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1. Smooth vector bundles

Definition 1.1. Let M be a smooth manifold. A smooth real vector bundle of
rank n over M consists of a smooth manifold E together with a surjective smooth
map π : E →M with the following properties:

(i) For each p ∈M , Ep := π−1(p), called the fiber at p, is a n-dimensional vector
space over R.

(ii) There exists an open cover {Uα} of M , such that for each α, there is a diffeo-
morphism Ψα : π−1(Uα)→ Uα × Rn, sending each Ep, p ∈ Uα, isomorphically
to {p} × Rn (as vector spaces). Ψα is called a trivialization over Uα.

An isomorphism between two vector bundles over M is a diffeomorphism which
sends fibers isomorphically to fibers and induces the identity map on M .

Remarks: (1) For any smooth manifold M , E := M ×Rn with the projection onto
the factor M is a smooth real vector bundle of rank n over M , called a trivial bundle
or product bundle.

(2) For any α, β where Uα ∩ Uβ 6= ∅, the map Ψβ ◦Ψ−1α : (Uα ∩ Uβ)× Rn → (Uα ∩
Uβ)×Rn sends (p, v) to (p, τβα(q)(v)) for some smooth map τβα : Uα∩Uβ → GL(n,R).
The maps {τβα} are called the associated transition functions, which obeys

τγα(q) = τγβ(q)τβα(q), ∀q ∈ Uα ∩ Uβ ∩ Uγ .
(3) In Definition 1.1, if we replace R by C and Rn by Cm, we get the notion of

smooth complex vector bundle of rank m over M . If in addition, M and E
are complex manifolds and each Ψα is a biholomorphism, then we get the notion of
holomorphic vector bundle over M .

In order to get examples other than trivial bundles, we need the following

Theorem 1.2. Let M be a smooth manifold, E be a set, with a surjective map π :
E → M , such that for any p ∈ M , the fiber Ep := π−1(p) at p is a n-dimensional
vector space over R. Suppose there is a smooth atlas {(Uα, φα)} of M such that
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(i) for each α, there is a bijection Ψα : π−1(Uα) → Uα × Rn, sending each Ep,
p ∈ Uα, isomorphically to {p} × Rn (as vector spaces);

(ii) for any α, β where Uα ∩ Uβ 6= ∅, the map Ψβ ◦Ψ−1α : (Uα ∩ Uβ)×Rn → (Uα ∩
Uβ)× Rn sends (p, v) to (p, τβα(q)(v)) for some smooth map τβα : Uα ∩ Uβ →
GL(n,R).

Then E is naturally a smooth manifold, making it a smooth real vector bundle of rank
n over M , with transition functions {τβα}.

Proof. It follows directly from Theorem 1.3 in Part I.
�

Remarks: (1) Theorem 1.2 has analogs for complex/holomorphic vector bundles.
(2) It follows easily from Theorem 1.2 that given any smooth atlas {(Uα, φα)} of M

with a set of smooth maps {τβα}, where τβα : Uα ∩ Uβ → GL(n,R), which obeys

τγα(q) = τγβ(q)τβα(q), ∀q ∈ Uα ∩ Uβ ∩ Uγ ,
one can construct a smooth real vector bundle of rank n over M having {τβα} as the
associated transition functions.

Example 1.3. (1) Let M be a smooth manifold of dimension n. We let

TM := tp∈MTpM
be the disjoint union of tangent spaces of M , which comes with a natural surjective
map π : TM → M sending each tangent vector in TpM to p ∈ M . Then TM is a
smooth real vector bundle of rank n over M , called the tangent bundle of M .

We verify (i)-(ii) of Theorem 1.2 for TM . Fix a smooth atlas {(Uα, φα)} of M .
Then for each α, let xiα, i = 1, 2, · · · , n, be the local coordinate functions on Uα. Then
for each p ∈ Uα, ( ∂

∂xiα
|p) is a basis of TpM . Thus for any tangent vector X ∈ TpM ,

we can write X =
∑n

i=1Xi
∂
∂xiα
|p, where each Xi ∈ R. This gives rise to a bijection

Ψα : π−1(Uα)→ Uα×Rn, sendingX ∈ TpM , p ∈ Uα, to (p,X1, X2, · · · , Xn) ∈ Uα×Rn.
Clearly, it is an isomorphism from TpM to {p} × Rn for each p ∈ Uα. By Proposition
2.5 in Part I, for any α, β such that Uα∩Uβ 6= ∅, the map Ψβ ◦Ψ−1α : (Uα∩Uβ)×Rn →
(Uα∩Uβ)×Rn is given by (p, v) 7→ (p,D(φβ◦φ−1α )(φα(p))(v)), where D is the Jacobian.
Clearly, the map D(φβ ◦φ−1α )◦φα : Uα∩Uβ → GL(n,R) is a smooth map. This verifies
(i)-(ii) in Theorem 1.2.

(2) Consider the set E := {(x, v) ∈ RPn × Rn+1|v ∈ x}, with π : E → RPn sending
(x, v) to x. For each x ∈ RPn, the fiber Ex := π−1(x) is simply the line in Rn+1

corresponding to the point x ∈ RPn, which is a 1-dimensional vector space over R. We
will show that E is a smooth real vector bundle of rank 1 over RPn, which is called
the tautological line bundle (rank 1 bundles are called line bundles).

For simplicity, we assume n = 2. Recall from Example 1.4(1) in Part 1, RP2 has a
canonical smooth atlas {(Uα, φα)|α = 1, 2, 3}, where

Uα = {l(x1, x2, x3) ∈ RP2|xα 6= 0}.
We define Ψα : π−1(Uα)→ Uα×R by sending (x, v) to (x, vα), where the vector v ∈ x
has coordinates (v1, v2, v3). It follows easily from the fact that xα 6= 0 for x ∈ Uα that
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Ψα is a bijection. It remains to determine Ψβ ◦ Ψ−1α . For simplicity, we examine the

case of α = 1, β = 2. Note that Ψ−11 sends (l(x1, x2, x3), t) to (l(x1, x2, x3), v), where
v = (t, tx2/x1, tx3/x1), and Ψ2 sends (l(x1, x2, x3), v) to (l(x1, x2, x3), tx2/x1). Thus
Ψ2 ◦Ψ−11 = Id× τ21, where τ21 : U1 ∩ U2 → GL(1,R) is the map sending l(x1, x2, x3)
to x2/x1. In general, τβα(l(x1, x2, x3)) = xβ/xα.

Exercise: Define the tautological bundles over CPm and Grassmannians Gk,n.

