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1. Smooth manifolds and smooth maps

Definition 1.1. (1) Let M be a topological space. We call M a smoothable man-
ifold of dimension n if

(i) M is Hausdorff and second countable (recall that a topology is called second
countable if there is a countable basis).

(ii) There is an open cover {Uα} of M such that for each α, there is a map φα :
Uα → Rn which is a homeomorphism onto the open subspace φα(Uα) ⊂ Rn,
and for any α, β, φβ ◦ φ−1

α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) is a smooth (i.e.,
differentiable) map. Each (Uα, φα) is called a local coordinate chart, and
the collection {(Uα, φα)} is called a smooth atlas.

(2) A maximal smooth atlas of M is called a smooth structure on M . A smooth
manifold is a smoothable manifold together with a given smooth structure.

(3) Suppose n = 2m is even. Let {(Uα, φα)} be a smooth atlas, and we canonically
identify Rn in each φα : Uα → Rn with Cm. If for any α, β, the map φβ ◦φ−1

α : φα(Uα∩
Uβ) → φβ(Uα ∩ Uβ) between open subsets of Cm is holomorphic, then {(Uα, φα)}
is called a holomorphic atlas. A maximal holomorphic atlas is called a complex
structure. In this case, M is called a complex manifold of dimension m.

Exercise: (cf. Lemma 1.10 in Lee [1].) Let M be a smoothable manifold. Show
that every smooth atlas on M is contained in a unique maximal smooth atlas, hence
determines a unique smooth structure on M . Moreover, show that two smooth atlases
on M determine the same smooth structure if and only if their union is a smooth atlas.

Example 1.2. (1) Let M = Rn, which is clearly Hausdorff and second countable.
Consider the smooth atlas {(Uα, φα)} where {Uα} consists of a single element Uα = M ,
and the map φα is simply the identity map M → Rn. The corresponding smooth
structure is called the standard smooth structure on Rn. In a similar way, M = Cm
is a complex manifold of dimension m.
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In the remaining examples, we recall the fact that the Hausdorff property and second
countability are both preserved under subspace topology and product topology.

(2) Let M be a smooth manifold, and N be an open subset of M . Then N , given
the subspace topology, is a smooth manifold of the same dimension in a canonical
way. To see this, let {(Uα, φα)} be a smooth atlas of M . We let Vα := N ∩ Uα,
ψα := φα|Vα : Vα → Rn. Then {(Vα, ψα)} is a smooth atlas of N .

(3) Let M,N be smooth manifolds, and let {(Uα, φα)}, {(Vβ, ψβ)} be a smooth atlas
of M , N respectively. Then {(Uα×Vβ, φα×ψβ)} is a smooth atlas of M ×N , making
it into a smooth manifold in a canonical way. The dimension of M ×N is the sum of
the dimensions of M and N .

(4) Consider the n-sphere Sn, which is the subspace of Rn+1 defined by the equation

x2
1 + x2

2 + · · ·+ x2
n+1 = 1.

Then Sn is a smooth manifold of dimension n. In what follows, we prove this (i.e.,
verifying Definition 1.1) for the case of n = 2; the general case is the same.

Let N = (0, 0, 1) ∈ S2, S = (0, 0,−1) ∈ S2 be the north pole and south pole
respectively. Let UN := S2 \ {N}, US := S2 \ {S} be the complement, which are open
subsets and form a cover of S2. We define φN : UN → R2, φS : US → R2 by

φN (x1, x2, x3) = (
x1

1− x3
,

x2

1− x3
), φS(x1, x2, x3) = (

x1

1 + x3
,

x2

1 + x3
).

Then an easy calculation shows that

φ−1
N (y1, y2) = (

2y1

y2
1 + y2

2 + 1
,

2y2

y2
1 + y2

2 + 1
,
y2

1 + y2
2 − 1

y2
1 + y2

2 + 1
),

and

φ−1
S (y1, y2) = (

2y1

y2
1 + y2

2 + 1
,

2y2

y2
1 + y2

2 + 1
,
1− y2

1 − y2
2

1 + y2
1 + y2

2

),

in particular, φN : UN → R2, φS : US → R2 are homeomorphisms. Furthermore, one
can check that φS ◦ φ−1

N : R2 \ {(0, 0)} → R2 \ {(0, 0)} is a smooth map; in fact

φS ◦ φ−1
N (y1, y2) = (

y1

y2
1 + y2

2

,
y2

y2
1 + y2

2

).

It follows that {(UN , φN ), (US , φS)} is a smooth atlas of S2. The corresponding smooth
structure is called the standard smooth structure on S2 (more generally, Sn).

Theorem 1.3. (cf. Lemma 1.23 of Lee [1]) Let M be a set, and suppose there is
a collection {Uα} of countably many subsets of M such that for each α, there is an
injective map φα : Uα → Rn, with the following properties:

(i) M = ∪αUα.
(ii) For each α, φα(Uα) is an open subset of Rn.

(iii) For any α, β, φα(Uα ∩ Uβ), φβ(Uα ∩ Uβ) are open subsets of Rn.
(iv) For any α, β, φβ ◦ φ−1

α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) is a smooth map.

Then M can be given a topology such that the collection of all the subsets of the form

φ−1
α (V ), where V is an open subset of Rn
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forms a basis of the topology. Furthermore, if M with the above topology is Hausdorff,
then M is a smooth manifold of dimension n with {(Uα, φα)} being a smooth atlas.

Remarks: If in the above theorem we replace Rn by Cm and in condition (iv), we
assume φβ ◦ φ−1

α is holomorphic, then M is a complex manifold of dimension m with
{(Uα, φα)} being a holomorphic atlas.

Example 1.4. (1) For each n > 0, consider the real projective space RPn, which is
the set of lines in Rn+1 passing through the origin. As an application of Theorem 1.3,
one can show that RPn is a smooth manifold of dimension n (in a canonical way). In
what follows, we give the details for the case of n = 2.

First, we introduce the following notation: for each (x1, x2, x3) 6= (0, 0, 0), denote
by l(x1, x2, x3) the line in R3 which passes through (0, 0, 0) and (x1, x2, x3). Then for
each α = 1, 2, 3, we let Uα be the subset of RP2 defined as follows:

Uα = {l(x1, x2, x3) ∈ RP2|xα 6= 0}.
For each α, we define a map φα : Uα → R2 by

φα(l(x1, x2, x3)) = (xβ/xα, xγ/xα), where β < γ and α, β, γ are distinct.

It is clear that each φα is well-defined and injective.
Next we verify the conditions (i)-(iv) in Theorem 1.3. It is clear that RP2 = ∪3

α=1Uα,
so (i) is true. For (ii), note that for each α, φα(Uα) = R2. For (iii), note that for any
α, β, where α 6= β, φα(Uα ∩Uβ) and φβ(Uα ∩Uβ) are a subset of R2, which is R2 with
a coordinate axis removed. Finally, for (iv), one can easily check that each φβ ◦φ−1

α is
a smooth map. For example,

φ2 ◦ φ−1
1 (y1, y2) = φ2(l(1, y1, y2)) = (1/y1, y2/y1), where y1 6= 0.

It remains to show that RP2, with the topology given as in Theorem 1.3, is Haus-
dorff. To this end, let l1, l2 ∈ RP2 such that l1 6= l2. If l1, l2 are both contained in some
Uα, then since φα(Uα) is an open subset of R2 which is Hausdorff, one can easily verify
the Hausdorff property for l1, l2 in this case. It remains to consider the case where
there is no Uα such that l1, l2 ∈ Uα. Then without loss of generality, we may assume
that l1 ∈ U1 \ U2 and l2 ∈ U2 \ U1. This condition implies that there are u1, u2 ∈ R
such that φ1(l1) = (0, u1) and φ2(l2) = (0, u2). With this understood, consider

V1 := {(x1, x2 + u1)|x2
1 + x2

2 < ε}, V2 := {(y1, y2 + u2)|y2
1 + y2

2 < ε}.
Then φ−1

1 (V1), φ−1
2 (V2) are open neighborhoods of l1, l2 respectively. We claim that

when ε > 0 is sufficiently small, φ−1
1 (V1) ∩ φ−1

2 (V2) = ∅.
To see this, suppose to the contrary that there is an l ∈ φ−1

1 (V1) ∩ φ−1
2 (V2). Let

φ1(l) = (x1, x2 + u1), φ2(l) = (y1, y2 + u2). Then

l(1, x1, x2 + u1) = l = l(y1, 1, y2 + u2),

which implies that x1y1 = 1. But this is not possible when ε > 0 is sufficiently small,
because x2

1 + x2
2 < ε and y2

1 + y2
2 < ε.

(2) For each m > 0, the complex projective space CPm is the set of (complex) lines
in Cm+1 which pass through the origin. Using the holomorphic version of Theorem
1.3, one can show that CPm is a complex manifold of dimension m.
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Exercise: Work out the details for the case of CP1 and CP2.

(3) For any 0 < k < n, let Gk,n be the set of k-dimensional subspaces of Rn (called
the Grassmannian). Then Gk,n is naturally a smooth manifold of dimension k(n− k),
which can be proved using Theorem 1.3.

Exercise: Work out the details for the case of G2,4 by following the steps below.

(a) For any i, j = 1, 2, 3, 4 where i < j, let Uij be the set of pairs of vectors (v1, v2),
where v1, v2 ∈ R4, such that the i-th coordinate of v1 equals 1 and the j-coordinate
of v1 equals 0, and i-th coordinate of v2 equals 0 and the j-coordinate of v2 equals 1.
Note that the map sending (v1, v2) to the 2-plane spanned by v1, v2 identifies Uij as a
subset of G2,4. We define an injective map φij : Uij → R4 by

φij(v1, v2) = (x1, x2, x3, x4),

where x1, x2 and x3, x4 are the remaining (i.e., not i, j) coordinates of v1, v2 respec-
tively. With this understood, verify (i)-(iv) of Theorem 1.3 for {(Uij , φij)}.

(b) Prove G2,4, with the topology as given in Theorem 1.3, is Hausdorff.

Remarks: The manifolds in Example 1.4 are all examples of homogeneous spaces.
After we discuss Lie group actions in Section 4, it should follow from a general theorem
that they are smooth manifolds.

Definition 1.5. (1) Let M be a smooth manifold. A continuous function f : M → R
is called smooth if for any local coordinate chart (U, φ), f̂ := f ◦ φ−1 : φ(U) → R is
a smooth function. f is said to be locally smooth at a point p ∈ M if there is an
open neighborhood W of p such that f |W is smooth.

(2) More generally, let M,N be smooth manifolds of dimension m,n respectively.
A continuous map F : M → N is called smooth if for any local coordinate charts
(U, φ) on M and (V, ψ) on N , F̂ := ψ ◦ F ◦ φ−1 : φ(U ∩ F−1(V )) → Rn is a smooth
map. In a similar way, one can define local smoothness of F .

Remarks: (1) f̂ , F̂ are called coordinate representatives of f, F . In practice,
to verify local smoothness at a point p, it suffices to find one local coordinate chart
containing p such that the corresponding coordinate representative is smooth. If f or
F is locally smooth everywhere, then it is smooth.

(2) Composition of two smooth maps is smooth.
(3) If we replace R by C, smooth manifolds by complex manifolds, we can define

holomorphic functions/maps in the same fashion.

Definition 1.6. (1) Let F : M → N be a smooth map. F is called a diffeomorphism
if the inverse F−1 : N →M exists and is a smooth map. In this case, M , N are called
diffeomorphic.

(2) A smooth map F : M → N is called a local diffeomorphism if for any
p ∈ M , there exists an open neighborhood U of p such that F (U) is open in N and
F |U : U → F (U) is a diffeomorphism.

Remarks: A fundamental problem in differential topology is to classify smooth
manifolds up to a diffeomorphism.
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An important class of local diffeomorphisms is given by smooth covering maps,
smooth maps which are covering maps between the underlying topological spaces. We
observe the following fact, which can be easily proved (cf. Prop. 2.12 in Lee [1]).

Theorem 1.7. Let M be a connected smooth manifold, and M̃ a connected topological
space. Suppose there is a (topological) covering map π : M̃ → M . Then M̃ is a

smoothable manifold with a unique smooth structure, such that π : M̃ → M is a
smooth covering map.

Example 1.8. (1) If N ⊂ M is an open subset of a smooth manifold, then the
inclusion map i : N →M is smooth.

(2) Let M = M1 ×M2, let πi : M → Mi, for i = 1, 2, be the projection to the i-th
factor, and let j1(x) : M1 → M , j2(y) : M2 → M for x ∈ M2, y ∈ M1, be defined
by j1(x)(p) = (p, x), ∀p ∈ M1, and j2(y)(q) = (y, q), ∀q ∈ M2. Then πi, i = 1, 2,
j1(x), j2(y) are all smooth maps.

(3) The inclusion map i : Sn → Rn+1 is a smooth map.
(4) The map π : Rn+1 \ {0} → RPn, defined by sending (x1, x2, · · · , xn+1) to the

line l(x1, x2, · · · , xn+1) passing through (x1, x2, · · · , xn+1) and the origin 0 ∈ Rn+1, is
a smooth map. Similarly, the complex analog π : Cm+1 \ {0} → CPm is holomorphic.

(5) The composition F : Sn → RPn, i.e., F : Sn → Rn+1 \ {0} → RPn, is smooth.
(6) The composition F : S2m+1 → CPm, i.e., F : S2m+1 → Cm+1 \ {0} → CPm,

which is called Hopf fibration, is smooth.

Example 1.9. Here we show that F : S2 → RP2 is a smooth covering map. The same
proof shows that F : Sn → RPn is a smooth covering map for any n > 0.

Let l ∈ RP2 be any point, where without loss of generality, we assume l ∈ U1. We
set φ1(l) = (u1, u2). Then consider the open ε-ball in R2,

V := {(u1 + y1, u2 + y2)|y2
1 + y2

2 < ε2},
and the open neighborhood W := φ−1

1 (V ) of l in RP2.
Let π : R3 \ {0} → RP2 be the map defined in (4) of Example 1.8. Then

π−1(W ) = {(λ, λ(u1 + y1), λ(u2 + y2))|λ ∈ R \ {0}, y2
1 + y2

2 < ε2},
which is an open subset of R3 \ {0}. Its intersection with S2 is given by a disjoint
union of U+, U−, where

U± = {(λ, λ(u1 + y1), λ(u2 + y2))|λ = ± 1√
1 + (u1 + y1)2 + (u2 + y2)2

, y2
1 + y2

2 < ε2}.

Since S2 is given with the subspace topology, U+, U− are open subsets of S2. Finally,
it is easy to see that the restriction of F : S2 → RP2 to U+ or U− is a homeomorphism
onto W . This shows that F : S2 → RP2 is a topological covering map.

It remains to show that FU+ : U+ → W , FU− : U− → W are diffeomorphisms.

Without loss of generality, we only look at FU+ , and need to show that F−1
U+

: W → U+

is smooth. Note that U+ ⊂ UN , so we shall check that φN ◦ F−1
U+
◦ φ−1

1 : V → R2 is a

smooth map. It is straightforward that

φN ◦ F−1
U+
◦ φ−1

1 (y1, y2) = (
λ

1− λy2
,

λy1

1− λy2
), where λ = 1√

1+y21+y22
,
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which is differentiable in y1, y2. This finishes the proof.

Exercise: Show that S2 and CP1 are diffeomorphic.

Exercise: Show that the canonical map F : RP2 → G2,3, where for any l ∈ RP2,
F (l) ∈ G2,3 is the 2-plane in R3 perpendicular to l, is a diffeomorphism,

We end by mentioning a fundamental tool in smooth manifold theory: smooth
partition of unity.

Definition 1.10. Let M be a topological space, and let U = {Uα|α ∈ Λ} be an open
cover of M . A partition of unity subordinate to U is a collection of continuous
functions {fα : M → R|α ∈ Λ}, such that

(i) for any x ∈M , α ∈ Λ, 0 ≤ fα(x) ≤ 1;

(ii) suppfα := {x ∈M |fα(x) 6= 0} ⊂ Uα, ∀α ∈ Λ;
(iii) the set { suppfα|α ∈ Λ} is locally finite, i.e., for any x ∈ M , there is a

neighborhood U of x, such that U ∩ suppfα 6= ∅ for only finitely many α ∈ Λ;
(iv)

∑
α∈Λ fα = 1 on M .

Theorem 1.11. (Existence of smooth partition of unity, cf. Lee [1]) Let M be any
smooth manifold, and let U = {Uα|α ∈ Λ} be an open cover of M . Then there exists
a partition of unity {fα|α ∈ Λ} subordinate to U , such that each fα is smooth.

2. Tangent vectors and tangent spaces

Let M be a smooth manifold. The set of smooth functions on M , denoted by
C∞(M), is a naturally a commutative ring, where for any f, g ∈ C∞(M), the sum
f + g and the multiplication fg are defined by

(f + g)(p) := f(p) + g(p), (fg)(p) := f(p)g(p), ∀p ∈M.

Moreover, under +, C∞(M) is a vector space over R, where for any c ∈ R, f ∈ C∞(M),
cf is defined by (cf)(p) := cf(p). Finally, observe that for any smooth map F : M →
N , there is an induced homomorphism (ring and vector space) F ∗ : C∞(N)→ C∞(M)
given by F ∗(f) = f ◦ F , ∀f ∈ C∞(N).

Definition 2.1. (1) Let M be a smooth manifold and let p ∈M be any given point.
A R-linear map X : C∞(M) → R is called a tangent vector at p, if for any f, g ∈
C∞(M),

X(fg) = f(p)X(g) + g(p)X(f)

holds. The set of all tangent vectors at p is denoted by TpM , which is naturally a
vector space over R, and is called the tangent space at p.

(2) Let F : M → N be any smooth map. Let p ∈M , q := F (p) ∈ N . Then for any
X ∈ TpM , we define F∗(X) to be the R-linear map from C∞(N) to R, by

F∗(X)(f) := X(F ∗(f)), ∀f ∈ C∞(N).

It is easy to check that F∗(X) ∈ Tq(N). Moreover, F∗ : TpM → TqN is a homomor-
phism between R-vector spaces. F∗, also denoted by dF (p), is called the differential
of F at p.
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It is clear that a diffeomorphism induces an isomorphism between the tangent
spaces.

The following localization result is key to understanding tangent spaces in any
concrete ways.

Theorem 2.2. Let M be a smooth manifold, and let U ⊂ M be any open subset.
Then the inclusion map i∗ : U →M induces an isomorphism i∗ : TpU → TpM for any
point p ∈ U .

Proof. We begin with the following lemma, which follows from a standard application
of partition of unity.

Lemma 2.3. (1) Let p ∈ M , f, g ∈ C∞(M). If there exists an open subset B
containing p, such that f |B = g|B. Then for any X ∈ TpM , X(f) = X(g).

(2) Fixing any closed subset A ⊂ U , there is a R-linear extension map from C∞(U)

to C∞(M), denoted by f 7→ f̃ , such that f̃ |A = f |A.

Proof. (1). Consider the open cover U = {B,M \{p}} of M . Let {ψ1, ψ2} be a smooth
partition of unity subordinate to U , where supp ψ1 ⊂ B. Then we can write

f = ψ1f + ψ2f, g = ψ1g + ψ2g.

On the other hand, since f |B = g|B, we conclude that ψ1f = ψ1g as supp ψ1 ⊂ B.
With this understood,

X(f) = X(ψ1f)+X(ψ2f) = X(ψ1f)+X(ψ2)f(p)+ψ2(p)X(f) = X(ψ1f)+X(ψ2)f(p),

because supp ψ2 ⊂M \{p} so that ψ2(p) = 0. Similarly, X(g) = X(ψ1g)+X(ψ2)g(p).
Since ψ1f = ψ1g and f(p) = g(p), we conclude that X(f) = X(g).

(2) Consider the open cover of M , U = {U,M \ A}, and pick a smooth partition
of unity {ψ1, ψ2} subordinate to U , where supp ψ1 ⊂ U . For any f ∈ C∞(U), we

define f̃ := ψ1f . Since supp ψ1 ⊂ U , f̃ = ψ1f can be regarded as in C∞(M) by

letting it equal zero outside of U . Clearly, the map f 7→ f̃ is R-linear. Finally, since
supp ψ2 ⊂M \A and ψ1 + ψ2 = 1, it follows that ψ1|A = 1, so that f̃ |A = f |A holds.

�

Now we are ready for a proof of Theorem 2.2. To begin, we fix an open neighborhood
B of p such that its closure A := B ⊂ U . We first prove that i∗ : TpU → TpM is
injective. Let X ∈ TpU such that i∗(X) = 0 ∈ TpM . We need to show that for any

f ∈ C∞(U), X(f) = 0. To see this, we consider the extension f̃ ∈ C∞(M) defined in
Lemma 2.3(2), using the closed subset A ⊂ U . Then

0 = i∗(X)(f̃) = X(f̃ |U ) = X(f),

where the last equality follows from Lemma 2.3(1) because (f̃ |U )|B = f |B, which

follows from the fact that (f̃ |U )|B = f̃ |B and f̃ |A = f |A. Hence i∗ : TpU → TpM is
injective.

To see i∗ : TpU → TpM is surjective, for any Y ∈ TpM , we define a map X :

C∞(U)→ R by setting X(f) = Y (f̃) for any f ∈ C∞(U). Since f 7→ f̃ is R-linear, it
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follows that X is a R-linear map. To show X ∈ TpU , it remains to show that for any
f, g ∈ C∞(U),

X(fg) = f(p)X(g) + g(p)X(f).

To see this, we note that f̃g|B = fg|B = f̃ |B g̃|B = f̃ g̃|B, so that

X(fg) = Y (f̃g) = Y (f̃ g̃) = f̃(p)Y (g̃) + g̃(p)Y (f̃) = f(p)X(g) + g(p)X(f).

Finally, we check i∗(X) = Y . For any f ∈ C∞(M),

i∗(X)(f) = X(f |U ) = Y (f̃ |U ) = Y (f).

The last equality follows from Lemma 2.3(1) because f̃ |U |B = (f |U )B = f |B. Hence
i∗(X) = Y .

�

As an immediate consequence of Theorem 2.2, a local diffeomorphism induces an
isomorphism between tangent spaces.

Now let (U, φ) be a local coordinate chart of M , where φ : U → Rn, which now is
a diffeomorphism onto the open subset φ(U) ⊂ Rn. For any p ∈ U , we can identify
TpU with TpM canonically using Theorem 2.2, while on the other hand, TpU can be
identified with Tp̂Rn via φ∗, where p̂ := φ(p) is the image of p in Rn. The next lemma
describes the tangent spaces of Rn in classical terms.

Lemma 2.4. For any p ∈ Rn, there is a canonical isomorphism D : Rn → TpRn,
which sends v ∈ Rn to the directional derivative Dv, i.e., ∀f ∈ C∞(Rn),

Dv(f) =

n∑
i=1

vi
∂f

∂xi
(p), where v = (v1, v2, · · · , vn).

Here x1, x2, · · · , xn are the standard coordinate system on Rn.

Proof. It is easy to check that for each vector v ∈ Rn, Dv ∈ TpRn, and v 7→ Dv is
linear. To see it is injective, we note that Dv(xi) = vi for each i = 1, 2, · · · , n. Finally,
to see it is surjective, we claim that for any X ∈ TpRn,

X(f) =

n∑
i=1

X(xi)
∂f

∂xi
(p), ∀f ∈ C∞(Rn),

so that X = Dv where v = (X(x1), X(x2), · · · , X(xn)). Our claim follows easily
from the fact that X(f) = 0 for any constant function f , and the following fact from
multivariable calculus: let p1, p2, · · · , pn be the coordinates of p, ∀f ∈ C∞(Rn),

f(x) = f(p) +
n∑
i=1

(xi − pi)
∂f

∂xi
(p) +

n∑
i=1

(xi − pi)gi(x),

where gi ∈ C∞(Rn) satisfying gi(p) = 0 for any i.
�
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As a corollary, note that if M is a smooth manifold of dimension n, then for any
p ∈M , the tangent space TpM is a n-dimensional vector space over R. In fact, there
is more to say. Note that by Lemma 2.4, TpRn has a canonical basis, i.e., the partial

derivatives ∂
∂x1

, ∂
∂x2

, · · · , ∂
∂xn

. Now for any local coordinate chart (U, φ), p ∈ U , there is

a set of coordinate functions xi := xi◦φ ∈ C∞(U), i = 1, 2, · · · , n, where x1, x2, · · · , xn
are the standard coordinate system on Rn. Through φ∗, we obtain a basis of TpM ,

∂

∂xi
|p := φ−1

∗ (
∂

∂xi
), i = 1, 2, · · · , n.

Proposition 2.5. Let (U, φ), (V, ψ) be two local coordinate charts both containing p.
Let (xi), (yi) denote the corresponding coordinate functions associated to (U, φ), (V, ψ)
respectively. Then

∂

∂xj
|p =

n∑
i=1

∂

∂xj
|p(yi)

∂

∂yi
|p, j = 1, 2, · · · , n.

Moreover, the matrix ( ∂
∂xj
|p(yi)) is simply D(ψ ◦ φ−1)(φ(p)), where D is the Jacobian

of a smooth map from an open subset of Rn to an open subset of Rn.

Exercise: Prove Proposition 2.5.

Proposition 2.6. Let F : M → N be any smooth map, p ∈ M , q := F (p) ∈ N .
Let (U, φ) be a local coordinate chart containing p, (V, ψ) be a local coordinate chart
containing q. Then with respect to the bases of TpM , TqN associated to (U, φ), (V, ψ)
respectively, F∗ : TpM → TqN is given by the matrix D(ψ ◦ F ◦ φ−1)(φ(p)), where D
is the Jacobian of a smooth map between open subsets of Euclidean spaces.

Exercise: Prove Proposition 2.6.

Two Special Cases: (1) Let M be a smooth manifold, p ∈ M . For any f ∈
C∞(M), the differential df(p) : TpM → Tf(p)R = R is linear, so df(p) is an element
of the dual space of TpM . We call the dual space of TpM , denoted by T ∗pM , the
cotangent space of M at p. For any local coordinate chart (U, φ) containing p, let
(xi), xi ∈ C∞(U), be the corresponding coordinate functions. Then dxi(p) ∈ T ∗pM
and (dxi(p)) is the dual basis of the basis ( ∂

∂xi
|p) of TpM .

(2) Let M be a smooth manifold, p ∈ M . A (parametrized) smooth curve in M
through p is a smooth map γ : (−ε, ε)→M such that γ(0) = p. For any such γ, the
map γ∗ at 0 is uniquely determined by γ∗(

∂
∂t) ∈ TpM , where t is the coordinate on

(−ε, ε). We will denote γ∗(
∂
∂t) by γ′(0) or γ′|p, called the tangent vector of γ at p.

We note that when M = Rn, after identifying TpRn with Rn in the canonical way (as
in Lemma 2.4), γ′|p ∈ Rn is simply the tangent vector of the smooth curve γ at p in
the usual sense.

An Alternative Approach: Let M be a smooth manifold, p ∈ M . We consider
the set of all smooth curves through p, denoted by Cp(M), and introduce an equivalence
relation ∼ on Cp(M) as follows. For any γ1, γ2 ∈ Cp(M), γ1 ∼ γ2 if for any f ∈ C∞(M),
d
dt(f ◦ γ1)(0) = d

dt(f ◦ γ2)(0). We denote by Vp(M) the set of equivalence classes [γ],



10 WEIMIN CHEN

γ ∈ Cp(M). Note that if F : M → N is a smooth map, q = F (p), then there is an
induced mapping F∗ : Vp(M)→ Vq(N), sending [γ] to [F ◦ γ].

Now we observe that [γ] 7→ γ′|p defines a 1 : 1 correspondence between Vp(M) and
TpM . Under this correspondence, F∗ : Vp(M) → Vq(N) is the same as F∗ : TpM →
TqN . So an alternative approach to tangent vectors, which is more intuitive, is to
regard a tangent vector at p ∈ M as an equivalence class of smooth curves in M
through p, or to represent a tangent vector at p by a smooth curve in M through p.

Example 2.7. Consider the inclusion map i : S2 → R3. The differential i∗ : TpS2 →
TpR3 sends the tangent space TpS2 to a subspace of R3 after identifying TpR3 canoni-
cally with R3. On the other hand, S2 is a hypersurface in R3, defined by

x2
1 + x2

2 + x2
3 = 1.

For any p ∈ S2, S2 has a tangent plane at p, which consists of all vectors in R3

perpendicular to the vector p ∈ S2 ⊂ R3. One would naturally guess that i∗(TpS2) is
the tangent plane of S2 at p. There are two different ways to verify this.

(1) The first approach is to pick a local coordinate chart, either (UN , φN ) or (US , φS),
which contains p ∈ S2. Then i∗ : TpS2 → TpR3 is represented by the corresponding
Jacobian (cf. Prop. 2.6), a 3 × 2 matrix which can be explicitly computed. One can
verify that this matrix has rank 2 and the two column vectors of the matrix are both
perpendicular to the vector p ∈ R3.

(2) The second approach is to represent a tangent vector v ∈ TpS2 by a smooth
curve γ ∈ Cp(S2). Then under the inclusion map i : S2 → R3, γ becomes a smooth
curve in R3 through p. The image i∗(v) is represented by γ as a smooth curve in R3

through p, so i∗(v) must be the tangent vector (in the usual sense) of γ ∈ Cp(R3) at p.
From this, it follows immediately that i∗(TpS2) is the tangent plane of S2 at p ∈ R3.

Exercise: Let F : S3 → CP1 be the Hopf fibration. Show that for any p ∈ S3,
F∗ : TpS3 → TF (p)CP1 is surjective.

3. Inverse function theorem and maps of constant rank

Let F : U → V be a smooth map between open subsets of Euclidean spaces. The
rank of F at p ∈ U is defined to be the rank of the Jacobian DF (p). More generally,
the rank of a smooth map F : M → N between smooth manifolds at a point p ∈ M
is simply the rank of F∗ : TpM → TF (p)N .

The results collected in this section are based on the following theorem from mul-
tivariable calculus.

Theorem 3.1. (Inverse Function Theorem) Let U, V be open subsets of Rn, F : U →
V a smooth map. For any p ∈ U , if the Jacobian DF (p) is nonsingular, then there
exist connected neighborhoods U0 ⊂ U of p, V0 ⊂ V of F (p), such that F |U0 : U0 → V0

is a diffeomorphism.

First application: local coordinate functions
Let M be a smooth manifold of dimension n. Let y1, y2, · · · , yn be a set of n locally

smooth functions near a point p ∈ M , such that the differentials dyi(p) ∈ T ∗pM ,
i = 1, 2, · · · , n, form a basis of the cotangent space at p. Then there is an open
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neighborhood U of p, such that (U, φ), where φ : U → Rn is defined by φ(q) =
(y1(q), y2(q), · · · , yn(q)), ∀q ∈ U , is a local coordinate chart.

The proof is a straightforward application of Theorem 3.1. We choose a local
coordinate chart (V, ψ) containing p over which yi’s are defined. Let (xi) be the
associate coordinate functions on V . Then the Jacobian of φ ◦ ψ−1 : ψ(V ) → Rn at
ψ(p) equals the matrix (dyi(p)( ∂

∂xj
|p)), which is nonsingular because (dyi(p)) is a basis

of T ∗pM . By Theorem 3.1, φ◦ψ−1 is a diffeomorphism from an open neighborhood W1

of ψ(p) onto an open neighborhood W2 of φ(p). We simply let U := φ−1(W2). One
can easily check that φ is a diffeomorphism from U onto W2 ⊂ Rn.

The following theorem concerning maps of constant rank is the most relevant ap-
plication of Inverse Function Theorem (see Lee [1], Theorems 7.8 and 7.13).

Theorem 3.2. (Maps of Constant Rank) Let M,N be smooth manifolds of dimension
m and n respectively. Let F : M → N be a smooth map of constant rank k. Then
for any p ∈M , there are local coordinate charts (U, φ) containing p, (V, ψ) containing

F (p), such that the coordinate representative F̂ := ψ ◦ F ◦ φ−1 : φ(U) → ψ(V ) takes
the following standard form

(x1, x2, · · · , xk, xk+1, · · · , xm) 7→ (x1, x2, · · · , xk, 0, · · · , 0) ∈ Rn.

Definition 3.3. (1) A smooth map F : M → N is called an immersion if for
any point p ∈ M , F∗ : TpM → TF (p)N is injective. An immersion which is also a
topological embedding is called a smooth embedding.

(2) A smooth map F : M → N is called a submersion if for any point p ∈ M ,
F∗ : TpM → TF (p)N is surjective.

Remarks: (1) One can show that if an immersion is one to one, and the map is a
proper map, then it must be a smooth embedding.

(2) Both immersions and submersions are maps of constant rank, so their local
coordinate representatives can be chosen to have a canonical form as described in
Theorem 3.2.

Example 3.4. (1) The inclusion map i : Sn → Rn+1 is a smooth embedding.
(2) The Hopf fibration F : S2m+1 → CPm is a submersion.

Definition 3.5. Let M be a smooth manifold of dimension n. A subset S ⊂ M
is called an embedded submanifold of dimension k, for k < n, if for any p ∈ S,
there exists a local coordinate chart (U, φ) containing p, such that S ∩ U is given
by xk+1 = c1, x

k+2 = c2, · · · , xn = cn−k for some constants c1, c2 · · · , cn−k, where
x1, x2, · · · , xn are the coordinate functions associated to (U, φ). We shall call (U, φ) a
slice chart, x1, x2, · · · , xn slice coordinates, and n− k the codimension of S.

Exercise: Prove, using Theorem 3.2, that the image of a smooth embedding is an
embedded submanifold.

Exercise: Let F : M → N be a smooth map. The graph of F is the subset
Γ(F ) := {(p, q) ∈ M × N |q = F (p)} of M × N . Show that Γ(F ) is the image of a
smooth embedding, hence an embedded submanifold.

The converse is given by the following theorem.
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Theorem 3.6. Let S ⊂ M be an embedded submanifold of dimension k. Given
the subspace topology, S is a smooth manifold of dimension k, with a unique smooth
structure, such that the inclusion map i : S →M is a smooth embedding.

Proof. With subspace topology, S is Hausdorff and second countable. To show S is
a smooth manifold, we need to construct a smooth atlas on S. For any p ∈ S, there
is a slice chart (U, φ) containing p. We set V := S ∩ U , which is an open subset of
S. The collection of all such open subsets V forms an open cover of S. For each
V , we define ψ = π ◦ φ|V : V → Rk, where π : Rn → Rk is the projection onto
the first k coordinates. Since S ∩ U is given by xk+1 = c1, x

k+2 = c2, · · · , xn =
cn−k for some constants c1, c2 · · · , cn−k, it follows immediately that ψ : V → Rk is
a homeomorphism onto its image. Moreover, note that its inverse ψ−1 : ψ(V ) → V
is given by φ−1 ◦ j, where j : Rk → Rn is the embedding sending (x1, x2, · · · , xk) to
(x1, x2, · · · , xk, c1, c2, · · · , cn−k). Finally, if (V ′, ψ′) is another such local coordinate
chart obtained from a slice chart (U ′, φ′), then

ψ′ ◦ ψ−1 = (π ◦ φ′) ◦ (φ−1 ◦ j) = π ◦ (φ′ ◦ φ−1) ◦ j,
which is smooth because φ′◦φ−1 is smooth. This shows that {(V, ψ)} is a smooth atlas
on S, and S is a smooth manifold of dimension k. It is clear from the construction
that with this smooth structure, i : S →M is a smooth embedding.

It remains to show that the smooth structure is unique. To this end, we need to
show that for any local coordinate chart (W, θ) of a smooth structure on S with respect
to which i : S → M is a smooth embedding, (W, θ) must be smoothly compatible
with (V, ψ) constructed from a slice chart, i.e., ψ ◦ θ−1 : θ(W ∩ V ) → ψ(W ∩ V ) is
a diffeomorphism between open subsets of Rk. This follows because 1) ψ ◦ θ−1 =
(π ◦ φ) ◦ θ−1 = π ◦ (φ ◦ θ−1) is smooth and has nonsingular Jacobian, 2) ψ ◦ θ−1 :
θ(W ∩ V )→ ψ(W ∩ V ) is a homeomorphism.

�

The following useful observation follows easily from the proof above.

Proposition 3.7. Let S ⊂ N be an embedded submanifold, and F : M → N be a
smooth map such that F (M) ⊂ S. Then the map F : M → S is also a smooth map.

Exercise: Prove Proposition 3.7.

Regular value of a smooth map: Let F : M → N be a smooth map. A point
q ∈ N is called a regular value of F , if for any p ∈ F−1(q), F∗ : TpM → TqN is
surjective.

Proposition 3.8. Let M,N be smooth manifold of dimension m and n respectively.
Suppose q ∈ N is a regular value of a smooth map F : M → N . Then F−1(q) is an
embedded submanifold of M of dimension m− n. Moreover, for any p ∈ F−1(q), the
tangent space of F−1(q) at p is given by the kernel of F∗ : TpM → TqN .

Proof. For any p ∈ F−1(q), there is an open neighborhood W of p, such that for
any x ∈ W , F∗ : TxM → TF (x)N is surjective. In other words, F |W : W → N
is a smooth map of constant rank n. By Theorem 3.2, there exist local coordinate
charts (U, φ) containing p, (V, ψ) containing q, such that ψ ◦ F ◦ φ−1 takes the form
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(x1, x2, · · · , xn, xn+1, · · · , xm) 7→ (x1, x2, · · · , xn). Let ψ(q) = (c1, c2, · · · , cn). Then
F−1(q) ∩ U is given by x1 = c1, x

2 = c2, · · · , xn = cn. This proves that F−1(q) is an
embedded submanifold of M of dimension m−n. The last statement follows from the
fact that the tangent space of F−1(q) at p is spanned by ∂

∂xn+1 |p, ∂
∂xn+2 |p, · · · , ∂

∂xm |p.
�

Example 3.9. (1) Consider the smooth function F : Rn+1 → R, where

F (x1, x2, · · · , xn+1) = x2
1 + x2

2 + · · ·+ x2
n+1.

Then 1 ∈ R is a regular value of F , and Sn = F−1(1) is an embedded submanifold of
Rn+1. By the uniqueness in Theorem 3.6, the smooth structure on Sn is the standard
smooth structure as in Example 1.2(4).

(2) The Hopf fibration F : S2m+1 → CPm is a submersion, so every point q ∈ CPm
is a regular value of F . The fiber F−1(q) is an embedded submanifold of S2m+1 of
dimension 1, an embedded circle. In fact, each q ∈ CPm represents a complex line
L(q) in Cm+1, and F−1(q) is simply the intersection of S2m+1 with L(q), which is the
circle in L(q) of distance 1 to the origin.

Transversal maps: Let S ⊂ N be an embedded submanifold. A smooth map
F : M → N is said to be transversal to S if for any p ∈ F−1(S), the tangent space
TF (p)N is the sum of F∗(TpM) and TF (p)S.

Proposition 3.10. Let M,N be smooth manifolds of dimension m and n respectively,
and S ⊂ N be an embedded submanifold of dimension k. Suppose a smooth map
F : M → N is transversal to S. Then F−1(S) is an embedded submanifold of M of
dimension m+ k − n.

Exercise: Prove Proposition 3.10. More generally, let Fi : Mi → N , where i = 1, 2,
be smooth maps. We say F1, F2 are transversal to each other if for any p1 ∈ M1,
p2 ∈ M2 such that F1(p1) = F2(p2) = q ∈ N , the tangent space TqN is the sum of
(F1)∗(Tp1M1) and (F2)∗(Tp2M2). Show that if F1, F2 are transversal to each other,
then the subset {(p1, p2) ∈M1×M2|F1(p1) = F2(p2)} is an embedded submanifold of
M1 ×M2 of dimension dimM1 + dimM2 − dimN .

Whitney Embedding Theorem: The following theorem shows that every com-
pact smooth manifold is an embedded submanifold of a Euclidean space.

Theorem 3.11. Let M be a compact smooth manifold. Then for large enough N ,
there is a smooth embedding F : M → RN .

Proof. For any p ∈ M , there exists a local coordinate chart (W,φ) containing p. For
each such (W,φ), we choose an open neighborhood U of p such that the closure U ⊂W .
Now there is a smooth partition of unity subordinate to the open cover {W,M \ U}.
We let λ be the smooth function from the partition of unity such that supp λ ