate functions (xi), we
write Xp =

∑n
i=1 ai

∂
∂xi
|p where ai ∈ R. Then an = Xp(xn) = d

dt(xn(γ(t)))|t=0 ≥ 0
because the function xn(γ(t)) ≥ 0 and xn(γ(0)) = xn(p) = 0. Furthermore, if an =
0, then Xp is in Tp(∂M) which is a contradiction. Hence an > 0. Conversely, if

Xp =
∑n

i=1 ai
∂
∂xi
|p where an > 0. Then we let γ(t) be the smooth curve φ−1(φ(p) +

(a1t, a2t, · · · , ant)) ⊂ U where t ∈ [0, ε), ε > 0 is small. It is clear that γ(0) = p and
Xp = γ′(0), which shows that X is an inward-pointing normal vector field.

For the existence part, we simply cover ∂M by local charts {(Uα, φα)} where each
φα : Uα → Hn. Let (xiα) be the local coordinate functions on Uα. We pick a smooth
partition of unity {fα} subordinate to {Uα}. Then X :=

∑
α fα

∂
∂xnα

is an inward-

pointing normal vector field along ∂M . �



12 WEIMIN CHEN

Corollary 2.14. (1) The normal bundle of ∂M in M is trivial.
(2) For any two inward-pointing normal vector fields X0, X1, the vector field Xt =

(1− t)X0 + tX1 is an inward-pointing normal vector field for every t ∈ [0, 1].

Definition 2.15. Let M be an oriented manifold with boundary. There is a canonical
orientation on ∂M , called boundary orientation, which is defined as follows: pick
an orientation form ΩM on M , and an inward-pointing normal vector field X along
∂M , we let Ω∂M := −iXΩM . The canonical orientation on ∂M is defined to be [Ω∂M ].

We remark that by Corollary 2.14 (2), [Ω∂M ] is independent of the choice of X. On
the other hand, note that [Ω∂M ] depends only on [ΩM ], not on the choice of ΩM .

Integration of differential forms and Stokes Theorem: Let M be an oriented
smooth manifold of dimension n, with or without boundary. Let ω ∈ Ωn(M) such that
supp ω is compact (e.g. M is compact). We will define the integration of ω over M ,
to be denoted by

∫
M ω.

We first consider the special case of M = U , an open subset of Rn or Hn. Let
x1, x2, · · · , xn be the standard coordinates such that dx1 ∧ dx2 ∧ · · · ∧ dxn defines the
orientation on U . Let ω = fdx1 ∧ dx2 ∧ · · · ∧ dxn where supp f ⊂ U is compact. Then
we define ∫

U
ω :=

∫
U
fdx1dx2 · · · dxn.

Suppose V is another open subset of Rn or Hn, and F : V → U is a diffeomorphism.
Assuming y1, y2, · · · , yn are the standard coordinates on V , we have

F ∗ω = f ◦ F det(DF )dy1 ∧ dy2 ∧ · · · ∧ dyn.

Without loss of generality, we may assume dy1 ∧ dy2 ∧ · · · ∧ dyn defines the orientation
on V . Then ∫

V
F ∗ω =

∫
V
f ◦ F det(DF )dy1dy2 · · · dyn.

Observation:
∫
U ω =

∫
V F

∗ω if and only if F is orientation-preserving; otherwise,∫
U ω = −

∫
V F

∗ω.

Now we define
∫
M ω for any ω ∈ Ωn(M) such that supp ω is compact. We fix

an orientation form ΩM on M . Since supp ω is compact, we can choose a finite
cover of supp ω by local coordinates charts {(Uα, φα)}. For each α, let φα(p) =
(x1α(p), · · · , xnα(p)), p ∈ Uα, such that ΩM ( ∂

∂x1α
, · · · , ∂

∂xnα
) > 0. Moreover, pick a smooth

partition of unity {fα} subordinate to {Uα}. Then we define∫
M
ω :=

∑
α

∫
φα(Uα)

(φ−1α )∗(fαω).

Proposition 2.16. The integral
∫
M ω is well-defined. Moreover,

•
∫
M (aω + a′ω′) = a

∫
M ω + a′

∫
M ω′, ∀a, a′ ∈ R.