Regarding Remark(2) following Theorem 1.2, we illustrate it with the following

Example 1.4. (“Infinite” Möbius Band) Consider S1 ⊂ R2, which has a canonical
smooth atlas {(UN , φN ), (US , φS)}, where UN = S1 \ {(0, 1)}, US = S1 \ {(0,−1)}.
Note that UN ∩ US is a disjoint union of U+ := {x1 > 0} and U− := {x1 < 0}. We
define a transition function τSN : UN ∩ US → GL(1,R), by setting it equal 1 on U+

and −1 on U−. Note that τSN is a smooth map. We shall construct a smooth line
bundle over S1 with transition function τSN as follows.

Let E be the quotient space UN × R t US × R/ ∼, where for any x ∈ UN ∩ US ,
(x, t) ∈ UN×R is ∼ to (x, τSN t) ∈ US×R. We define π : E → S1 by sending (x, t) to x.
For each x ∈ S1, the fiber Ex is a copy of R, hence a 1-dimensional vector space over R.
Note that the inclusions UN×R→ UN×RtUS×R, US×R→ UN×RtUS×R induce
injective maps from UN ×R, US×R to E, with image π−1(UN ), π−1(US) respectively.
We define ΨN : π−1(UN )→ UN ×R, ΨS : π−1(US)→ US ×R to the inverses of them.
Then it is easy to see that ΨS ◦Ψ−1N = Id× τSN on (UN ∩ US)×R. By Theorem 1.2,
E is a smooth line bundle over S1 with transition function τSN .

Pull-back bundles: Let π : E → M be a smooth vector bundle of rank n, and
let F : N → M be any smooth map. We define the pull-back bundle of E via
F , denoted by F ∗E, as follows. As a set, we consider E′ := tp∈NEF (p), with the
surjective map π : E′ → N defined by sending any v ∈ EF (p) to p. It is easy to see
that for each p ∈ N , the fiber of E′ at p, denoted by E′p, is given by EF (p), i.e., the fiber
of E at the image F (p) of p under the map F . Clearly, E′p = EF (p) is a n-dimensional
vector space over R.

We shall apply Theorem 1.2 to show that E′ is a smooth vector bundle of rank
n over N . To this end, we choose a smooth atlas {(Uα, φα)} of M such that over
each Uα, E has a trivialization Ψα : π−1(Uα) → Uα × Rn. We set Vα := F−1(Uα).
Then {Vα} is an open cover of N . For simplicity, we assume {Vα} comes from a
smooth atlas of N . Then we define a map Ψ′α : π−1(Vα) → Vα × Rn as follows:
note that π−1(Vα) = tp∈VαE′p = tp∈VαEF (p). With this understood, Ψ′α sends each
E′p = EF (p) to {p}×Rn isomorphically by Ψα. It is easy to see that Ψ′α is a bijection.
Moreover, for any α, β such that Vα ∩ Vβ 6= ∅, Ψ′β ◦ Ψ′α = Id × (τβα ◦ F ), where

{τβα} is the associated transition functions for E. The transition functions of E′ are
τ ′βα := τβα ◦ F : Vα ∩ Vβ → GL(n,R), which are clearly smooth because both τβα and
F are smooth maps. Hence our claim.

Remarks: (1) In terms of transition functions, the pull-back bundles are the bun-
dles determined by the pull-back of the corresponding transition functions.
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(2) Note that if the image F (N) lies entirely in a Uα over which E is trivial, then
the pull-back bundle F ∗E is easily seen trivial. In particular, any pull-back bundle of
a trivial bundle is trivial.

(3) If S ⊂ M is an embedded submanifold of lower dimension or open subset,
i : S →M the inclusion map, the pull-back bundle i∗E is called the restriction of E
to S, also denoted by E|S .

Example 1.5. Let π : E → RPn be the tautological line bundle. For any k < n,
consider the smooth embedding F : RPk → RPn induced by Rk+1 → Rk+1 × {0} ⊂
Rn+1. Then the pull-back bundle F ∗E is the tautological line bundle over RPk.

Sections, frames, and trivializations:

Definition 1.6. Let π : E →M be a smooth vector bundle of rank n, and let U ⊂M
an open subset.

(1) A smooth section of E over U is a smooth map s : U → E such that π◦s = Id
on U (equivalently, for any p ∈ U , s(p) ∈ Ep). When U = M , s is called a global
section of E; otherwise, s is called a local section.

(2) A set σ = (σ1, σ2, · · · , σn) of n smooth sections is called a local frame over U ,
if for any p ∈ U , (σ1(p), σ2(p), · · · , σn(p)) is a basis of Ep. When U = M , σ is called
a global frame of E.

Example 1.7. Consider the tangent bundle π : TM →M . Over any local coordinate
chart (U, φ), with local coordinate functions (xi), the map ∂

∂xi
, for each i, sending

p ∈ U to ∂
∂xi
|p ∈ TpM , is a smooth section over U . Moreover, the set ( ∂

∂xi
) is a local

frame of TM over U , called a local coordinate frame.

Recall from Example 1.3(1) that in proving TM is a smooth vector bundle, we used
local coordinate frames to define local trivializations of TM . In fact, this is true in
general, as we see below.

Proposition 1.8. Local frames and local trivializations correspond to each other in
a canonical way. More precisely, if σ = (σ1, σ2, · · · , σn) is a local frame of E over
U , then the map Ψ : π−1(U) → U × Rn defined by sending

∑n
i=1 viσi(p) ∈ Ep to

(p, (v1, v2, · · · , vn)) ∈ U ×Rn is a local trivialization of E over U . On the other hand,
given any trivialization Ψ : π−1(U)→ U ×Rn, the set σ = (σ1, σ2, · · · , σn), where for
each i, σi(p) := Ψ−1(p, ei) where e1, e2, · · · , en is the standard basis of Rn, is a local
frame of E over U . In particular, E is a trivial bundle iff it admits a global frame.

Exercise: (1) Prove that a section s of E over U (i.e., a map s : U → E such that
π ◦ s = Id on U) is smooth if and only if for any local frame σ = (σ1, σ2, · · · , σn) of E
over U , s(p) =

∑n
i=1 ai(p)σi(p) for some smooth functions a1, a2, · · · , an on U .

(2) Prove Proposition 1.8.

Example 1.9. We will show that the tautological line bundle over RPn is not trivial.
For illustration, we shall give two proofs here.

Proof 1: The tautological line bundle E over RP1 is the pull-back bundle of that
over RPn. Hence it suffices to show that π : E → RP1 is not trivial. To this end, recall
that RP1 has a canonical smooth atlas {(U1, φ1), (U2, φ2)}, where Ui = {l(x1, x2) ∈
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RP1|xi 6= 0}, i = 1, 2. Moreover, there are canonical trivializations Ψi : π−1(Ui) →
Ui×R such that the transition function τ21(l(x1, x2)) = x2/x1, for l(x1, x2) ∈ U1∩U2.
(See Example 1.3(2).)

