MATH 703: PART 2: VECTOR BUNDLES

WEIMIN CHEN

CONTENTS

1.	Smooth vector bundles	1
2.	Vector fields, Lie bracket, and Lie algebras	8
3.	Tensor bundles and tensor fields	12
References		16

1. Smooth vector bundles

Definition 1.1. Let M be a smooth manifold. A smooth real vector bundle of rank n over M consists of a smooth manifold E together with a surjective smooth map $\pi : E \to M$ with the following properties:

- (i) For each $p \in M$, $E_p := \pi^{-1}(p)$, called the **fiber** at p, is a *n*-dimensional vector space over \mathbb{R} .
- (ii) There exists an open cover $\{U_{\alpha}\}$ of M, such that for each α , there is a diffeomorphism $\Psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^n$, sending each $E_p, p \in U_{\alpha}$, isomorphically to $\{p\} \times \mathbb{R}^n$ (as vector spaces). Ψ_{α} is called a **trivialization** over U_{α} .

An **isomorphism** between two vector bundles over M is a diffeomorphism which sends fibers isomorphically to fibers and induces the identity map on M.

Remarks: (1) For any smooth manifold $M, E := M \times \mathbb{R}^n$ with the projection onto the factor M is a smooth real vector bundle of rank n over M, called a **trivial bundle** or **product bundle**.

(2) For any α, β where $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the map $\Psi_{\beta} \circ \Psi_{\alpha}^{-1} : (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n} \to (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n}$ sends (p, v) to $(p, \tau_{\beta\alpha}(q)(v))$ for some smooth map $\tau_{\beta\alpha} : U_{\alpha} \cap U_{\beta} \to GL(n, \mathbb{R})$. The maps $\{\tau_{\beta\alpha}\}$ are called the associated **transition functions**, which obeys

$$\tau_{\gamma\alpha}(q) = \tau_{\gamma\beta}(q)\tau_{\beta\alpha}(q), \ \forall q \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}.$$

(3) In Definition 1.1, if we replace \mathbb{R} by \mathbb{C} and \mathbb{R}^n by \mathbb{C}^m , we get the notion of **smooth complex vector bundle of rank** m **over** M. If in addition, M and E are complex manifolds and each Ψ_{α} is a biholomorphism, then we get the notion of **holomorphic vector bundle over** M.

In order to get examples other than trivial bundles, we need the following

Theorem 1.2. Let M be a smooth manifold, E be a set, with a surjective map π : $E \to M$, such that for any $p \in M$, the fiber $E_p := \pi^{-1}(p)$ at p is a n-dimensional vector space over \mathbb{R} . Suppose there is a smooth atlas $\{(U_\alpha, \phi_\alpha)\}$ of M such that

- (i) for each α , there is a bijection $\Psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$, sending each E_{p} , $p \in U_{\alpha}$, isomorphically to $\{p\} \times \mathbb{R}^{n}$ (as vector spaces);
- (ii) for any α, β where $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the map $\Psi_{\beta} \circ \Psi_{\alpha}^{-1} : (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n} \to (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n}$ sends (p, v) to $(p, \tau_{\beta\alpha}(q)(v))$ for some smooth map $\tau_{\beta\alpha} : U_{\alpha} \cap U_{\beta} \to GL(n, \mathbb{R}).$

Then E is naturally a smooth manifold, making it a smooth real vector bundle of rank n over M, with transition functions $\{\tau_{\beta\alpha}\}$.

Proof. It follows directly from Theorem 1.3 in Part I.

Remarks: (1) Theorem 1.2 has analogs for complex/holomorphic vector bundles. (2) It follows easily from Theorem 1.2 that given any smooth atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ of M

with a set of smooth maps $\{\tau_{\beta\alpha}\}$, where $\tau_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \to GL(n, \mathbb{R})$, which obeys

$$\tau_{\gamma\alpha}(q) = \tau_{\gamma\beta}(q)\tau_{\beta\alpha}(q), \ \forall q \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma},$$

one can construct a smooth real vector bundle of rank n over M having $\{\tau_{\beta\alpha}\}$ as the associated transition functions.

Example 1.3. (1) Let M be a smooth manifold of dimension n. We let

$$TM := \sqcup_{p \in M} T_p M$$

be the disjoint union of tangent spaces of M, which comes with a natural surjective map $\pi : TM \to M$ sending each tangent vector in T_pM to $p \in M$. Then TM is a smooth real vector bundle of rank n over M, called the **tangent bundle** of M.

We verify (i)-(ii) of Theorem 1.2 for TM. Fix a smooth atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ of M. Then for each α , let x_{α}^{i} , $i = 1, 2, \cdots, n$, be the local coordinate functions on U_{α} . Then for each $p \in U_{\alpha}$, $(\frac{\partial}{\partial x_{\alpha}^{i}}|_{p})$ is a basis of $T_{p}M$. Thus for any tangent vector $X \in T_{p}M$, we can write $X = \sum_{i=1}^{n} X_{i} \frac{\partial}{\partial x_{\alpha}^{i}}|_{p}$, where each $X_{i} \in \mathbb{R}$. This gives rise to a bijection $\Psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$, sending $X \in T_{p}M$, $p \in U_{\alpha}$, to $(p, X_{1}, X_{2}, \cdots, X_{n}) \in U_{\alpha} \times \mathbb{R}^{n}$. Clearly, it is an isomorphism from $T_{p}M$ to $\{p\} \times \mathbb{R}^{n}$ for each $p \in U_{\alpha}$. By Proposition 2.5 in Part I, for any α, β such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the map $\Psi_{\beta} \circ \Psi_{\alpha}^{-1} : (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n} \to$ $(U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n}$ is given by $(p, v) \mapsto (p, D(\phi_{\beta} \circ \phi_{\alpha}^{-1})(\phi_{\alpha}(p))(v))$, where D is the Jacobian. Clearly, the map $D(\phi_{\beta} \circ \phi_{\alpha}^{-1}) \circ \phi_{\alpha} : U_{\alpha} \cap U_{\beta} \to GL(n, \mathbb{R})$ is a smooth map. This verifies (i)-(ii) in Theorem 1.2.

(1) (a) In Theorem 1.1. (2) Consider the set $E := \{(x, v) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} | v \in x\}$, with $\pi : E \to \mathbb{RP}^n$ sending (x, v) to x. For each $x \in \mathbb{RP}^n$, the fiber $E_x := \pi^{-1}(x)$ is simply the line in \mathbb{R}^{n+1} corresponding to the point $x \in \mathbb{RP}^n$, which is a 1-dimensional vector space over \mathbb{R} . We will show that E is a smooth real vector bundle of rank 1 over \mathbb{RP}^n , which is called the **tautological line bundle** (rank 1 bundles are called line bundles).

For simplicity, we assume n = 2. Recall from Example 1.4(1) in Part 1, \mathbb{RP}^2 has a canonical smooth atlas $\{(U_{\alpha}, \phi_{\alpha}) | \alpha = 1, 2, 3\}$, where

$$U_{\alpha} = \{ l(x_1, x_2, x_3) \in \mathbb{RP}^2 | x_{\alpha} \neq 0 \}.$$

We define $\Psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}$ by sending (x, v) to (x, v_{α}) , where the vector $v \in x$ has coordinates (v_1, v_2, v_3) . It follows easily from the fact that $x_{\alpha} \neq 0$ for $x \in U_{\alpha}$ that

 $\mathbf{2}$

 Ψ_{α} is a bijection. It remains to determine $\Psi_{\beta} \circ \Psi_{\alpha}^{-1}$. For simplicity, we examine the case of $\alpha = 1, \beta = 2$. Note that Ψ_1^{-1} sends $(l(x_1, x_2, x_3), t)$ to $(l(x_1, x_2, x_3), v)$, where $v = (t, tx_2/x_1, tx_3/x_1)$, and Ψ_2 sends $(l(x_1, x_2, x_3), v)$ to $(l(x_1, x_2, x_3), tx_2/x_1)$. Thus $\Psi_2 \circ \Psi_1^{-1} = Id \times \tau_{21}$, where $\tau_{21} : U_1 \cap U_2 \to GL(1, \mathbb{R})$ is the map sending $l(x_1, x_2, x_3)$ to x_2/x_1 . In general, $\tau_{\beta\alpha}(l(x_1, x_2, x_3)) = x_\beta/x_\alpha$.

Exercise: Define the tautological bundles over \mathbb{CP}^m and Grassmannians $G_{k,n}$.

Regarding Remark(2) following Theorem 1.2, we illustrate it with the following

Example 1.4. ("Infinite" Möbius Band) Consider $\mathbb{S}^1 \subset \mathbb{R}^2$, which has a canonical smooth atlas $\{(U_N, \phi_N), (U_S, \phi_S)\}$, where $U_N = \mathbb{S}^1 \setminus \{(0, 1)\}, U_S = \mathbb{S}^1 \setminus \{(0, -1)\}$. Note that $U_N \cap U_S$ is a disjoint union of $U_+ := \{x_1 > 0\}$ and $U_- := \{x_1 < 0\}$. We define a transition function $\tau_{SN} : U_N \cap U_S \to GL(1, \mathbb{R})$, by setting it equal 1 on U_+ and -1 on U_- . Note that τ_{SN} is a smooth map. We shall construct a smooth line bundle over \mathbb{S}^1 with transition function τ_{SN} as follows.

Let E be the quotient space $U_N \times \mathbb{R} \sqcup U_S \times \mathbb{R}/\sim$, where for any $x \in U_N \cap U_S$, $(x,t) \in U_N \times \mathbb{R}$ is \sim to $(x, \tau_{SN}t) \in U_S \times \mathbb{R}$. We define $\pi : E \to \mathbb{S}^1$ by sending (x,t) to x. For each $x \in \mathbb{S}^1$, the fiber E_x is a copy of \mathbb{R} , hence a 1-dimensional vector space over \mathbb{R} . Note that the inclusions $U_N \times \mathbb{R} \to U_N \times \mathbb{R} \sqcup U_S \times \mathbb{R}$, $U_S \times \mathbb{R} \to U_N \times \mathbb{R} \sqcup U_S \times \mathbb{R}$ induce injective maps from $U_N \times \mathbb{R}$, $U_S \times \mathbb{R}$ to E, with image $\pi^{-1}(U_N)$, $\pi^{-1}(U_S)$ respectively. We define $\Psi_N : \pi^{-1}(U_N) \to U_N \times \mathbb{R}$, $\Psi_S : \pi^{-1}(U_S) \to U_S \times \mathbb{R}$ to the inverses of them. Then it is easy to see that $\Psi_S \circ \Psi_N^{-1} = Id \times \tau_{SN}$ on $(U_N \cap U_S) \times \mathbb{R}$. By Theorem 1.2, E is a smooth line bundle over \mathbb{S}^1 with transition function τ_{SN} .

Pull-back bundles: Let $\pi : E \to M$ be a smooth vector bundle of rank n, and let $F : N \to M$ be any smooth map. We define the **pull-back bundle of** E **via** F, denoted by F^*E , as follows. As a set, we consider $E' := \bigsqcup_{p \in N} E_{F(p)}$, with the surjective map $\pi : E' \to N$ defined by sending any $v \in E_{F(p)}$ to p. It is easy to see that for each $p \in N$, the fiber of E' at p, denoted by E'_p , is given by $E_{F(p)}$, i.e., the fiber of E at the image F(p) of p under the map F. Clearly, $E'_p = E_{F(p)}$ is a n-dimensional vector space over \mathbb{R} .

We shall apply Theorem 1.2 to show that E' is a smooth vector bundle of rank n over N. To this end, we choose a smooth atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ of M such that over each U_{α} , E has a trivialization $\Psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$. We set $V_{\alpha} := F^{-1}(U_{\alpha})$. Then $\{V_{\alpha}\}$ is an open cover of N. For simplicity, we assume $\{V_{\alpha}\}$ comes from a smooth atlas of N. Then we define a map $\Psi'_{\alpha} : \pi^{-1}(V_{\alpha}) \to V_{\alpha} \times \mathbb{R}^{n}$ as follows: note that $\pi^{-1}(V_{\alpha}) = \bigsqcup_{p \in V_{\alpha}} E'_{p} = \bigsqcup_{p \in V_{\alpha}} E_{F(p)}$. With this understood, Ψ'_{α} sends each $E'_{p} = E_{F(p)}$ to $\{p\} \times \mathbb{R}^{n}$ isomorphically by Ψ_{α} . It is easy to see that Ψ'_{α} is a bijection. Moreover, for any α, β such that $V_{\alpha} \cap V_{\beta} \neq \emptyset$, $\Psi'_{\beta} \circ \Psi'_{\alpha} = Id \times (\tau_{\beta\alpha} \circ F)$, where $\{\tau_{\beta\alpha}\}$ is the associated transition functions for E. The transition functions of E' are $\tau'_{\beta\alpha} := \tau_{\beta\alpha} \circ F : V_{\alpha} \cap V_{\beta} \to GL(n, \mathbb{R})$, which are clearly smooth because both $\tau_{\beta\alpha}$ and F are smooth maps. Hence our claim.

Remarks: (1) In terms of transition functions, the pull-back bundles are the bundles determined by the pull-back of the corresponding transition functions.

(2) Note that if the image F(N) lies entirely in a U_{α} over which E is trivial, then the pull-back bundle F^*E is easily seen trivial. In particular, any pull-back bundle of a trivial bundle is trivial.

(3) If $S \subset M$ is an embedded submanifold of lower dimension or open subset, $i: S \to M$ the inclusion map, the pull-back bundle i^*E is called the **restriction** of E to S, also denoted by $E|_S$.

Example 1.5. Let $\pi : E \to \mathbb{RP}^n$ be the tautological line bundle. For any k < n, consider the smooth embedding $F : \mathbb{RP}^k \to \mathbb{RP}^n$ induced by $\mathbb{R}^{k+1} \to \mathbb{R}^{k+1} \times \{0\} \subset \mathbb{R}^{n+1}$. Then the pull-back bundle F^*E is the tautological line bundle over \mathbb{RP}^k .

Sections, frames, and trivializations:

Definition 1.6. Let $\pi : E \to M$ be a smooth vector bundle of rank n, and let $U \subset M$ an open subset.

(1) A smooth section of E over U is a smooth map $s: U \to E$ such that $\pi \circ s = Id$ on U (equivalently, for any $p \in U$, $s(p) \in E_p$). When U = M, s is called a global section of E; otherwise, s is called a local section.

(2) A set $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$ of *n* smooth sections is called a **local frame** over *U*, if for any $p \in U$, $(\sigma_1(p), \sigma_2(p), \dots, \sigma_n(p))$ is a basis of E_p . When U = M, σ is called a **global frame** of *E*.

Example 1.7. Consider the tangent bundle $\pi : TM \to M$. Over any local coordinate chart (U, ϕ) , with local coordinate functions (x^i) , the map $\frac{\partial}{\partial x^i}$, for each *i*, sending $p \in U$ to $\frac{\partial}{\partial x^i}|_p \in T_pM$, is a smooth section over *U*. Moreover, the set $(\frac{\partial}{\partial x^i})$ is a local frame of *TM* over *U*, called a **local coordinate frame**.

Recall from Example 1.3(1) that in proving TM is a smooth vector bundle, we used local coordinate frames to define local trivializations of TM. In fact, this is true in general, as we see below.

Proposition 1.8. Local frames and local trivializations correspond to each other in a canonical way. More precisely, if $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$ is a local frame of E over U, then the map $\Psi : \pi^{-1}(U) \to U \times \mathbb{R}^n$ defined by sending $\sum_{i=1}^n v_i \sigma_i(p) \in E_p$ to $(p, (v_1, v_2, \dots, v_n)) \in U \times \mathbb{R}^n$ is a local trivialization of E over U. On the other hand, given any trivialization $\Psi : \pi^{-1}(U) \to U \times \mathbb{R}^n$, the set $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$, where for each $i, \sigma_i(p) := \Psi^{-1}(p, e_i)$ where e_1, e_2, \dots, e_n is the standard basis of \mathbb{R}^n , is a local frame of E over U. In particular, E is a trivial bundle iff it admits a global frame.

Exercise: (1) Prove that a section s of E over U (i.e., a map $s: U \to E$ such that $\pi \circ s = Id$ on U) is smooth if and only if for any local frame $\sigma = (\sigma_1, \sigma_2, \cdots, \sigma_n)$ of E over $U, s(p) = \sum_{i=1}^n a_i(p)\sigma_i(p)$ for some smooth functions a_1, a_2, \cdots, a_n on U. (2) Prove Proposition 1.8.

Example 1.9. We will show that the tautological line bundle over \mathbb{RP}^n is not trivial. For illustration, we shall give two proofs here.

Proof 1: The tautological line bundle E over \mathbb{RP}^1 is the pull-back bundle of that over \mathbb{RP}^n . Hence it suffices to show that $\pi: E \to \mathbb{RP}^1$ is not trivial. To this end, recall that \mathbb{RP}^1 has a canonical smooth atlas $\{(U_1, \phi_1), (U_2, \phi_2)\}$, where $U_i = \{l(x_1, x_2) \in$

 $\mathbb{RP}^1 | x_i \neq 0 \}$, i = 1, 2. Moreover, there are canonical trivializations $\Psi_i : \pi^{-1}(U_i) \rightarrow U_i \times \mathbb{R}$ such that the transition function $\tau_{21}(l(x_1, x_2)) = x_2/x_1$, for $l(x_1, x_2) \in U_1 \cap U_2$. (See Example 1.3(2).)

With this understood, we note that $U_1 \cap U_2 = U_+ \sqcup U_-$, a disjoint union of two connected components, where $U_+ = \{x_1x_2 > 0\}$ and $U_- = \{x_1x_2 < 0\}$. Now suppose to the contrary that E is trivial, and let σ be a global frame of E. Then for i = 1, 2, $f_i := \Psi_i \circ \sigma$ is a smooth, nonzero function over U_i , which obeys $\tau_{21}f_1 = f_2$ over $U_+ \sqcup U_-$. Since f_1 is nonzero on U_1 , it must have the same sign over U_+ and U_- . However, $\tau_{21}(l(x_1, x_2)) = x_2/x_1$, which has a different sign over U_+ and U_- , so that f_2 must have a different sign over U_+ and U_- . But this contradicts the fact that f_2 is nonzero on U_2 , hence E is nontrivial.

Proof 2: In this proof, we consider the complement of the zero-section of the tautological line bundle E over \mathbb{RP}^n , $E \setminus \{0\} := \sqcup_{x \in \mathbb{RP}^n} E_x \setminus \{0\}$. Recall that $E = \{(x, v) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} | v \in x\}$. Under the projection $(x, v) \mapsto v$, it is easy to see that $E \setminus \{0\}$ is mapped homeomorphically onto $\mathbb{R}^{n+1} \setminus \{0\}$. In particular, $E \setminus \{0\}$ is a connected space. On the other hand, if E were trivial, then $E \setminus \{0\}$ is diffeomorphic to $\mathbb{RP}^n \times (\mathbb{R} \setminus \{0\})$, which is disconnected. Hence the proof.

The associated sphere bundles: The idea in Proof 2 in the previous example can be generalized. Let $\pi : E \to M$ be a smooth real vector bundle of rank n. Consider the smooth Lie group action of \mathbb{R} on $E \setminus \{0\}$, sending (t, (p, v)) to $(p, e^t v)$ for any $v \in E_p \setminus \{0\}, p \in M$. Since $v \neq 0$, the \mathbb{R} -action is free. One can also check that the \mathbb{R} -action is proper as well. By the Quotient Manifold Theorem, the quotient space $E \setminus \{0\}/\mathbb{R}$ is a smooth manifold, which we will denote by S(E). In fact, it is easy to see that $\pi : E \to M$ factors through S(E), which induces a smooth, surjective map $\tilde{\pi} : S(E) \to M$, where for each $p \in M$, the fiber $\tilde{\pi}^{-1}(p)$ is a smooth manifold diffeomorphic to \mathbb{S}^{n-1} . This is an example of fiber bundle; it is locally trivial, as for any local trivialization of $E, \Psi : \pi^{-1}(U) \to U \times \mathbb{R}^n$, there is an induced diffeomorphism from $\tilde{\pi}^{-1}(U)$ to $U \times \mathbb{S}^{n-1}$. The bundle $\tilde{\pi} : S(E) \to M$ is called the associated sphere bundle of E. We remark that S(E) is homotopy equivalent to $E \setminus \{0\}$, so it captures all the topological information of $E \setminus \{0\}$, but is easier to handle.

Example 1.10. For simplicity, let M be connected. We claim that the set of smooth line bundles (up to isomorphism) over M is in one to one correspondence with $H^1(M, \mathbb{Z}_2)$. More concretely, we will show that each nontrivial smooth line bundle over M determines a nonzero element in $H^1(M, \mathbb{Z}_2)$, and vice versa.

To see this, let $\pi: E \to M$ be a smooth line bundle. Consider the associated sphere bundle $\tilde{\pi}: S(E) \to M$, which in this case has fibers $\mathbb{S}^0 = \{\pm\}$. It is easy to see that E is nontrivial if and only if S(E) is connected and $\tilde{\pi}: S(E) \to M$ is a double cover. So for each nontrivial $E, \tilde{\pi}: S(E) \to M$ corresponds to an epimorphism $\pi_1(M) \to \mathbb{Z}_2$, which factors through $H_1(M)$, giving rise to an epimorphism $H_1(M) \to \mathbb{Z}_2$, which corresponds to a nonzero element in $H^1(M, \mathbb{Z}_2)$. Conversely, given any nonzero element in $H^1(M, \mathbb{Z}_2)$, we get an epimorphism $\pi_1(M) \to \mathbb{Z}_2$, which corresponds to a double cover \tilde{M} of M. We consider $\tilde{M} \times \mathbb{R}$, with a free smooth \mathbb{Z}_2 -action on it, which is the deck transformation on the \tilde{M} -factor and is given by multiplication by -1 on

the \mathbb{R} -factor. The quotient $E := (M \times \mathbb{R})/\mathbb{Z}_2$ is the corresponding nontrivial smooth line bundle over M, with $S(E) = \tilde{M}$.

Example 1.11. In this example, let $M = \mathbb{S}^2$. Let $\pi : E \to M$ be a smooth real vector bundle of rank 2. The associated sphere bundle $\tilde{\pi} : S(E) \to M$ is a \mathbb{S}^1 -bundle. Note that in this case, E is trivial if and only if $S(E) = \mathbb{S}^2 \times \mathbb{S}^1$. Observe $\pi_1(S(E)) = \mathbb{Z}$ when E is trivial.

Now let E be the complex tautological line bundle over \mathbb{CP}^1 . Since $\mathbb{CP}^1 = \mathbb{S}^2$, E can be regarded as a smooth real vector bundle of rank 2 over $M = \mathbb{S}^2$. As we argued in Proof 2 of Example 1.9, it is easy to see that $S(E) = \mathbb{S}^3$. In particular, $\pi_1(S(E)) = 0$ if E is the tautological bundle over \mathbb{CP}^1 .

Exercise: Let $E = T\mathbb{S}^2$. Prove, using the Seifert-Van Kampen theorem, that $\pi_1(S(E)) = \mathbb{Z}_2$.

Hence $T\mathbb{S}^2$ is nontrivial, and also, $T\mathbb{S}^2$ is not isomorphic to the tautological line bundle over \mathbb{CP}^1 (as a rank 2 real bundle).

Induced bundles: We shall only discuss the case of real vector bundles in details; the case of complex/holomorphic vector bundles is analogous.

The dual bundle: Let $\pi : E \to M$ be a smooth real vector bundle of rank n. Let $E^* := \sqcup_{p \in M} E_p^*$, where E_p^* is the dual space of E_p , with $\pi^* : E^* \to M$ the surjective map so that each fiber $(\pi^*)^{-1}(p) = E_p^*$. Then $\pi^* : E^* \to M$ can be made into a smooth real vector bundle of rank n, called the **dual bundle** of E.

More concretely, let $\{U_{\alpha}\}$ be an open cover of M such that over each U_{α} , there is a trivialization of E, $\Psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$. Let $\sigma_{\alpha} = (\sigma_{i,\alpha})$ be the corresponding local frame over U_{α} , and let $\{\tau_{\beta\alpha}\}$ be the associated transition functions. Then

$$\sigma_{j,\alpha}(p) = \sum_{i=1}^{n} [\tau_{\beta\alpha}(p)]_{ij} \sigma_{i,\beta}(p), \ \forall p \in U_{\alpha} \cap U_{\beta},$$

where $[\tau_{\beta\alpha}(p)]_{ij}$ is the (i, j)-entry of the matrix $\tau_{\beta\alpha}(p)$. For each α , let $(\sigma_{i,\alpha}^*(p))$ be the dual basis of the basis $(\sigma_{i,\alpha}(p))$. Note that, if

$$\sigma_{j,\alpha}^*(p) = \sum_{i=1}^n [\tau_{\beta\alpha}^*(p)]_{ij} \sigma_{i,\beta}^*(p), \ \forall p \in U_\alpha \cap U_\beta,$$

then the matrix $\tau_{\beta\alpha}^*(p)$ with (i, j)-entry $[\tau_{\beta\alpha}^*(p)]_{ij}$ equals $(\tau_{\beta\alpha}(p)^T)^{-1}$. Consequently, if we use $\sigma_{\alpha}^* := (\sigma_{i,\alpha}^*)$ as a local frame to define a local trivialization of E^* over U_{α} , then the associated transition functions are $\{\tau_{\beta\alpha}^*\}$, which are smooth. By Theorem 1.2, $\pi^* : E^* \to M$ is a smooth real vector bundle of rank n. This motivates

Definition 1.12. Let $G \subset GL(n, \mathbb{R})$ be a Lie subgroup, and $\rho : G \to GL(m, \mathbb{R})$ be a Lie group homomorphism. Suppose $\pi : E \to M$ is a smooth real vector bundle of rank n with the property that there exist local trivializations of E over $\{U_{\alpha}\}$ such that the associated transition functions $\{\tau_{\beta\alpha}\}$ have $\tau_{\beta\alpha}(p) \in G$ for any $p \in U_{\alpha} \cap U_{\beta}$. We define $\tilde{\tau}_{\beta\alpha} = \rho \circ \tau_{\beta\alpha} : U_{\alpha} \cap U_{\beta} \to GL(m, \mathbb{R})$. Then

$$\tilde{\tau}_{\gamma\alpha}(p) = \tilde{\tau}_{\gamma\beta}(p)\tilde{\tau}_{\beta\alpha}(p), \ \forall p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$$

Let $\tilde{\pi} : \tilde{E} \to M$ be the smooth vector bundle of rank *m* determined by $\{\tilde{\tau}_{\beta\alpha}\}$. We call it the **induced bundle** of *E* via $\rho : G \to GL(m, \mathbb{R})$.

So the dual bundle of E is the induced bundle of E via $\rho : GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$, where $\rho(A) = (A^T)^{-1}, A \in GL(n, \mathbb{R})$.

Example 1.13. (1) The dual bundle of TM is called the **cotangent bundle** of M, denoted by T^*M . Note that the dual of a local coordinate frame $(\frac{\partial}{\partial x^i})$ is (dx^i) , where dx^i is the local smooth section of T^*M sending p to $dx^i(p) \in T^*_pM$. (dx^i) is called a **local coordinate coframe**.

(2) Let $E := \mathbb{RP}^n \setminus \{l(0, 0, \dots, 1)\}$, with $\pi : E \to \mathbb{RP}^{n-1}$ defined by sending $l(x_1, x_2, \dots, x_n, x_{n+1})$ to $l(x_1, x_2, \dots, x_n)$. Note that for any $l \in \mathbb{RP}^{n-1}$, the fiber $\pi^{-1}(l)$ is the set of graphs of linear transformations from the line $l \subset \mathbb{R}^n$ to the x_{n+1} -axis in \mathbb{R}^{n+1} , hence is naturally a 1-dimensional vector space over \mathbb{R} .

Exercise: Show that $\pi : E \to \mathbb{RP}^{n-1}$ is isomorphic to the dual bundle of the tautological line bundle over \mathbb{RP}^{n-1} . (See Example 1.3(2).)

Sub-bundles and quotient bundles: Let $\pi : E \to M$ be a smooth vector bundle of rank n. A subset $E' \subset E$ is called a **sub-bundle** of rank k, if the following holds:

- (1) let $\pi' = \pi|_{E'}$, then for any $p \in M$, $E'_p := (\pi')^{-1}(p)$ is a k-dimensional subspace of E_p ,
- (2) for any $p \in M$, there exists a local frame of E over a neighborhood U of p, denoted by $\sigma_1, \sigma_2, \cdots, \sigma_n$, such that for any $q \in U$, $\sigma_1(q), \sigma_2(q), \cdots, \sigma_k(q)$ is a basis of E'_q .

The **quotient bundle** E/E', which as a set is defined to be $\sqcup_{p \in M} E_p/E'_p$, is a smooth vector bundle of rank n - k.

In fact, let G be the Lie subgroup of $GL(n, \mathbb{R})$ which consists of matrices of the form $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ where $A \in GL(k, \mathbb{R}), C \in GL(n-k, \mathbb{R})$. Then item (2) above implies that the bundle E admits a set of local trivializations such that the associated transition functions $\{\tau_{\beta\alpha}\}$ whose images lie in G. Let $\rho_1 : G \to GL(k, \mathbb{R})$ be the Lie group homomorphism sending $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ to A, and $\rho_2 : G \to GL(n-k, \mathbb{R})$ be the Lie group homomorphism sending $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ to C. Then E', E/E' are the induced bundles of E via ρ_1, ρ_2 respectively.

Example 1.14. Let $S \subset M$ be an embedded submanifold. Then TS is a sub-bundle of $TM|_S$, because for any $p \in S$, there is a slice chart of S containing p, which in particular implies item (2) in the definition of sub-bundles. The quotient bundle $TM|_S/TS$ is called the **normal bundle** of S in M.

Direct sum: Let E, E' be two smooth vector bundles over M. The **direct sum** of E, E', defined to be $E \oplus E' := \bigsqcup_{p \in M} E_p \oplus E'_p$, is a smooth vector bundle over M, whose bundle structure is determined as follows: we choose an open cover $\{U\}$ of M such that over each U, both E, E' are trivial. Let $(\sigma_i), (\sigma'_j)$ be the local frames of E, E'

over U. Then we simply declare that (σ_i, σ'_j) to be a local frame of $E \oplus E'$ over U. It is easy to see that the associated transition functions for $E \oplus E'$ are smooth.

Exercise: Let E be the tautological bundle over \mathbb{RP}^2 , and let E' be the pullback bundle of the tautological bundle of the Grassmannian $G_{2,3}$ via the canonical diffeomorphism $\mathbb{RP}^2 \to G_{2,3}$. Show that $E \oplus E'$ is a trivial bundle over \mathbb{RP}^2 . (Hint: find a global frame of $E \oplus E'$.)

Tensor product: Let E, E' be two smooth vector bundles over M of rank n, n' respectively. The **tensor product** of E, E', defined to be $E \otimes E' := \bigsqcup_{p \in M} E_p \otimes E'_p$, is a smooth vector bundle over M of rank nn', whose bundle structure is determined as follows: we choose an open cover $\{U\}$ of M such that over each U, both E, E' are trivial. Let $(\sigma_i), (\sigma'_j)$ be the local frames of E, E' over U. Then we simply declare that $(\sigma_i \otimes \sigma'_j)$ to be a local frame of $E \otimes E'$ over U. It is easy to see that the associated transition functions for $E \otimes E'$ are smooth.

Exercise: Let E be the (complex) tautological line bundle over \mathbb{CP}^1 . For any n > 0, let E^n be the *n*-fold tensor product of E, which is a complex line bundle over \mathbb{CP}^1 . Show that the associated sphere bundle $S(E^n)$, where E^n is regarded as a rank 2 real bundle, is diffeomorphic to the lens space L(n, 1). In particular, for $m \neq n$, E^m and E^n are not isomorphic.

Exercise: (1) Let E be a real line bundle over M. Then $E \otimes E^*$ is also a real line bundle over M. Show that $E \otimes E^*$ is always trivial. (Hint: for any vector spaces V, W, the tensor product $W \otimes V^* = \text{Hom}(V, W)$, the space of linear maps from V to W. Use this fact to find a global frame of $E \otimes E^*$.)

(2) Conversely, let E_1, E_2 be real line bundles over M. Show that if $E_1 \otimes E_2^*$ is trivial, then E_1, E_2 are isomorphic.

2. Vector fields, Lie bracket, and Lie Algebras

Definition 2.1. (1) Let M be a smooth manifold. A smooth section $X : M \to TM$ of the tangent bundle is called a **smooth vector field** of M. The set of smooth vector fields is denoted by $\mathcal{X}(M)$. A **local smooth vector field** is one that is only defined over an open subset $U \subset M$. (We will use the following notation: the value of X at $p \in M$ is denoted by $X_p \in T_pM$.)

(2) Let $F: M \to N$ be any smooth map, $X \in \mathcal{X}(M)$, $Y \in \mathcal{X}(N)$. We say X, Y are *F*-related if for any $p \in M$, $F_*(X_p) = Y_{F(p)}$.

Remarks: (1) Note that $\mathcal{X}(M)$ is naturally a module over the commutative ring $C^{\infty}(M)$ of smooth functions on M.

(2) Let $(\frac{\partial}{\partial x^i})$ be a local coordinate frame over U. A section $X : U \to TU$ is smooth iff $X = \sum_i X^i \frac{\partial}{\partial x^i}$ where $X^i \in C^{\infty}(U)$. Another criterion for smoothness of X is that for any $f \in C^{\infty}(U), X(f) : p \mapsto X_p(f)$ is a smooth function on U.

Definition 2.2. Let $X, Y \in \mathcal{X}(M)$. We define the **Lie bracket** of X, Y, denoted by [X, Y], to be the \mathbb{R} -linear map from $C^{\infty}(M)$ to itself, by

$$[X,Y](f) := X(Y(f)) - Y(X(f)), \quad \forall f \in C^{\infty}(M).$$

For each $p \in M$, let $[X, Y]_p$ be the \mathbb{R} -linear map from $C^{\infty}(M)$ to \mathbb{R} , where

$$[X, Y]_p(f) := [X, Y](f)(p) = X_p(Y(f)) - Y_p(X(f)), \ \forall f \in C^{\infty}(M).$$

Lemma 2.3. For any $p \in M$, $[X, Y]_p \in T_pM$. Consequently, $[X, Y] \in \mathcal{X}(M)$.

Proof. One only needs to verify

$$[X,Y]_p(fg) = f(p)[X,Y]_p(g) + g(p)[X,Y]_p(f), \ \forall f,g \in C^{\infty}(M),$$

which follows from a direct calculation.

Local Expression: Let $(\frac{\partial}{\partial x^i})$ be a local coordinate frame over U. Let $X = \sum_i X^i \frac{\partial}{\partial x^i}$, $Y = Y^i \frac{\partial}{\partial x^i}$ be two local smooth vector fields over U. Then we can write

$$[X,Y] = \sum_{i} [X,Y]^{i} \frac{\partial}{\partial x^{i}}, \text{ where } [X,Y]^{i} \in C^{\infty}(U).$$

Exercise: Show that $[X, Y]^i = X(Y^i) - Y(X^i)$. In particular, $[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}] = 0$.

The following properties of Lie bracket are straightforward, except perhaps the Jacobi Identity.

Proposition 2.4. (Properties of Lie bracket) Let $X, Y, Z \in \mathcal{X}(M)$.

- (a) [X, Y] = -[Y, X].
- (b) $[aX + bY, Z] = a[X, Z] + b[Y, Z], \forall a, b \in \mathbb{R}.$
- (c) Jacobi Identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.
- (d) [fX,Y] = f[X,Y] Y(f)X, for any $f \in C^{\infty}(M)$.
- (e) Let $F: M \to N$ be any smooth map. For i = 1, 2, if $X_i \in \mathcal{X}(M)$ is F-related to $Y_i \in \mathcal{X}(N)$, then $[X_1, X_2]$ is F-related to $[Y_1, Y_2]$.

Definition 2.5. A vector space V is called a **Lie algebra** if it is equipped with a bilinear, antisymmetric map $V \times V \to V$, denoted by $(X, Y) \mapsto [X, Y]$ and called the **bracket**, which satisfies the Jacobi Identity (as in Prop. 2.4). V is called **Abelian** if [X, Y] = 0 for any $X, Y \in V$.

So $\mathcal{X}(M)$, with the Lie bracket, is an infinite dimensional Lie algebra. Finite dimensional Lie algebras naturally arise in the study of Lie groups.

The Lie algebra of a Lie group. Let G be a Lie group. For any $g \in G$, let $L_g: G \to G, R_g: G \to G$ be the left and right translation by g. A smooth vector field $X \in \mathcal{X}(G)$ is said to be **left-invariant** if for any $g \in G, (L_g)_*(X) = X$, i.e., $(L_g)_*(X_h) = X_{gh}, \forall h \in G$. (Similarly, one can define **right-invariant** vector fields.) The set of all left-invariant vector fields is denoted by Lie(G). By Prop.2.4(e), for any $X, Y \in Lie(G), [X, Y] \in Lie(G)$. Consequently, Lie(G) is a Lie algebra, which is called the Lie algebra of G.

Theorem 2.6. The map $r: Lie(G) \to T_eG$ by $X \mapsto X_e$ is an isomorphism.

Proof. The map $r : Lie(G) \to T_eG$ is clearly linear and injective. It remains to show that it is surjective. To this end, let $A \in T_eG$ be any tangent vector at e. We define

a vector filed X with $X_e = A$ as follows: for any $g \in G$, we define $X_g := (L_g)_*(A)$, where $(L_g)_* : T_e G \to T_g G$. By the very definition, X is naturally left-invariant:

$$(L_g)_*(X_h) = (L_g)_*((L_h)_*(A)) = (L_g)_* \circ (L_h)_*(A) = (L_{gh})_*(A) = X_{gh}, \forall g, h \in G.$$

It remains to show that X_g depends smoothly on g, which follows if for any $f \in C^{\infty}(G)$, $X_g(f)$ is a smooth function g. To this end, we pick a smooth curve $\gamma : (-\epsilon, \epsilon) \to G$ such that $\gamma(0) = e$ and $\gamma'(0) = A$. Then

$$X_g(f) = (L_g)_*(A)(f) = A(f \circ L_g) = \frac{d}{dt}((f \circ L_g) \circ \gamma)|_{t=0} = \frac{\partial}{\partial t}(f(g\gamma(t)))|_{t=0}.$$

The function $\phi(g,t) := f(g\gamma(t))$ is smooth in g, t, as $\phi = f \circ m \circ (Id \times \gamma) : G \times (-\epsilon, \epsilon) \to \mathbb{R}$, where $m : G \times G \to G$, sending (g, h) to gh, is a composition of smooth maps. Hence $X_g(f)$ is smooth in g for any $f \in C^{\infty}(G)$. This finishes the proof.

Corollary 2.7. Let $F : G \to H$ be a Lie group homomorphism. Then there is an induced Lie algebra homomorphism $F_* : Lie(G) \to Lie(H)$.

Proof. By Theorem 2.6, for any $X \in Lie(G)$, there is a unique $Y \in Lie(H)$ such that $Y_e = F_*(X_e) \in T_eH$, where $F_* : T_eG \to T_eH$ is induced by the smooth map $F: G \to H$. We let $F_*(X) = Y$, which defines $F_* : Lie(G) \to Lie(H)$ as a linear map between vector spaces. To see it preserves the Lie bracket, we note that $F: G \to H$ is a Lie group homomorphism implies that $F \circ L_g = L_{F(g)} \circ F$ for any $g \in G$. Hence

$$F_*(X_g) = F_* \circ (L_g)_*(X_e) = (L_{F(g)})_* \circ F_*(X_e) = (L_{F(g)})_*(Y_e) = Y_{F(g)}, \forall X \in Lie(G).$$

In other words, $X \in Lie(G)$ and $F_*(X) \in Lie(H)$ are *F*-related. By Prop.2.4(e), $F_*: Lie(G) \to Lie(H)$ preserves the Lie bracket, hence is a Lie algebra homomorphism.

Proposition 2.8. The Lie algebra of an Abelian Lie group is Abelian.

Proof. Let G be any Lie group. We first show that for the smooth map $m : G \times G \to G$, the map $m_* : T_{(e,e)}(G \times G) = T_eG \times T_eG \to T_eG$ sends (X,Y) to X + Y, i.e., $m_*(X,Y) = X + Y, \forall X, Y \in T_eG$.

To see this, for any $X \in T_eG$, let $\gamma(t)$ be a smooth curve in G through e such that $X = \gamma'(0)$. Then $m_*(X, 0)$ is represented by the smooth curve $m(\gamma(t), e) = \gamma(t)$ in G, hence $m_*(X, 0) = X$. Similarly, $m_*(0, Y) = Y$, so that

$$m_*(X,Y) = m_*(X,0) + m_*(0,Y) = X + Y, \ \forall X,Y \in T_eG.$$

With this understood, let $I : G \to G$ be the map where $I(g) = g^{-1}$. Then $I_* : T_eG \to T_eG$ is given by $I_* = -Id$, because for any $g \in G$, m(g, I(g)) = e, so that for any $X \in T_eG$, $X + I_*(X) = 0$. Hence the claim.

Now when G is Abelian, $I: g \mapsto g^{-1}$ is a Lie group homomorphism. By Corollary 2.7, for any $X, Y \in Lie(G)$,

$$-[X,Y] = I_*([X,Y]) = [I_*(X), I_*(Y)] = [-X, -Y] = [X,Y],$$

which implies that [X, Y] = 0.

10

Sometimes it is more convenient to identify Lie(G) with T_eG (as in Theorem 2.6) as in concrete examples, T_eG is a more explicit vector space than Lie(G). With such an identification, T_eG becomes a Lie algebra through Lie(G), with a specific bracket $[-,-]: T_eG \times T_eG \to T_eG$. More specifically, for any $A, B \in T_eG$, we let $\widetilde{A}, \widetilde{B} \in Lie(G)$ whose values at e are A, B respectively. Then we define $[A, B] := [\widetilde{A}, \widetilde{B}]_e \in T_eG$.

Example 2.9. Let $G = GL(n, \mathbb{R})$. Then $T_eG = M(n, \mathbb{R})$, the space of real $n \times n$ matrices. Note that as a vector space over \mathbb{R} , $M(n, \mathbb{R})$ is given with the standard smooth structure, and $G \subset M(n, \mathbb{R})$ is an open subset, given with the induced smooth structure. With this understood, note that in fact for any $g \in G$, $T_gG = M(n, \mathbb{R})$. So in what follows, we shall identity T_qG (in particular, T_eG) with $M(n, \mathbb{R})$ throughout.

Let (x_{ij}) be the standard coordinates on $M(n, \mathbb{R})$, with x_{ij} being the (i, j)-entry of a matrix $X \in M(n, \mathbb{R})$. Given any $A = (a_{ij}) \in M(n, \mathbb{R})$, let $\widetilde{A} \in Lie(G)$ whose value at e equals A. We observe that for any $g \in G$, the left translation $L_g : G \to G$ is a linear map so that $(L_g)_* = L_g$. Consequently, for any $X = (x_{ij}) \in G$, the value of \widetilde{A} at X is given by $L_X(A) = XA \in M(n, \mathbb{R})$. Equivalently,

$$\widetilde{A} = \sum_{i=1}^{n} \sum_{j=1}^{n} (\sum_{k=1}^{n} x_{ik} a_{kj}) \frac{\partial}{\partial x_{ij}}.$$

We let $B = (b_{ij})$. Then $\widetilde{B} = \sum_{i=1}^{n} \sum_{j=1}^{n} (\sum_{k=1}^{n} x_{ik} b_{kj}) \frac{\partial}{\partial x_{ij}}$. Using the local expression for Lie bracket, i.e., for $X = \sum_{i} X^{i} \frac{\partial}{\partial x^{i}}$ and $Y = Y^{i} \frac{\partial}{\partial x^{i}}$,

$$[X,Y] = \sum_{i} [X,Y]^{i} \frac{\partial}{\partial x^{i}}, \text{ where } [X,Y]^{i} = X(Y^{i}) - Y(X^{i}),$$

we get

$$[\widetilde{A}, \widetilde{B}] = \sum_{i=1}^{n} \sum_{j=1}^{n} (\widetilde{A}(\sum_{k=1}^{n} x_{ik}b_{kj}) - \widetilde{B}(\sum_{k=1}^{n} x_{ik}a_{kj})) \frac{\partial}{\partial x_{ij}} = \sum_{i=1}^{n} \sum_{j=1}^{n} (\sum_{k=1}^{n} \sum_{l=1}^{n} x_{ik}a_{kl}b_{lj} - \sum_{k=1}^{n} \sum_{l=1}^{n} x_{ik}b_{kl}a_{lj}) \frac{\partial}{\partial x_{ij}}$$

Evaluating the above expression at $X = (x_{ij}) = I_n$ (the identity matrix), we get

$$[\widetilde{A}, \widetilde{B}]_e = \sum_{i=1}^n \sum_{j=1}^n \sum_{l=1}^n (a_{il}b_{lj} - b_{il}a_{lj}) \frac{\partial}{\partial x_{ij}}.$$

It follows easily that [A, B] = AB - BA.

Let V be a n-dimensional Lie algebra, X_1, X_2, \dots, X_n be a basis of the vector space V. Then the bracket on V is determined by a set of constants $\{c_{ij}^k\}$, where

$$[X_i, X_j] = \sum_{k=1}^n c_{ij}^k X_k$$

Note that the antisymmetry of the bracket implies $c_{ij}^k = -c_{ji}^k$ for any i, j, k, and the Jacobi Identity implies that $\sum_{l=1}^n (c_{jk}^l c_{il}^s + c_{ki}^l c_{jl}^s + c_{ij}^l c_{kl}^s) = 0$ for any i, j, k, s.

Exercise: Let V be a 2-dimensional vector space, and X_1, X_2 be a basis of V. We define $[X_1, X_2] = X_2$. Show that this determines a Lie algebra structure on V.

Exercise: Classify all k-dimensional Lie algebras up to isomorphism for $k \leq 3$.

Exercise: Consider the Lie group \mathbb{S}^3 of unit quaternions. Note that $T_e \mathbb{S}^3$ is spanned by the quaternions i, j, k. Let $X_1, X_2, X_3 \in Lie(\mathbb{S}^3)$ whose values at $e \in \mathbb{S}^3$ are i, j, krespectively. Show that

$$[X_1, X_2] = 2X_3, \ [X_2, X_3] = 2X_1, \ [X_3, X_1] = 2X_2.$$

3. Tensor bundles and tensor fields

Tensor bundles: Let V be a n-dimensional vector space over \mathbb{R} , let V^{*} denote its dual space. We shall consider the following tensor spaces associated to V:

- (1) $T^k(V) = V^* \otimes V^* \otimes \cdots \otimes V^*$ (k-fold tensor product of V^*), the space of **covariant** k-tensors, which is naturally identified with the space of multilinear maps from $V \times V \times \cdots \times V$ to \mathbb{R} .
- (2) $T_l(V) = V \otimes V \otimes \cdots \otimes V$ (*l*-fold tensor product of V), the space of **contravari**ant *l*-tensors.
- (3) $T_l^k(V) = T^k(V) \otimes T_l(V)$, the space of **mixed tensors of type** (k, l).

Given any basis (e_1, e_2, \dots, e_n) of V, we denote by $(\epsilon^1, \epsilon^2, \dots, \epsilon^n)$ the basis of V^* which is dual to the given basis of V. Then there are bases of the corresponding tensor spaces canonically associated to the given basis (e_1, e_2, \cdots, e_n) :

- $\begin{array}{ll} (1) & T^k(V): \ \{\epsilon^{i_1} \otimes \epsilon^{i_2} \otimes \cdots \otimes \epsilon^{i_k} | 1 \leq i_1, i_2, \cdots, i_k \leq n\}. \\ (2) & T_l(V): \ \{e_{j_1} \otimes e_{j_2} \otimes \cdots \otimes e_{j_l} | 1 \leq j_1, j_2, \cdots, j_l \leq n\}. \\ (3) & T_l^k(V): \ \{\epsilon^{i_1} \otimes \epsilon^{i_2} \otimes \cdots \otimes \epsilon^{i_k} \otimes e_{j_1} \otimes e_{j_2} \otimes \cdots \otimes e_{j_l} | 1 \leq i_1, i_2, \cdots, i_k, j_1, j_2, \cdots, j_l \leq n\}. \end{array}$ n.

Now let $\pi: E \to M$ be a real smooth vector bundle of rank n. Then one has the following associated tensor bundles of E:

$$T^{k}(E) := \sqcup_{p \in M} T^{k}(E_{p}), \ T_{l}(E) := \sqcup_{p \in M} T_{l}(E_{p}), \ T_{l}^{k}(E) := \sqcup_{p \in M} T_{l}^{k}(E_{p}).$$

These are smooth vector bundles over M in a canonical way: for any local frame of E, we declare the corresponding local sections of the associated bases of the tensor bundle to be a local frame of the tensor bundle.

Tensor fields: We shall focus on the case where E = TM. The corresponding tensor bundles, denoted by T^kM , T_lM , and T_l^kM respectively, are called the bundle of covariant k-tensors, contravariant l-tensors, and mixed tensors of type (k, l)on M. The corresponding space of smooth sections is denoted by $\mathcal{T}^k M$, $\mathcal{T}_l M$, and $\mathcal{T}_l^k M$ respectively, and is called the space of covariant k-tensor fields, contravariant ltensor fields, and mixed tensor fields of type (k, l) on M. Note that for the special case of k = l = 0, we have

$$T^{0}M = T_{0}M = T_{0}^{0}M = M \times \mathbb{R}, \ \mathcal{T}^{0}M = \mathcal{T}_{0}M = \mathcal{T}_{0}^{0}M = C^{\infty}(M).$$

Finally, note that $\mathcal{T}^k M$, $\mathcal{T}_l M$, and $\mathcal{T}_l^k M$ are naturally modules over the commutative ring $C^{\infty}(M)$ of smooth functions (via pointwise multiplication).

Local expressions: Let (U, ϕ) be a local coordinate chart on M, with local coordinate chart on M. dinate functions (x^i) . Then we have local coordinate frame $(\frac{\partial}{\partial x^i})$ and local coordinate coframe (dx^i) on U. The corresponding local frames of the tensor bundles T^kM , T_lM , and $T_l^k M$ are

$$(dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_k} | 1 \le i_1, i_2, \cdots, i_k \le n), (\frac{\partial}{\partial x^{j_1}} \otimes \frac{\partial}{\partial x^{j_2}} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_l}} | 1 \le j_1, j_2, \cdots, j_l \le n)$$

and

$$(dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_k} \otimes \frac{\partial}{\partial x^{j_1}} \otimes \frac{\partial}{\partial x^{j_2}} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_l}} | 1 \le i_1, i_2, \cdots, i_k, j_1, j_2, \cdots, j_l \le n)$$

respectively. A covariant k-tensor field $\sigma \in \mathcal{T}^k M$ can be written locally as

$$\sigma = \sigma_{i_1 i_2 \cdots i_k} dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_k}, \quad \sigma_{i_1 i_2 \cdots i_k} \in C^{\infty}(U),$$

a contravariant *l*-tensor field $\sigma \in \mathcal{T}_l M$ can be written locally as

$$\sigma = \sigma^{j_1 j_2 \cdots j_l} \frac{\partial}{\partial x^{j_1}} \otimes \frac{\partial}{\partial x^{j_2}} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_l}}, \quad \sigma^{j_1 j_2 \cdots j_l} \in C^{\infty}(U),$$

and a mixed tensor field $\sigma \in \mathcal{T}_l^k M$ of type (k, l) can be written as

$$\sigma = \sigma_{i_1 i_2 \cdots i_k}^{j_1 j_2 \cdots j_l} dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_k} \otimes \frac{\partial}{\partial x^{j_1}} \otimes \frac{\partial}{\partial x^{j_2}} \otimes \cdots \otimes \frac{\partial}{\partial x^{j_l}}, \quad \sigma_{i_1 i_2 \cdots i_k}^{j_1 j_2 \cdots j_l} \in C^{\infty}(U).$$

Here we adapt the convention that a repeated index indicates a summation over $1, 2, \cdots, n$ for that index.

Alternative description: Let $\sigma \in \mathcal{T}^k M$ be a covariant k-tensor field. Then σ defines a multilinear map from $\mathcal{X}(M) \times \mathcal{X}(M) \times \cdots \times \mathcal{X}(M)$ (k-fold product) to $C^{\infty}(M)$ as follows. For any $X_1, X_2, \dots, X_k \in \mathcal{X}(M)$, and any $p \in M$,

$$\sigma(X_1, X_2, \cdots, X_k)(p) := \sigma(p)(X_1|_p, X_2|_p, \cdots, X_k|_p).$$

It is clear that σ is linear over the commutative ring $C^{\infty}(M)$, i.e., for any $f \in C^{\infty}(M)$,

and any index $i = 1, 2, \dots, k, \sigma(X_1, \dots, fX_i, \dots, X_k) = f\sigma(X_1, \dots, X_i, \dots, X_k)$. To see that for any $X_1, X_2, \dots, X_k \in \mathcal{X}(M), \sigma(X_1, X_2, \dots, X_k) \in C^{\infty}(M)$, we check it out in local coordinates. Let $(\frac{\partial}{\partial x^i})$ be a local coordinate frame over U. Then we may write $\sigma = \sigma_{i_1 i_2 \cdots i_k} dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_k}$ and $X_i = X_i^j \frac{\partial}{\partial x^j}$. Consequently,

$$\sigma(X_1, X_2, \cdots, X_k) = \sigma_{i_1 i_2 \cdots i_k} X_1^{i_1} X_2^{i_2} \cdots X_k^{i_k} \in C^{\infty}(U),$$

because each $\sigma_{i_1i_2\cdots i_k}$ and $X_i^j \in C^{\infty}(U)$.

Theorem 3.1. Each $\sigma \in \mathcal{T}_l^k M$ determines, and vice versa, a $C^{\infty}(M)$ -multilinear map $\psi: \mathcal{X}(M) \times \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \to \mathcal{T}_{l}M, \ i.e., \ \forall X_{1}, X_{2}, \cdots, X_{k} \in \mathcal{X}(M), \ f \in C^{\infty}(M),$ $\psi(X_1,\cdots,fX_i,\cdots,X_k) = f\psi(X_1,\cdots,X_i,\cdots,X_k), \ \forall i = 1, 2, \cdots, k.$

Proof. It suffices to show that given such a $\psi : \mathcal{X}(M) \times \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \to \mathcal{T}_l M$, there is a corresponding $\sigma \in \mathcal{T}_l^k M$, such that

$$\psi(X_1, X_2, \cdots, X_k)(p) = \sigma(p)(X_1|_p, X_2|_p, \cdots, X_k|_p) \in T_l(T_pM).$$

The key point of the proof is that for any $p \in M$, $\psi(X_1, X_2, \dots, X_k)(p)$ depends only on the values of X_1, X_2, \dots, X_k at p, which by linearity, is equivalent to the statement that $\psi(X_1, \dots, X_i, \dots, X_k)(p) = 0$ if $X_i|_p = 0$, for any *i*. Assuming this momentarily,

we define the corresponding σ by defining, for any $p \in M$ and $Y_1, Y_2, \dots, Y_k \in T_p M$, the value $\sigma(p)(Y_1, Y_2, \dots, Y_k) \in T_l(T_p M)$ to be $\psi(X_1, X_2, \dots, X_k)(p) \in T_l(T_p M)$, where each $X_i \in \mathcal{X}(M)$ such that $X_i|_p = Y_i$. Clearly σ is well-defined and $\sigma \in \mathcal{T}_l^k M$.

It remains to show that $\psi(X_1, \dots, X_i, \dots, X_k)(p) = 0$ if $X_i|_p = 0$, for any *i*. To this end, let $(\frac{\partial}{\partial x^i})$ be a local coordinate frame over *U*. We choose a smooth partition of unity $\{f_1, f_2\}$ subordinate to the open cover $\{U, M \setminus \{p\}\}$. Then note that supp $f_1 \subset U$ and $f_2(p) = 0$. With this understood, observe that $f_2(p) = 0$ implies

$$\psi(X_1,\cdots,X_i,\cdots,X_k)(p)=\psi(X_1,\cdots,f_1X_i,\cdots,X_k)(p).$$

Now we write, over U, $X_i = \sum_{j=1}^n a_i^j \frac{\partial}{\partial x^j}$ where each $a_i^j \in C^{\infty}(U)$. The condition $X_i|_p = 0$ is equivalent to $a_i^j(p) = 0$ for each j. We set $Z_j := \sqrt{f_1} \frac{\partial}{\partial x^j} \in \mathcal{X}(M)$ and $g_i^j := \sqrt{f_1} a_i^j \in C^{\infty}(M)$. Then note that $g_i^j(p) = 0$ for each j. With this understood,

$$\psi(X_1, \cdots, f_1 X_i, \cdots, X_k)(p) = \sum_{j=1}^n g_i^j(p)\psi(X_1, \cdots, Z_j, \cdots, X_k)(p) = 0.$$

Pull-backs of covariant tensor fields: Let $F: M \to N$ be any smooth map. For any $\sigma \in \mathcal{T}^k N$, we define the **pull-back** of σ via F, denoted by $F^*\sigma$, as follows. For any $p \in M$, we define $F^*\sigma(p) \in T^k(T_pM)$ by setting, for any $X_1, X_2, \cdots, X_k \in T_pM$,

$$F^*\sigma(p)(X_1, X_2, \cdots, X_k) := \sigma(F(p))(F_*(X_1), F_*(X_2), \cdots, F_*(X_k)),$$

where $F_*: T_pM \to T_{F(p)}N$. For the special case of $k = 0, \sigma$ is simply a smooth function on N, and $F^*\sigma = \sigma \circ F$.

Computing $F^*\sigma$ in local coordinate charts, we assume $U \subset M$, $V \subset N$ such that $F(U) \subset V$, and let (x^i) and (y^j) be local coordinate functions on U and V respectively. Writing $\sigma = \sigma_{j_1 j_2 \cdots j_k} dy^{j_1} \otimes dy^{j_2} \otimes \cdots \otimes dy^{j_k}$ over V, we have

$$F^*\sigma(p)(\frac{\partial}{\partial x^{i_1}}|_p, \frac{\partial}{\partial x^{i_2}}|_p, \cdots, \frac{\partial}{\partial x^{i_k}}|_p) = \sigma_{j_1j_2\cdots j_k}(F(p))dy^{j_1}(F_*(\frac{\partial}{\partial x^{i_1}}|_p))\cdots dy^{j_k}(F_*(\frac{\partial}{\partial x^{i_k}}|_p))$$

It follows easily that over $U, F^*\sigma = (F^*\sigma)_{i_1i_2\cdots i_k} dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_k}$, where

$$(F^*\sigma)_{i_1i_2\cdots i_k} = (\sigma_{j_1j_2\cdots j_k} \circ F) \frac{\partial(y^{j_1} \circ F)}{\partial x^{i_1}} \cdots \frac{\partial(y^{j_k} \circ F)}{\partial x^{i_k}} \in C^{\infty}(U).$$

In particular, it follows that $F^* \sigma \in \mathcal{T}^k M$, resulting a \mathbb{R} -linear map $F^* : \mathcal{T}^k N \to \mathcal{T}^k M$.

Exercise: Let $F: M \to N$ be any smooth map.

(1) Show that for any $\sigma \in \mathcal{T}^k N$, $\xi \in T^l N$, the tensor product $\sigma \otimes \xi \in T^{k+l} N$ is well-defined, and $F^*(\sigma \otimes \xi) = F^* \sigma \otimes F^* \xi$. In particular, for any $f \in C^{\infty}(N)$, $F^*(f\sigma) = (f \circ F)F^* \sigma$.

(2) For any $f \in C^{\infty}(N)$, $df \in \mathcal{T}^1 N$. Show that $F^* df = d(F^* f) = d(f \circ F)$.

Riemannian metrics: A Riemannian metric on a smooth manifold M is a positive definite, symmetric covariant 2-tensor field $g \in \mathcal{T}^2 M$. Here g being symmetric means that for any $p \in M$, $X, Y \in T_p M$, g(p)(X, Y) = g(p)(Y, X) holds true, while g being positive definite means that $g(p)(X, X) \ge 0$ with "=" only when X = 0. In a local

coordinate system (x^i) , we can write $g = g_{ij}dx^i \otimes dx^j$, where the matrix (g_{ij}) is symmetric and positive definite.

Theorem 3.2. Every smooth manifold possesses a Riemannian metric.

Proof. We cover M with a smooth atlas $\{(U_{\alpha}, \phi_{\alpha})\}$, with the local coordinate functions on U_{α} denoted by (x_{α}^{i}) . We pick a smooth partition of unity $\{f_{\alpha}\}$ subordinate to $\{U_{\alpha}\}$, and set $g_{\alpha} := \delta_{ij} dx_{\alpha}^{i} \otimes dx_{\alpha}^{j}$ for each α , where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ otherwise. Then $g := \sum_{\alpha} f_{\alpha} g_{\alpha}$ is a Riemannian metric on M.

Exercise: Let $F: M \to N$ be an immersion. Show that for any Riemannian metric $g \in \mathcal{T}^2 N$, the pull-back $F^*g \in \mathcal{T}^2 M$ is a Riemannian metric on M. As a consequence, Whitney's embedding theorem implies that every compact smooth manifold admits a Riemannian metric, a proof independent of Theorem 3.2.

Exercise: Show that for any smooth action of a finite group G on M, there is a Riemannian metric g on M which is G-invariant, i.e., for any $h \in G$, let $\theta_h : M \to M$ be the corresponding diffeomorphism, then $\theta_h^* g = g$.

Let g be a Riemannian metric on M. For any smooth curve $\gamma : [a, b] \to M$, we define the length of γ (depending on g) to be

$$L(\gamma) := \int_a^b g(\gamma'(t), \gamma'(t))^{1/2} dt.$$

It is straightforward to generalize the above definition to piecewise smooth curves. Now suppose M is connected. Then for any $p, q \in M$, one can connect p and q by a piecewise smooth curve γ . We define the distance between p and q, denoted by d(p,q), to be the infimum of $L(\gamma)$ among all the piecewise smooth curves γ connecting p to q.

Exercise: Show that d(p,q) is a distance function on M, making M into a metric space. Moreover, show that the topology of M as a metric space is the same as the underlying topology of smooth manifold.

Proposition 3.3. For any smooth manifold M, TM and T^*M are isomorphic.

Proof. We pick a Riemannian metric g on M. Then we define a map $\tilde{g}: TM \to T^*M$ as follows. For any $p \in M$, let $\tilde{g}_p: T_pM \to T_p^*M$ be the isomorphism such that for any $X, Y \in T_pM$, $\tilde{g}_p(X)(Y) = g(p)(X, Y)$. To check that \tilde{g} is a smooth map, we compute in local coordinate (x^i) , where we assume $g = g_{ij}dx^i \otimes dx^j$. Then if we trivialize TU by the local coordinate frame $(\frac{\partial}{\partial x^i})$ and trivialize T^*U by the local coordinate coframe (dx^i) , the map $\tilde{g}: TU \to T^*U$ is given by $Id \times (g_{ij}): U \times \mathbb{R}^n \to U \times \mathbb{R}^n$, which is smooth. It follows that $\tilde{g}: TM \to T^*M$ is a bundle isomorphism.

Let g be a Riemannian metric on M. A local frame (σ_i) of TM over an open subset U is called **orthonormal** if $g(\sigma_i, \sigma_j) = 1$ for i = j and 0 otherwise. Local orthonormal frames always exist by the Gram-Schmidt process.

Definition 3.4. Let E be a smooth real (resp. complex) vector bundle of rank n, and let G be a Lie subgroup of $GL(n, \mathbb{R})$ (resp. $GL(n, \mathbb{C})$). We say E is a G-bundle if there is a set of local trivializations of E such that the associated transition functions $\{\tau_{\beta\alpha}\}$ have their images lying in G.

Observe that if E is a O(n)-bundle, then the dual bundle E^* must be isomorphic to E because E^* is the induced bundle of E via the Lie group homomorphism ρ : $GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$ sending A to $(A^T)^{-1}$, and $\rho = Id$ when restricted to O(n).

Exercise: Let M be a smooth manifold of dimension n. Show that TM is a O(n)-bundle. As a consequence, TM and T^*M are isomorphic.

Exercise: Let $S \subset M$ be an embedded submanifold, and let g be a Riemannian metric on M. For any $p \in S$, let $N_p \subset T_pM$ be the subspace consisting of tangent vectors which are orthogonal to T_pS with respect to g(p). Let $N(S) := \sqcup_{p \in S} N_p$. Show that N(S) is a sub-bundle of $TM|_S$, N(S) is isomorphic to the normal bundle of S in M, and $TM|_S$ is a direct sum of TS and N(S).

More generally, let E be a smooth real vector bundle of rank n. A metric on E is a smooth section g of the tensor bundle $T^2(E)$, such that g is symmetric and positive definite. The same argument of Theorem 3.2 shows that there exists a metric on any given smooth vector bundle.

Exercise: Let E be a smooth real vector bundle of rank n. Show that the following statements are equivalent.

- (1) There is a metric on E.
- (2) E is a O(n)-bundle.
- (3) E^* and E are isomorphic.

Analogously, let E be a smooth complex vector bundle of rank n. One can similarly define the notion of a **Hermitian metric** on E, and the same argument of Theorem 3.2 shows that there exists a Hermitian metric on any given smooth complex vector bundle. On the other hand, the **complex conjugate** of E, denoted by \overline{E} , is the complex vector bundle obtained by changing each fiber of E to its complex conjugate. (Let Vbe a vector space over \mathbb{C} . The complex conjugate of V is the complex vector space obtained by changing the complex multiplication of $c \in \mathbb{C}$ on V to the multiplication by its conjugate \overline{c} on V.)

Exercise: Let E be a smooth complex vector bundle of rank n. Show that the following statements are equivalent.

- (1) There is a Hermitian metric on E.
- (2) E is a U(n)-bundle.
- (3) E^* and \overline{E} are isomorphic.

References

- [1] John M. Lee, Introduction to Smooth Manifolds, GTM 218, Springer.
- [2] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, GTM, 94.

University of Massachusetts, Amherst. *E-mail:* wchen@math.umass.edu