• Let ΩM be an orientation form on M , ω = fΩM for some compactly supported
smooth function f , where f ≥ 0 and f(p) > 0 at some p ∈M . Then

∫
M ω > 0.
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• Let F : M → N be a diffeomorphism. Then
∫
M F ∗ω =

∫
N ω if F is orientation-

preserving, and
∫
M F ∗ω = −

∫
N ω if F is orientation-reversing. In particular,∫

−M ω = −
∫
M ω, where −M is M with the opposite orientation.

Lemma 2.17. Let ω ∈ Ωn−1(Hn) where supp ω is compact. Then
∫
Hn dω =

∫
∂Hn ω,

where ∂Hn is given the boundary orientation.

Proof. Let x1, x2, · · · , xn be the standard coordinates on Hn such that dx1 ∧ dx2 ∧
· · · ∧ dxn defines the orientation on Hn. Then it is easy to see that the boundary
orientation on ∂Hn is given by (−1)ndx1 ∧ dx2 ∧ · · · ∧ dxn−1.

We write w =
∑n

i=1widx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn. Then

dω =
n∑
i=1

(−1)i−1
∂wi
∂xi

dx1 ∧ dx2 ∧ · · · ∧ dxn.

Consequently,∫
Hn
dω =

n∑
i=1

(−1)i−1
∫
Hn

∂wi
∂xi

dx1dx2 · · · dxn = (−1)n−1
∫
∂Hn

(−wn)dx1dx2 · · · dxn−1 =

∫
∂Hn

ω.

�

With Lemma 2.17, a straightforward argument involving partition of unity gives
the following

Stokes Theorem:
∫
M dω =

∫
∂M ω for any compactly supported ω.

Integration of functions: LetM be an oriented smooth manifold (with or without
boundary). Fix any orientation form ΩM on M , we can define the integral of a
compactly supported smooth function f over M , denoted by

∫
M f , by∫

M
f :=

∫
M
fΩM .

Integration on Riemannian manifolds: Let g be a Riemannian metric on M . Let
e1, e2, · · · , en be any local orthonormal frame of TM , which is positively oriented in
the sense that ΩM (e1, e2, · · · , en) > 0. Let ε1, ε2, · · · εn be the dual frame. Then it is
easy to see that

dVg := ε1 ∧ ε2 ∧ · · · ∧ εn

is independent of the choice of the orthonormal frame e1, e2, · · · , en. Furthermore,
note that [dVg] = [ΩM ]. dVg is called the volume form associated to g. With this
understood, for any compactly supported smooth function f on M , we define∫

M
f :=

∫
M
fdVg.

Suppose ∂M is nonempty, and let g̃ be the induced Riemannian metric on ∂M .
Observe that there is a unique unit vector field N along ∂M , such that (i) −N is
inward-pointing, (ii) N is orthogonal to ∂M . It is easy to see that the volume form
on ∂M , dVg̃, is given by dVg̃ = iNdVg.
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Let X ∈ X (M). Then the divergence of X, denoted by divg(X), is defined to be
the smooth function determined by the equation

divg(X) · dVg = d(iXdVg).

Then the following theorem is an easy consequence of the Stokes Theorem.

Divergence Theorem:
∫
M divg(X) =

∫
∂M g(X,N) for any compactly supported

X ∈ X (M).

Integration on Lie groups: Let G be a Lie group. Fix an orientation on G, we let
ε1, ε2, · · · εn be the dual basis of a positively oriented basis of Lie(G). Then

Ω := ε1 ∧ ε2 ∧ · · · ∧ εn

is an orientation form on G. Observe that for any g ∈ G, L∗gΩ = Ω.
For any compactly supported smooth function f on G, we define∫

G
f :=

∫
G
fΩ.

We note that the integral
∫
G f is left-invariant, i.e., for any g ∈ G,

∫
G L
∗
gf =

∫
G f .

Theorem 2.18. When G is compact, the integral
∫
G f is bi-invariant, i.e., for any

g ∈ G,
∫
G L
∗
gf =

∫
GR

∗
gf =

∫
G f .

Proof. It suffices to show that
∫
GR

∗
gf =

∫
G f for any g ∈ G. To this end, we note

that for any g ∈ G, R∗gΩ is left-invariant, so that there exists a λ(g) 6= 0 such that
R∗gΩ = λ(g)Ω. In particular, Rg : G → G is orientation-preserving if and only if
λ(g) > 0. As G is compact, it follows that∫

G
λ(g)Ω =

∫
G
R∗gΩ = sign λ(g)

∫
G

Ω,

implying |λ(g)| = 1 for any g ∈ G. Now for any f ∈ C∞(G), g ∈ G,∫
G
R∗gf =

∫
G

(R∗gf)Ω = sign λ(g)

∫
G
R∗g(fΩ) =

∫
G
fΩ =

∫
G
f.

�

Lemma 2.19. Let G be a compact Lie group acting smoothly on M . For any f ∈
C∞(M), let f̄ be the function on M defined by

f̄(p) :=

∫
G
f(g · p), where f(g · p) is regarded as a function on G, ∀p ∈M.

Then f̄ ∈ C∞(M), and f̄ is G-invariant, i.e., ∀h ∈ G, h∗f̄ = f̄ .

Proof. First, f̄ ∈ C∞(M) because f(g · p) is smooth in both g and p. To see that f̄ is
G-invariant, we let h ∈ G be any element. Then

(h∗f̄)(p) = f̄(h · p) =

∫
G
f(gh · p) =

∫
G

(R∗hf)(g · p) =

∫
G
f(g · p) = f̄(p), ∀p ∈M.

�



MATH 703: PART 3: DIFFERENTIAL FORMS AND INTEGRATION 15

Exercise: LetM be a smooth manifold equipped with a smooth action of a compact
Lie group G. Show that M admits a Riemannian metric which is G-invariant.

3. De Rham cohomology

Definition and homotopy invariance: Let M be a smooth manifold. The p-th
de Rham cohomology group of M is defined to be the vector space over R:

Hp
dR(M) :=

{ker d : Ωp(M)→ Ωp+1(M)}
{Image d : Ωp−1(M)→ Ωp(M)}

.

Note that in the above definition we used the fact that d◦d = 0. Clearly, Hp
dR(M) = 0

if p < 0 or p > dimM . Since d commutes with pullback maps, for any smooth map
F : M → N , there is an induced homomorphism F ∗ : Hp

dR(N)→ Hp
dR(M).

Recall that smooth maps F0, F1 : M → N are homotopic if there is a smooth map
H : M × [0, 1]→ N such that for any x ∈M , Fi(x) = H(x, i) for i = 0, 1.

Theorem 3.1. If F0, F1 : M → N are homotopic, then F ∗0 = F ∗1 : Hp
dR(N) →

Hp
dR(M). As a consequence, homotopy equivalent manifolds have isomorphic de Rham

cohomology groups.

Proof. The key is the existence of R-linear maps h : Ωk(M× [0, 1])→ Ωk−1(M), which

are defined as follows: for any ω ∈ Ωk(M × [0, 1]), h(ω) :=
∫ 1
0 i ∂∂t

ωdt. For i = 0, 1, let

Ii : M →M × [0, 1] be the embedding sending x to (x, i). Then the maps h obey the
following equation: d ◦ h+ h ◦ d = I∗1 − I∗0 .

To verify this, it suffices to compute locally. We write

ω = fi1i2···ik(t)dxi1 ∧ dxi2 ∧ · · · ∧ dxik + gj1j2···jk−1
(t)dt ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxjk−1 .

Then it is easy to check that

h ◦ d(ω) = (fi1i2···ik(1)− fi1i2···ik(0))dxi1 ∧ dxi2 ∧ · · · ∧ dxik

− (

∫ 1

0
dgj1j2···jk−1

(t)dt) ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxjk−1

and

d ◦ h(ω) = (

∫ 1

0
dgj1j2···jk−1

(t)dt) ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxjk−1 ,

which implies that d◦h+h◦d = I∗1−I∗0 . Consequently, d◦h◦H∗+h◦d◦H∗ = F ∗1 −F ∗0 .
Since d◦H∗ = H∗◦d, we have d◦(h◦H∗)+(h◦H∗)◦d = F ∗1 −F ∗0 . For any ω ∈ Ωp(N)
such that dω = 0, we let η := h ◦ H∗(ω) ∈ Ωp−1(M), then F ∗1 (ω) − F ∗0 (ω) = dη. It
follows that F ∗0 = F ∗1 : Hp

dR(N)→ Hp
dR(M). �

The following are straightforward from the definition or homotopy invariance, where
part (4) also uses Stokes Theorem.

Proposition 3.2. (1) If M = M1 tM2, then Hp
dR(M) = Hp

dR(M1)×Hp
dR(M2).

(2) Let M be connected. Then H0
dR(M) = R, identified with constant functions.

(3) If M is contractable, e.g., M = Rn, Bn, Hp
dR(M) = 0 for p 6= 0.

(4) If π1(M) is finite, then H1
dR(M) = 0.
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Exercise: Prove Proposition 3.2.

De Rham cohomology under regular finite coverings:

Proposition 3.3. Let G be a finite group acting smoothly and freely on M , and let
π : M → N = M/G be the quotient map. Then π∗ : Hp

dR(N)→ Hp
dR(M) is injective,

with its image being the G-invariant part of Hp
dR(M), i.e.,

Hp
dR(M)G := {α ∈ Hp

dR(M)|g∗α = α,∀g ∈ G}.
Proof. First of all, note that for any g ∈ G, π ◦ g = π, so that for any ω ∈ Ωp(N),
g∗(π∗ω) = π∗ω. It follows easily that π∗ : Hp

dR(N)→ Hp
dR(M)G.

Now we show that π∗ : Hp
dR(N)→ Hp

dR(M) is injective. Let α ∈ Hp
dR(N) such that

π∗α = 0. Representing α by ω ∈ Ωp(N), we have π∗ω = dη for some η ∈ Ωp−1(M).
Setting η̃ := 1

|G|
∑

g∈G g
∗η, it is easy to see, as π ◦ g = π, that π∗ω = dη̃. Note that

g∗η̃ = η̃ for any g ∈ G, so that by Lemma 2.9, there is an η′ ∈ Ωp−1(N) such that
π∗η′ = η̃. It follows that π∗(ω− dη′) = 0. Since π : M → N is a local diffeomorphism,
π∗ : Ωp(N) → Ωp(M) is injective. This implies that ω = dη′ and α = [ω] = 0 in
Hp
dR(N). Hence π∗ : Hp

dR(N)→ Hp
dR(M) is injective.

To see that π∗ : Hp
dR(N) → Hp

dR(M)G is surjective, we let α ∈ Hp
dR(M)G be any

element. Representing α by ω ∈ Ωp(M), we note that for any g ∈ G, there is an
ηg ∈ Ωp−1(M) such that g∗ω = ω + dηg (as g∗α = α). Let ω̃ := 1

|G|
∑

g∈G g
∗ω,

η := 1
|G|

∑
g∈G ηg. Then ω̃ = ω + dη. On the other hand, by Lemma 2.9, there is

an ω′ ∈ Ωp(N) such that π∗ω′ = ω̃. Note that π∗dω′ = dω̃ = 0, which implies that
dω′ = 0. Let α′ ∈ Hp

dR(N) be the class of ω′. Then π∗α′ = α, which shows that

π∗ : Hp
dR(N)→ Hp

dR(M)G is surjective.
�

Cup product and Poincaré duality: There is a natural R-bilinear map, called
the cup product, Hp

dR(M)×Hq
dR(M)→ Hp+q

dR (M), (α, β) 7→ α∪ β, which is defined
as follows: represent α, β by ω ∈ Ωp(M), η ∈ Ωq(M) respectively. Then as d(ω ∧ η) =

dω∧ η+ (−1)pω∧ dη = 0, we define α∪β ∈ Hp+q
dR (M) to be the de Rham cohomology

class of ω ∧ η. It is easy to check that the cup product is well-defined.

Example 3.4. Let M be a compact closed manifold, ω be a symplectic structure on
M . Then M must be even-dimensional, say dimM = 2m. Since ω is non-degenerate,
ω∧ω∧· · ·∧ω (m-fold) is nowhere vanishing. As M is compact,

∫
M ω∧ω∧· · ·∧ω 6= 0.

On the other hand, dω = 0, so ω defines a de Rham cohomology class [ω] ∈ H2
dR(M).

We note that by Stokes Theorem, ω ∧ ω ∧ · · · ∧ ω 6= dη for any η, as ∂M = ∅.
Consequently, [ω]m := [ω] ∪ [ω] ∪ · · · ∪ [ω] ∈ H2m

dR (M) is non-zero. This implies that

for any 0 < k ≤ m, [ω]k ∈ H2k
dR(M) is non-zero as well. In conclusion, a necessary

condition for a compact closed manifold M of dimension 2m to admit a symplectic
structure is that for any p, where 0 ≤ p ≤ 2m, p is even, Hp

dR(M) 6= 0.

Theorem 3.5. Let M be compact closed (i.e., ∂M = ∅) and oriented, and let n =
dimM . Then each Hp

dR(M) is finite dimensional. Moreover, the R-bilinear map

Hp
dR(M)×Hn−p

dR (M)→ R, (α, β) 7→
∫
M α∪β, is non-degenerate, implying the following

duality (called Poincaré duality): Hp
dR(M) ∼= (Hn−p

dR (M))∗.
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Suppose M is compact closed and connected, which is non-orientable. Then there
is a double cover M̃ → M such that M̃ is orientable. It follows from Proposition 3.3
and Theorem 3.5 that each Hp

dR(M) is finite dimensional as well. Similarly,

Exercise: Let M be compact closed and connected, of dimension n. Show that M
is non-orientable if and only if Hn

dR(M) = 0.

Theorem 3.6. (The Künneth formula) Hn
dR(M ×N) = ⊕p+q=nHp

dR(M) ⊗Hq
dR(N),

where for any α ∈ Hp
dR(M), β ∈ Hq

dR(N), α⊗β = π∗1α∪π∗2β. (Here π1 : M×N →M ,
π2 : M ×N → N .)

The Mayer-Vietoris Theorem: The most useful tool for computing the de Rham
cohomology groups is the Mayer-Vietoris Theorem. We shall illustrate it with some
fundamental examples.

Let M be a smooth manifold, U, V be open subsets such that M = U ∪ V . Let
k : U → M , l : V → M , i : U ∩ V → U , j : U ∩ V → V denote the inclusion
maps. Then there are R-linear maps δ : Hp

dR(U ∩V )→ Hp+1
dR (M) (called connecting

homomorphisms), such that the following exact sequence holds:

· · · δ−→ Hp
dR(M)

k∗⊕ l∗−→ Hp
dR(U)⊕Hp

dR(V )
i∗−j∗−→ Hp

dR(U ∩ V )
δ−→ Hp+1

dR (M)
k∗⊕ l∗−→ · · ·

The above sequence is called the Mayer-Vietoris sequence.

Example 3.7. Here we use the Mayer-Vietoris Theorem to compute the de Rham
cohomology groups of Sn, for n > 0. To this end, note that Sn = U ∪ V , where U, V
are the complement of the north pole and south pole respectively. In particular, U, V
are diffeomorphic to Rn, and U ∩ V is diffeomorphic to Rn \ {0}, which is homotopy
equivalent to Sn−1. Consequently, Hp

dR(U) = Hp
dR(V ) = 0 for p > 0, and Hp

dR(U∩V ) =
Hp
dR(Sn−1) for any p. Looking at the p > 0 part of the Mayer-Vietoris sequence, we

obtain immediately that

Hp
dR(Sn−1) = Hp+1

dR (Sn), ∀p > 0.

Looking at the p = 0 part of the Mayer-Vietoris sequence, we note that H0
dR(Sn) =

H0
dR(U) = H0

dR(V ) = R. Moreover, when n = 1, H0
dR(Sn−1) = R ⊕ R, which implies

that H1
dR(Sn) = R for n = 1. If n > 1, H0

dR(Sn−1) = R, which implies that H1
dR(Sn) =

0 for n > 1. Now using Hp
dR(Sn−1) = Hp+1

dR (Sn), ∀p > 0 inductively, we obtain that
Hp
dR(Sn) = 0 for 0 < p < n, and Hn

dR(Sn) = R.

Example 3.8. In this example we compute the de Rham cohomology groups of CPn
for n > 1. Let l0 ∈ CPn be the complex line through the point (0, 0, · · · , 1) ∈ Cn+1.
Let U be an open ball centered at l0 and V = CPn \ {l0}. Clearly, CPn = U ∪ V .

Now the key observation is that V is a complex line bundle over CPn−1 (in fact,
it is the dual of the tautological line bundle over CPn−1). In particular, Hp

dR(V ) =
Hp
dR(CPn−1) for any p. On the other hand, U ∩ V is homotopy equivalent to S2n−1,

so that Hp
dR(U ∩ V ) = Hp

dR(S2n−1) for any p. Finally, Hp
dR(U) = 0 for p > 0.

With Hp
dR(U∩V ) = Hp

dR(S2n−1) = 0 for 1 ≤ p ≤ 2n−2, the Mayer-Vietoris sequence

implies that Hp
dR(CPn) = Hp

dR(CPn−1) for 2 ≤ p ≤ 2n − 2, and H2n−1
dR (CPn) = 0.
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(Here we also use the fact that dimRCPn−1 = 2n − 2.) Inductively, we obtain that
Hp
dR(CPn) = 0 if p is odd and 2 ≤ p ≤ 2n. Looking at the p = 0 part of the Mayer-

Vietoris sequence, it follows that H1
dR(CPn) = H1

dR(CPn−1) as well. As CP1 = S2,
we conclude that H1

dR(CPn) = 0. Finally, Looking at the p = 2n − 1 part of the

Mayer-Vietoris sequence, we obtain H2n
dR(CPn) = H2n−1

dR (S2n−1) = R. In summary, we
have for 0 ≤ p ≤ 2n,

Hp
dR(CPn) = R if p is even, Hp

dR(CPn) = 0 if p is odd.

Exercise: Note that by the calculation of Hp
dR(Sn) in Example 3.7 and applying

Proposition 3.3, we conclude that

Hp
dR(RPn) = 0 for 0 < p < n, Hn

dR(RPn) = 0 if n is even, Hn
dR(RPn) = R if n is odd.

Using a similar argument as in Example 3.8, give an independent proof of the above.

Exercise: Let M be compact closed, connected, and of dimension n. Using the
idea in Example 3.8, show that

Hp
dR(M \ {pt}) = Hp

dR(M) for 0 ≤ p ≤ n− 2, and p = n− 1 and M is orientable,

and

Hp
dR(M \ {pt}) = Hp

dR(M)⊕ R if p = n− 1 and M is non-orientable,

and Hn
dR(M \ {pt}) = 0.

Exercise: Let M be the quotient space of a free smooth involution τ on S1 × S2,
where τ acts on the S1-factor by z 7→ z̄ and on the S2-factor as the antipodal map.

(1) Show that M = RP3#RP3. Then use the Mayer-Vietoris Theorem to compute
the de Rham cohomology groups of M .

(2) Use Proposition 3.3 and the Künneth formula to compute the de Rham coho-
mology groups of M alternatively.

Example 3.9. (Mapping Torus) Here we compute the de Rham cohomology groups
of a mapping torus. Let M be compact closed, connected, and of dimension n, and
let τ : M →M be a diffeomorphism. The mapping torus of τ is the smooth manifold

N := (M × [0, 1])/(x, 1) ∼ (τ(x), 0).

It is easy to see that N = U ∪ V , where U, V are a product of M with an interval,
such that U ∩ V is a disjoint union of two products of M with an interval. Moreover,
we can identify both Hp

dR(U) ⊕ Hp
dR(V ) and Hp

dR(U ∩ V ) with Hp
dR(M) ⊕ Hp

dR(M),
such that the map φp := i∗ − j∗ : Hp

dR(U) ⊕ Hp
dR(V ) → Hp

dR(U ∩ V ) is given by
(x, y) 7→ (x − y, x − τ∗(y)), where x, y ∈ Hp

dR(M). With this understood, it follows
from the Mayer-Vietoris Theorem that Hp

dR(N) = Coker φp−1 ⊕ kerφp. Identifying
kerφp and Coker φp, we obtain for any p,

Hp
dR(N) = Coker (Id−τ∗ : Hp−1

dR (M)→ Hp−1
dR (M))⊕ker(Id−τ∗ : Hp

dR(M)→ Hp
dR(M)).

Note that if τ = Id, we recover the Künneth formula for N = M × S1.
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Exercise: The Klein bottle K is the quotient space of an involution κ on S1 × S1,
where κ(z1, z2) = (z̄1,−z2). Compute the de Rham cohomology groups of K from the
following three viewpoints:

(1) Use Proposition 3.3 and the Künneth formula, seeing K = S1 × S1/κ.
(2) Show that K = RP2#RP2, and use the Mayer-Vietoris Theorem.
(3) Show that K is the mapping torus of τ : S1 → S1 where τ(z) = z̄, and use the

formula in Example 3.9.

Exercise: Let M = S1 × S2/κ, where κ(x, y) = (−x,−y).
(1) Compute the de Rham cohomology groups of M using Proposition 3.3 and the

Künneth formula.
(2) Compute the de Rham cohomology groups of M , seeing M as a mapping torus.
(3) Show that M is the non-trivial S1-bundle over RP2 (even though M has the

same de Rham cohomology groups of the trivial S1-bundle over RP2).
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