With this understood, we note that U1 ∩ U2 = U+ t U−, a disjoint union of two
connected components, where U+ = {x1x2 > 0} and U− = {x1x2 < 0}. Now suppose
to the contrary that E is trivial, and let σ be a global frame of E. Then for i = 1, 2,
fi := Ψi ◦ σ is a smooth, nonzero function over Ui, which obeys τ21f1 = f2 over
U+ t U−. Since f1 is nonzero on U1, it must have the same sign over U+ and U−.
However, τ21(l(x1, x2)) = x2/x1, which has a different sign over U+ and U−, so that
f2 must have a different sign over U+ and U−. But this contradicts the fact that f2 is
nonzero on U2, hence E is nontrivial.

Proof 2: In this proof, we consider the complement of the zero-section of the
tautological line bundle E over RPn, E \ {0} := tx∈RPnEx \ {0}. Recall that E =
{(x, v) ∈ RPn × Rn+1|v ∈ x}. Under the projection (x, v) 7→ v, it is easy to see that
E \ {0} is mapped homeomorphically onto Rn+1 \ {0}. In particular, E \ {0} is a
connected space. On the other hand, if E were trivial, then E \ {0} is diffeomorphic
to RPn × (R \ {0}), which is disconnected. Hence the proof.

The associated sphere bundles: The idea in Proof 2 in the previous example can
be generalized. Let π : E → M be a smooth real vector bundle of rank n. Consider
the smooth Lie group action of R on E \ {0}, sending (t, (p, v)) to (p, etv) for any
v ∈ Ep \ {0}, p ∈ M . Since v 6= 0, the R-action is free. One can also check that the
R-action is proper as well. By the Quotient Manifold Theorem, the quotient space
E \ {0}/R is a smooth manifold, which we will denote by S(E). In fact, it is easy
to see that π : E → M factors through S(E), which induces a smooth, surjective
map π̃ : S(E) → M , where for each p ∈ M , the fiber π̃−1(p) is a smooth manifold
diffeomorphic to Sn−1. This is an example of fiber bundle; it is locally trivial, as for
any local trivialization of E, Ψ : π−1(U)→ U×Rn, there is an induced diffeomorphism
from π̃−1(U) to U × Sn−1. The bundle π̃ : S(E)→M is called the associated sphere
bundle of E. We remark that S(E) is homotopy equivalent to E \ {0}, so it captures
all the topological information of E \ {0}, but is easier to handle.

Example 1.10. For simplicity, let M be connected. We claim that the set of smooth
line bundles (up to isomorphism) overM is in one to one correspondence withH1(M,Z2).
More concretely, we will show that each nontrivial smooth line bundle over M deter-
mines a nonzero element in H1(M,Z2), and vice versa.

To see this, let π : E →M be a smooth line bundle. Consider the associated sphere
bundle π̃ : S(E) → M , which in this case has fibers S0 = {±}. It is easy to see that
E is nontrivial if and only if S(E) is connected and π̃ : S(E)→M is a double cover.
So for each nontrivial E, π̃ : S(E)→M corresponds to an epimorphism π1(M)→ Z2,
which factors through H1(M), giving rise to an epimorphism H1(M) → Z2, which
corresponds to a nonzero element in H1(M,Z2). Conversely, given any nonzero el-
ement in H1(M,Z2), we get an epimorphism π1(M) → Z2, which corresponds to a

double cover M̃ of M . We consider M̃ ×R, with a free smooth Z2-action on it, which
is the deck transformation on the M̃ -factor and is given by multiplication by −1 on
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the R-factor. The quotient E := (M̃ × R)/Z2 is the corresponding nontrivial smooth

line bundle over M , with S(E) = M̃ .

Example 1.11. In this example, let M = S2. Let π : E →M be a smooth real vector
bundle of rank 2. The associated sphere bundle π̃ : S(E) → M is a S1-bundle. Note
that in this case, E is trivial if and only if S(E) = S2 × S1. Observe π1(S(E)) = Z
when E is trivial.

Now let E be the complex tautological line bundle over CP1. Since CP1 = S2, E can
be regarded as a smooth real vector bundle of rank 2 over M = S2. As we argued in
Proof 2 of Example 1.9, it is easy to see that S(E) = S3. In particular, π1(S(E)) = 0
if E is the tautological bundle over CP1.

Exercise: Let E = TS2. Prove, using the Seifert-Van Kampen theorem, that
π1(S(E)) = Z2.

Hence TS2 is nontrivial, and also, TS2 is not isomorphic to the tautological line
bundle over CP1 (as a rank 2 real bundle).

Induced bundles: We shall only discuss the case of real vector bundles in details;
the case of complex/holomorphic vector bundles is analogous.

The dual bundle: Let π : E → M be a smooth real vector bundle of rank n. Let
E∗ := tp∈ME∗p , where E∗p is the dual space of Ep, with π∗ : E∗ → M the surjective

map so that each fiber (π∗)−1(p) = E∗p . Then π∗ : E∗ → M can be made into a
smooth real vector bundle of rank n, called the dual bundle of E.

More concretely, let {Uα} be an open cover of M such that over each Uα, there is
a trivialization of E, Ψα : π−1(Uα)→ Uα × Rn. Let σα = (σi,α) be the corresponding
local frame over Uα, and let {τβα} be the associated transition functions. Then

σj,α(p) =

n∑
i=1

[τβα(p)]ijσi,β(p), ∀p ∈ Uα ∩ Uβ,

where [τβα(p)]ij is the (i, j)-entry of the matrix τβα(p). For each α, let (σ∗i,α(p)) be

the dual basis of the basis (σi,α(p)). Note that, if

σ∗j,α(p) =

n∑
i=1

[τ∗βα(p)]ijσ
∗
i,β(p), ∀p ∈ Uα ∩ Uβ,

then the matrix τ∗βα(p) with (i, j)-entry [τ∗βα(p)]ij equals (τβα(p)T )−1. Consequently,

if we use σ∗α := (σ∗i,α) as a local frame to define a local trivialization of E∗ over Uα,

then the associated transition functions are {τ∗βα}, which are smooth. By Theorem
1.2, π∗ : E∗ →M is a smooth real vector bundle of rank n. This motivates

Definition 1.12. Let G ⊂ GL(n,R) be a Lie subgroup, and ρ : G→ GL(m,R) be a
Lie group homomorphism. Suppose π : E →M is a smooth real vector bundle of rank
n with the property that there exist local trivializations of E over {Uα} such that the
associated transition functions {τβα} have τβα(p) ∈ G for any p ∈ Uα ∩Uβ. We define
τ̃βα = ρ ◦ τβα : Uα ∩ Uβ → GL(m,R). Then

τ̃γα(p) = τ̃γβ(p)τ̃βα(p), ∀p ∈ Uα ∩ Uβ ∩ Uγ .
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Let π̃ : Ẽ →M be the smooth vector bundle of rank m determined by {τ̃βα}. We call
it the induced bundle of E via ρ : G→ GL(m,R).

So the dual bundle of E is the induced bundle of E via ρ : GL(n,R) → GL(n,R),
where ρ(A) = (AT )−1, A ∈ GL(n,R).

Example 1.13. (1) The dual bundle of TM is called the cotangent bundle of M ,
denoted by T ∗M . Note that the dual of a local coordinate frame ( ∂

∂xi
) is (dxi), where

dxi is the local smooth section of T ∗M sending p to dxi(p) ∈ T ∗pM . (dxi) is called a
local coordinate coframe.

(2) Let E := RPn \ {l(0, 0, · · · , 1)}, with π : E → RPn−1 defined by sending
l(x1, x2, · · · , xn, xn+1) to l(x1, x2, · · · , xn). Note that for any l ∈ RPn−1, the fiber
π−1(l) is the set of graphs of linear transformations from the line l ⊂ Rn to the
xn+1-axis in Rn+1, hence is naturally a 1-dimensional vector space over R.

Exercise: Show that π : E → RPn−1 is isomorphic to the dual bundle of the
tautological line bundle over RPn−1. (See Example 1.3(2).)

Sub-bundles and quotient bundles: Let π : E → M be a smooth vector bundle of
rank n. A subset E′ ⊂ E is called a sub-bundle of rank k, if the following holds:

(1) let π′ = π|E′ , then for any p ∈M , E′p := (π′)−1(p) is a k-dimensional subspace
of Ep,

(2) for any p ∈ M , there exists a local frame of E over a neighborhood U of p,
denoted by σ1, σ2, · · · , σn, such that for any q ∈ U , σ1(q), σ2(q), · · · , σk(q) is a
basis of E′q.

The quotient bundle E/E′, which as a set is defined to be tp∈MEp/E′p, is a smooth
vector bundle of rank n− k.

In fact, let G be the Lie subgroup of GL(n,R) which consists of matrices of the form(
A B
0 C

)
where A ∈ GL(k,R), C ∈ GL(n−k,R). Then item (2) above implies that

the bundle E admits a set of local trivializations such that the associated transition
functions {τβα} whose images lie in G. Let ρ1 : G → GL(k,R) be the Lie group

homomorphism sending

(
A B
0 C

)
to A, and ρ2 : G→ GL(n−k,R) be the Lie group

homomorphism sending

(
A B
0 C

)
to C. Then E′, E/E′ are the induced bundles of

E via ρ1, ρ2 respectively.

Example 1.14. Let S ⊂M be an embedded submanifold. Then TS is a sub-bundle
of TM |S , because for any p ∈ S, there is a slice chart of S containing p, which
in particular implies item (2) in the definition of sub-bundles. The quotient bundle
TM |S/TS is called the normal bundle of S in M .

Direct sum: Let E,E′ be two smooth vector bundles over M . The direct sum of
E,E′, defined to be E⊕E′ := tp∈MEp⊕E′p, is a smooth vector bundle over M , whose
bundle structure is determined as follows: we choose an open cover {U} of M such
that over each U , both E,E′ are trivial. Let (σi), (σ′j) be the local frames of E,E′
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over U . Then we simply declare that (σi, σ
′
j) to be a local frame of E ⊕E′ over U . It

is easy to see that the associated transition functions for E ⊕ E′ are smooth.

Exercise: Let E be the tautological bundle over RP2, and let E′ be the pull-
back bundle of the tautological bundle of the Grassmannian G2,3 via the canonical
diffeomorphism RP2 → G2,3. Show that E ⊕ E′ is a trivial bundle over RP2. (Hint:
find a global frame of E ⊕ E′.)

Tensor product: Let E,E′ be two smooth vector bundles over M of rank n, n′

respectively. The tensor product of E,E′, defined to be E ⊗ E′ := tp∈MEp ⊗ E′p,
is a smooth vector bundle over M of rank nn′, whose bundle structure is determined
as follows: we choose an open cover {U} of M such that over each U , both E,E′ are
trivial. Let (σi), (σ′j) be the local frames of E,E′ over U . Then we simply declare that

(σi ⊗ σ′j) to be a local frame of E ⊗ E′ over U . It is easy to see that the associated

transition functions for E ⊗ E′ are smooth.

Exercise: Let E be the (complex) tautological line bundle over CP1. For any
n > 0, let En be the n-fold tensor product of E, which is a complex line bundle over
CP1. Show that the associated sphere bundle S(En), where En is regarded as a rank
2 real bundle, is diffeomorphic to the lens space L(n, 1). In particular, for m 6= n, Em

and En are not isomorphic.

Exercise: (1) Let E be a real line bundle over M . Then E ⊗ E∗ is also a real
line bundle over M . Show that E ⊗E∗ is always trivial. (Hint: for any vector spaces
V,W , the tensor product W ⊗ V ∗ = Hom(V,W ), the space of linear maps from V to
W . Use this fact to find a global frame of E ⊗ E∗.)

(2) Conversely, let E1, E2 be real line bundles over M . Show that if E1 ⊗ E∗2 is
trivial, then E1, E2 are isomorphic.

2. Vector fields, Lie bracket, and Lie algebras

Definition 2.1. (1) Let M be a smooth manifold. A smooth section X : M → TM of
the tangent bundle is called a smooth vector field of M . The set of smooth vector
fields is denoted by X (M). A local smooth vector field is one that is only defined
over an open subset U ⊂ M . (We will use the following notation: the value of X at
p ∈M is denoted by Xp ∈ TpM .)

(2) Let F : M → N be any smooth map, X ∈ X (M), Y ∈ X (N). We say X,Y are
F -related if for any p ∈M , F∗(Xp) = YF (p).

Remarks: (1) Note that X (M) is naturally a module over the commutative ring
C∞(M) of smooth functions on M .

(2) Let ( ∂
∂xi

) be a local coordinate frame over U . A section X : U → TU is smooth

iff X =
∑

iX
i ∂
∂xi

where Xi ∈ C∞(U). Another criterion for smoothness of X is that
for any f ∈ C∞(U), X(f) : p 7→ Xp(f) is a smooth function on U .

Definition 2.2. Let X,Y ∈ X (M). We define the Lie bracket of X,Y , denoted by
[X,Y ], to be the R-linear map from C∞(M) to itself, by

[X,Y ](f) := X(Y (f))− Y (X(f)), ∀f ∈ C∞(M).
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For each p ∈M , let [X,Y ]p be the R-linear map from C∞(M) to R, where

[X,Y ]p(f) := [X,Y ](f)(p) = Xp(Y (f))− Yp(X(f)), ∀f ∈ C∞(M).

Lemma 2.3. For any p ∈M , [X,Y ]p ∈ TpM . Consequently, [X,Y ] ∈ X (M).

Proof. One only needs to verify

[X,Y ]p(fg) = f(p)[X,Y ]p(g) + g(p)[X,Y ]p(f), ∀f, g ∈ C∞(M),

which follows from a direct calculation.
�

Local Expression: Let ( ∂
∂xi

) be a local coordinate frame over U . Let X =∑
iX

i ∂
∂xi

, Y = Y i ∂
∂xi

be two local smooth vector fields over U . Then we can write

[X,Y ] =
∑
i

[X,Y ]i
∂

∂xi
, where [X,Y ]i ∈ C∞(U).

Exercise: Show that [X,Y ]i = X(Y i)− Y (Xi). In particular, [ ∂
∂xi
, ∂
∂xj

] = 0.

The following properties of Lie bracket are straightforward, except perhaps the
Jacobi Identity.

Proposition 2.4. (Properties of Lie bracket) Let X,Y, Z ∈ X (M).

(a) [X,Y ] = −[Y,X].
(b) [aX + bY, Z] = a[X,Z] + b[Y,Z], ∀a, b ∈ R.
(c) Jacobi Identity: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.
(d) [fX, Y ] = f [X,Y ]− Y (f)X, for any f ∈ C∞(M).
(e) Let F : M → N be any smooth map. For i = 1, 2, if Xi ∈ X (M) is F -related

to Yi ∈ X (N), then [X1, X2] is F -related to [Y1, Y2].

Definition 2.5. A vector space V is called a Lie algebra if it is equipped with a
bilinear, antisymmetric map V × V → V , denoted by (X,Y ) 7→ [X,Y ] and called the
bracket, which satisfies the Jacobi Identity (as in Prop. 2.4). V is called Abelian if
[X,Y ] = 0 for any X,Y ∈ V .

So X (M), with the Lie bracket, is an infinite dimensional Lie algebra. Finite di-
mensional Lie algebras naturally arise in the study of Lie groups.

The Lie algebra of a Lie group. Let G be a Lie group. For any g ∈ G, let
Lg : G → G, Rg : G → G be the left and right translation by g. A smooth vector
field X ∈ X (G) is said to be left-invariant if for any g ∈ G, (Lg)∗(X) = X, i.e.,
(Lg)∗(Xh) = Xgh, ∀h ∈ G. (Similarly, one can define right-invariant vector fields.)
The set of all left-invariant vector fields is denoted by Lie(G). By Prop.2.4(e), for
any X,Y ∈ Lie(G), [X,Y ] ∈ Lie(G). Consequently, Lie(G) is a Lie algebra, which is
called the Lie algebra of G.

Theorem 2.6. The map r : Lie(G)→ TeG by X 7→ Xe is an isomorphism.

Proof. The map r : Lie(G) → TeG is clearly linear and injective. It remains to show
that it is surjective. To this end, let A ∈ TeG be any tangent vector at e. We define
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a vector filed X with Xe = A as follows: for any g ∈ G, we define Xg := (Lg)∗(A),
where (Lg)∗ : TeG→ TgG. By the very definition, X is naturally left-invariant:

(Lg)∗(Xh) = (Lg)∗((Lh)∗(A)) = (Lg)∗ ◦ (Lh)∗(A) = (Lgh)∗(A) = Xgh,∀g, h ∈ G.

It remains to show that Xg depends smoothly on g, which follows if for any f ∈ C∞(G),
Xg(f) is a smooth function g. To this end, we pick a smooth curve γ : (−ε, ε) → G
such that γ(0) = e and γ′(0) = A. Then

Xg(f) = (Lg)∗(A)(f) = A(f ◦ Lg) =
d

dt
((f ◦ Lg) ◦ γ)|t=0 =

∂

∂t
(f(gγ(t)))|t=0.

The function φ(g, t) := f(gγ(t)) is smooth in g, t, as φ = f ◦m◦(Id×γ) : G×(−ε, ε)→
R, where m : G × G → G, sending (g, h) to gh, is a composition of smooth maps.
Hence Xg(f) is smooth in g for any f ∈ C∞(G). This finishes the proof.

�

Corollary 2.7. Let F : G → H be a Lie group homomorphism. Then there is an
induced Lie algebra homomorphism F∗ : Lie(G)→ Lie(H).

Proof. By Theorem 2.6, for any X ∈ Lie(G), there is a unique Y ∈ Lie(H) such
that Ye = F∗(Xe) ∈ TeH, where F∗ : TeG → TeH is induced by the smooth map
F : G→ H. We let F∗(X) = Y , which defines F∗ : Lie(G)→ Lie(H) as a linear map
between vector spaces. To see it preserves the Lie bracket, we note that F : G → H
is a Lie group homomorphism implies that F ◦ Lg = LF (g) ◦ F for any g ∈ G. Hence

F∗(Xg) = F∗ ◦ (Lg)∗(Xe) = (LF (g))∗ ◦ F∗(Xe) = (LF (g))∗(Ye) = YF (g),∀X ∈ Lie(G).

In other words, X ∈ Lie(G) and F∗(X) ∈ Lie(H) are F -related. By Prop.2.4(e),
F∗ : Lie(G)→ Lie(H) preserves the Lie bracket, hence is a Lie algebra homomorphism.

�

Proposition 2.8. The Lie algebra of an Abelian Lie group is Abelian.

Proof. Let G be any Lie group. We first show that for the smooth map m : G×G→ G,
the map m∗ : T(e,e)(G × G) = TeG × TeG → TeG sends (X,Y ) to X + Y , i.e.,
m∗(X,Y ) = X + Y , ∀X,Y ∈ TeG.

To see this, for any X ∈ TeG, let γ(t) be a smooth curve in G through e such that
X = γ′(0). Then m∗(X, 0) is represented by the smooth curve m(γ(t), e) = γ(t) in G,
hence m∗(X, 0) = X. Similarly, m∗(0, Y ) = Y , so that

m∗(X,Y ) = m∗(X, 0) +m∗(0, Y ) = X + Y, ∀X,Y ∈ TeG.

With this understood, let I : G → G be the map where I(g) = g−1. Then I∗ :
TeG → TeG is given by I∗ = −Id, because for any g ∈ G, m(g, I(g)) = e, so that for
any X ∈ TeG, X + I∗(X) = 0. Hence the claim.

Now when G is Abelian, I : g 7→ g−1 is a Lie group homomorphism. By Corollary
2.7, for any X,Y ∈ Lie(G),

−[X,Y ] = I∗([X,Y ]) = [I∗(X), I∗(Y )] = [−X,−Y ] = [X,Y ],

which implies that [X,Y ] = 0. �
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Sometimes it is more convenient to identify Lie(G) with TeG (as in Theorem 2.6)
as in concrete examples, TeG is a more explicit vector space than Lie(G). With such
an identification, TeG becomes a Lie algebra through Lie(G), with a specific bracket

[−,−] : TeG×TeG→ TeG. More specifically, for any A,B ∈ TeG, we let Ã, B̃ ∈ Lie(G)

whose values at e are A,B respectively. Then we define [A,B] := [Ã, B̃]e ∈ TeG.

Example 2.9. Let G = GL(n,R). Then TeG = M(n,R), the space of real n × n
matrices. Note that as a vector space over R, M(n,R) is given with the standard
smooth structure, and G ⊂M(n,R) is an open subset, given with the induced smooth
structure. With this understood, note that in fact for any g ∈ G, TgG = M(n,R). So
in what follows, we shall identity TgG (in particular, TeG) with M(n,R) throughout.

Let (xij) be the standard coordinates on M(n,R), with xij being the (i, j)-entry of

a matrix X ∈ M(n,R). Given any A = (aij) ∈ M(n,R), let Ã ∈ Lie(G) whose value
at e equals A. We observe that for any g ∈ G, the left translation Lg : G → G is a

linear map so that (Lg)∗ = Lg. Consequently, for any X = (xij) ∈ G, the value of Ã
at X is given by LX(A) = XA ∈M(n,R). Equivalently,

Ã =
n∑
i=1

n∑
j=1

(
n∑
k=1

xikakj)
∂

∂xij
.

We let B = (bij). Then B̃ =
∑n

i=1

∑n
j=1(

∑n
k=1 xikbkj)

∂
∂xij

. Using the local expres-

sion for Lie bracket, i.e., for X =
∑

iX
i ∂
∂xi

and Y = Y i ∂
∂xi

,

[X,Y ] =
∑
i

[X,Y ]i
∂

∂xi
, where [X,Y ]i = X(Y i)− Y (Xi),

we get

[Ã, B̃] =
n∑
i=1

n∑
j=1

(Ã(
n∑
k=1

xikbkj)−B̃(
n∑
k=1

xikakj))
∂

∂xij
=

n∑
i=1

n∑
j=1

(
n∑
k=1

n∑
l=1

xikaklblj−
n∑
k=1

n∑
l=1

xikbklalj)
∂

∂xij
.

Evaluating the above expression at X = (xij) = In (the identity matrix), we get

[Ã, B̃]e =
n∑
i=1

n∑
j=1

n∑
l=1

(ailblj − bilalj)
∂

∂xij
.

It follows easily that [A,B] = AB −BA.

Let V be a n-dimensional Lie algebra, X1, X2, · · · , Xn be a basis of the vector space
V . Then the bracket on V is determined by a set of constants {ckij}, where

[Xi, Xj ] =
n∑
k=1

ckijXk.

Note that the antisymmetry of the bracket implies ckij = −ckji for any i, j, k, and the

Jacobi Identity implies that
∑n

l=1(c
l
jkc

s
il + clkic

s
jl + clijc

s
kl) = 0 for any i, j, k, s.

Exercise: Let V be a 2-dimensional vector space, and X1, X2 be a basis of V . We
define [X1, X2] = X2. Show that this determines a Lie algebra structure on V .
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Exercise: Classify all k-dimensional Lie algebras up to isomorphism for k ≤ 3.

Exercise: Consider the Lie group S3 of unit quaternions. Note that TeS3 is spanned
by the quaternions i, j, k. Let X1, X2, X3 ∈ Lie(S3) whose values at e ∈ S3 are i, j, k
respectively. Show that

[X1, X2] = 2X3, [X2, X3] = 2X1, [X3, X1] = 2X2.

3. Tensor bundles and tensor fields

Tensor bundles: Let V be a n-dimensional vector space over R, let V ∗ denote its
dual space. We shall consider the following tensor spaces associated to V :

(1) T k(V ) = V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗ (k-fold tensor product of V ∗), the space of co-
variant k-tensors, which is naturally identified with the space of multilinear
maps from V × V × · · · × V to R.

(2) Tl(V ) = V ⊗V ⊗· · ·⊗V (l-fold tensor product of V ), the space of contravari-
ant l-tensors.

(3) T kl (V ) = T k(V )⊗ Tl(V ), the space of mixed tensors of type (k, l).

Given any basis (e1, e2, · · · , en) of V , we denote by (ε1, ε2, · · · , εn) the basis of V ∗

which is dual to the given basis of V . Then there are bases of the corresponding tensor
spaces canonically associated to the given basis (e1, e2, · · · , en):

(1) T k(V ): {εi1 ⊗ εi2 ⊗ · · · ⊗ εik |1 ≤ i1, i2, · · · , ik ≤ n}.
(2) Tl(V ): {ej1 ⊗ ej2 ⊗ · · · ⊗ ejl |1 ≤ j1, j2, · · · , jl ≤ n}.
(3) T kl (V ): {εi1⊗εi2⊗· · ·⊗εik⊗ej1⊗ej2⊗· · ·⊗ejl |1 ≤ i1, i2, · · · , ik, j1, j2, · · · , jl ≤

n}.
Now let π : E → M be a real smooth vector bundle of rank n. Then one has the

following associated tensor bundles of E:

T k(E) := tp∈MT k(Ep), Tl(E) := tp∈MTl(Ep), T kl (E) := tp∈MT kl (Ep).

These are smooth vector bundles over M in a canonical way: for any local frame of
E, we declare the corresponding local sections of the associated bases of the tensor
bundle to be a local frame of the tensor bundle.

Tensor fields: We shall focus on the case where E = TM . The corresponding
tensor bundles, denoted by T kM , TlM , and T kl M respectively, are called the bundle of
covariant k-tensors, contravariant l-tensors, and mixed tensors of type (k, l)
onM . The corresponding space of smooth sections is denoted by T kM , TlM , and T kl M
respectively, and is called the space of covariant k-tensor fields, contravariant l-
tensor fields, and mixed tensor fields of type (k, l) on M . Note that for the
special case of k = l = 0, we have

T 0M = T0M = T 0
0M = M × R, T 0M = T0M = T 0

0 M = C∞(M).

Finally, note that T kM , TlM , and T kl M are naturally modules over the commutative
ring C∞(M) of smooth functions (via pointwise multiplication).

Local expressions: Let (U, φ) be a local coordinate chart on M , with local coor-
dinate functions (xi). Then we have local coordinate frame ( ∂

∂xi
) and local coordinate
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coframe (dxi) on U . The corresponding local frames of the tensor bundles T kM , TlM ,
and T kl M are

(dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxik |1 ≤ i1, i2, · · · , ik ≤ n),

(
∂

∂xj1
⊗ ∂

∂xj2
⊗ · · · ⊗ ∂

∂xjl
|1 ≤ j1, j2, · · · , jl ≤ n)

and

(dxi1 ⊗dxi2 ⊗· · ·⊗dxik ⊗ ∂

∂xj1
⊗ ∂

∂xj2
⊗· · ·⊗ ∂

∂xjl
|1 ≤ i1, i2, · · · , ik, j1, j2, · · · , jl ≤ n)

respectively. A covariant k-tensor field σ ∈ T kM can be written locally as

σ = σi1i2···ikdx
i1 ⊗ dxi2 ⊗ · · · ⊗ dxik , σi1i2···ik ∈ C

∞(U),

a contravariant l-tensor field σ ∈ TlM can be written locally as

σ = σj1j2···jl
∂

∂xj1
⊗ ∂

∂xj2
⊗ · · · ⊗ ∂

∂xjl
, σj1j2···jl ∈ C∞(U),

and a mixed tensor field σ ∈ T kl M of type (k, l) can be written as

σ = σj1j2···jli1i2···ikdx
i1 ⊗ dxi2 ⊗ · · · ⊗ dxik ⊗ ∂

∂xj1
⊗ ∂

∂xj2
⊗ · · · ⊗ ∂

∂xjl
, σj1j2···jli1i2···ik ∈ C

∞(U).

Here we adapt the convention that a repeated index indicates a summation over
1, 2, · · · , n for that index.

Alternative description: Let σ ∈ T kM be a covariant k-tensor field. Then σ
defines a multilinear map from X (M)×X (M)×· · ·×X (M) (k-fold product) to C∞(M)
as follows. For any X1, X2, · · · , Xk ∈ X (M), and any p ∈M ,

σ(X1, X2, · · · , Xk)(p) := σ(p)(X1|p, X2|p, · · · , Xk|p).
It is clear that σ is linear over the commutative ring C∞(M), i.e., for any f ∈ C∞(M),
and any index i = 1, 2, · · · , k, σ(X1, · · · , fXi, · · · , Xk) = fσ(X1, · · · , Xi, · · · , Xk).

To see that for any X1, X2, · · · , Xk ∈ X (M), σ(X1, X2, · · · , Xk) ∈ C∞(M), we
check it out in local coordinates. Let ( ∂

∂xi
) be a local coordinate frame over U . Then

we may write σ = σi1i2···ikdx
i1 ⊗ dxi2 ⊗ · · · ⊗ dxik and Xi = Xj

i
∂
∂xj

. Consequently,

σ(X1, X2, · · · , Xk) = σi1i2···ikX
i1
1 X

i2
2 · · ·X

ik
k ∈ C

∞(U),

because each σi1i2···ik and Xj
i ∈ C∞(U).

Theorem 3.1. Each σ ∈ T kl M determines, and vice versa, a C∞(M)-multilinear map
ψ : X (M)×X (M)×· · ·×X (M)→ TlM , i.e., ∀X1, X2, · · · , Xk ∈ X (M), f ∈ C∞(M),

ψ(X1, · · · , fXi, · · · , Xk) = fψ(X1, · · · , Xi, · · · , Xk), ∀i = 1, 2, · · · , k.

Proof. It suffices to show that given such a ψ : X (M)×X (M)× · · · × X (M)→ TlM ,
there is a corresponding σ ∈ T kl M , such that

ψ(X1, X2, · · · , Xk)(p) = σ(p)(X1|p, X2|p, · · · , Xk|p) ∈ Tl(TpM).

The key point of the proof is that for any p ∈M , ψ(X1, X2, · · · , Xk)(p) depends only
on the values of X1, X2, · · · , Xk at p, which by linearity, is equivalent to the statement
that ψ(X1, · · · , Xi, · · · , Xk)(p) = 0 if Xi|p = 0, for any i. Assuming this momentarily,
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we define the corresponding σ by defining, for any p ∈ M and Y1, Y2, · · · , Yk ∈ TpM ,
the value σ(p)(Y1, Y2, · · · , Yk) ∈ Tl(TpM) to be ψ(X1, X2, · · · , Xk)(p) ∈ Tl(TpM),

where each Xi ∈ X (M) such that Xi|p = Yi. Clearly σ is well-defined and σ ∈ T kl M .
It remains to show that ψ(X1, · · · , Xi, · · · , Xk)(p) = 0 if Xi|p = 0, for any i. To this

end, let ( ∂
∂xi

) be a local coordinate frame over U . We choose a smooth partition of
unity {f1, f2} subordinate to the open cover {U,M \{p}}. Then note that supp f1 ⊂ U
and f2(p) = 0. With this understood, observe that f2(p) = 0 implies

ψ(X1, · · · , Xi, · · · , Xk)(p) = ψ(X1, · · · , f1Xi, · · · , Xk)(p).

Now we write, over U , Xi =
∑n

j=1 a
j
i
∂
∂xj

where each aji ∈ C∞(U). The condition

Xi|p = 0 is equivalent to aji (p) = 0 for each j. We set Zj :=
√
f1

∂
∂xj
∈ X (M) and

gji :=
√
f1a

j
i ∈ C∞(M). Then note that gji (p) = 0 for each j. With this understood,

ψ(X1, · · · , f1Xi, · · · , Xk)(p) =
n∑
j=1

gji (p)ψ(X1, · · · , Zj , · · · , Xk)(p) = 0.

�

Pull-backs of covariant tensor fields: Let F : M → N be any smooth map. For
any σ ∈ T kN , we define the pull-back of σ via F , denoted by F ∗σ, as follows. For
any p ∈M , we define F ∗σ(p) ∈ T k(TpM) by setting, for any X1, X2, · · · , Xk ∈ TpM ,

F ∗σ(p)(X1, X2, · · · , Xk) := σ(F (p))(F∗(X1), F∗(X2), · · · , F∗(Xk)),

where F∗ : TpM → TF (p)N . For the special case of k = 0, σ is simply a smooth
function on N , and F ∗σ = σ ◦ F .

Computing F ∗σ in local coordinate charts, we assume U ⊂ M , V ⊂ N such that
F (U) ⊂ V , and let (xi) and (yj) be local coordinate functions on U and V respectively.
Writing σ = σj1j2···jkdy

j1 ⊗ dyj2 ⊗ · · · ⊗ dyjk over V , we have

F ∗σ(p)(
∂

∂xi1
|p,

∂

∂xi2
|p, · · ·

∂

∂xik
|p) = σj1j2···jk(F (p))dyj1(F∗(

∂

∂xi1
|p)) · · · dyjk(F∗(

∂

∂xik
|p)).

It follows easily that over U , F ∗σ = (F ∗σ)i1i2···ikdx
i1 ⊗ dxi2 ⊗ · · · ⊗ dxik , where

(F ∗σ)i1i2···ik = (σj1j2···jk ◦ F )
∂(yj1 ◦ F )

∂xi1
· · · ∂(yjk ◦ F )

∂xik
∈ C∞(U).

In particular, it follows that F ∗σ ∈ T kM , resulting a R-linear map F ∗ : T kN → T kM .

Exercise: Let F : M → N be any smooth map.
(1) Show that for any σ ∈ T kN , ξ ∈ T lN , the tensor product σ ⊗ ξ ∈ T k+lN

is well-defined, and F ∗(σ ⊗ ξ) = F ∗σ ⊗ F ∗ξ. In particular, for any f ∈ C∞(N),
F ∗(fσ) = (f ◦ F )F ∗σ.

(2) For any f ∈ C∞(N), df ∈ T 1N . Show that F ∗df = d(F ∗f) = d(f ◦ F ).

Riemannian metrics: A Riemannian metric on a smooth manifold M is a positive
definite, symmetric covariant 2-tensor field g ∈ T 2M . Here g being symmetric means
that for any p ∈ M , X,Y ∈ TpM , g(p)(X,Y ) = g(p)(Y,X) holds true, while g being
positive definite means that g(p)(X,X) ≥ 0 with “=” only when X = 0. In a local



MATH 703: PART 2: VECTOR BUNDLES 15

coordinate system (xi), we can write g = gijdx
i ⊗ dxj , where the matrix (gij) is

symmetric and positive definite.

Theorem 3.2. Every smooth manifold possesses a Riemannian metric.

Proof. We cover M with a smooth atlas {(Uα, φα)}, with the local coordinate functions
on Uα denoted by (xiα). We pick a smooth partition of unity {fα} subordinate to {Uα},
and set gα := δijdx

i
α ⊗ dx

j
α for each α, where δij = 1 if i = j and δij = 0 otherwise.

Then g :=
∑

α fαgα is a Riemannian metric on M .
�

Exercise: Let F : M → N be an immersion. Show that for any Riemannian metric
g ∈ T 2N , the pull-back F ∗g ∈ T 2M is a Riemannian metric on M . As a consequence,
Whitney’s embedding theorem implies that every compact smooth manifold admits a
Riemannian metric, a proof independent of Theorem 3.2.

Exercise: Show that for any smooth action of a finite group G on M , there is a
Riemannian metric g on M which is G-invariant, i.e., for any h ∈ G, let θh : M →M
be the corresponding diffeomorphism, then θ∗hg = g.

Let g be a Riemannian metric on M . For any smooth curve γ : [a, b] → M , we
define the length of γ (depending on g) to be

L(γ) :=

∫ b

a
g(γ′(t), γ′(t))1/2dt.

It is straightforward to generalize the above definition to piecewise smooth curves.
Now suppose M is connected. Then for any p, q ∈ M , one can connect p and q by a
piecewise smooth curve γ. We define the distance between p and q, denoted by d(p, q),
to be the infimum of L(γ) among all the piecewise smooth curves γ connecting p to q.

Exercise: Show that d(p, q) is a distance function on M , making M into a metric
space. Moreover, show that the topology of M as a metric space is the same as the
underlying topology of smooth manifold.

Proposition 3.3. For any smooth manifold M , TM and T ∗M are isomorphic.

Proof. We pick a Riemannian metric g on M . Then we define a map g̃ : TM → T ∗M
as follows. For any p ∈M , let g̃p : TpM → T ∗pM be the isomorphism such that for any
X,Y ∈ TpM , g̃p(X)(Y ) = g(p)(X,Y ). To check that g̃ is a smooth map, we compute
in local coordinate (xi), where we assume g = gijdx

i ⊗ dxj . Then if we trivialize TU

by the local coordinate frame ( ∂
∂xi

) and trivialize T ∗U by the local coordinate coframe

(dxi), the map g̃ : TU → T ∗U is given by Id × (gij) : U × Rn → U × Rn, which is
smooth. It follows that g̃ : TM → T ∗M is a bundle isomorphism.

�

Let g be a Riemannian metric on M . A local frame (σi) of TM over an open subset
U is called orthonormal if g(σi, σj) = 1 for i = j and 0 otherwise. Local orthonormal
frames always exist by the Gram-Schmidt process.
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Definition 3.4. Let E be a smooth real (resp. complex) vector bundle of rank n, and
let G be a Lie subgroup of GL(n,R) (resp. GL(n,C)). We say E is a G-bundle if
there is a set of local trivializations of E such that the associated transition functions
{τβα} have their images lying in G.

Observe that if E is a O(n)-bundle, then the dual bundle E∗ must be isomorphic
to E because E∗ is the induced bundle of E via the Lie group homomorphism ρ :
GL(n,R)→ GL(n,R) sending A to (AT )−1, and ρ = Id when restricted to O(n).

Exercise: Let M be a smooth manifold of dimension n. Show that TM is a
O(n)-bundle. As a consequence, TM and T ∗M are isomorphic.

Exercise: Let S ⊂ M be an embedded submanifold, and let g be a Riemannian
metric on M . For any p ∈ S, let Np ⊂ TpM be the subspace consisting of tangent
vectors which are orthogonal to TpS with respect to g(p). Let N(S) := tp∈SNp. Show
that N(S) is a sub-bundle of TM |S , N(S) is isomorphic to the normal bundle of S in
M , and TM |S is a direct sum of TS and N(S).

More generally, let E be a smooth real vector bundle of rank n. A metric on E is
a smooth section g of the tensor bundle T 2(E), such that g is symmetric and positive
definite. The same argument of Theorem 3.2 shows that there exists a metric on any
given smooth vector bundle.

Exercise: Let E be a smooth real vector bundle of rank n. Show that the following
statements are equivalent.

(1) There is a metric on E.
(2) E is a O(n)-bundle.
(3) E∗ and E are isomorphic.

Analogously, let E be a smooth complex vector bundle of rank n. One can similarly
define the notion of a Hermitian metric on E, and the same argument of Theorem 3.2
shows that there exists a Hermitian metric on any given smooth complex vector bundle.
On the other hand, the complex conjugate of E, denoted by E, is the complex
vector bundle obtained by changing each fiber of E to its complex conjugate. (Let V
be a vector space over C. The complex conjugate of V is the complex vector space
obtained by changing the complex multiplication of c ∈ C on V to the multiplication
by its conjugate c̄ on V .)

Exercise: Let E be a smooth complex vector bundle of rank n. Show that the
following statements are equivalent.

(1) There is a Hermitian metric on E.
(2) E is a U(n)-bundle.
(3) E∗ and E are isomorphic.
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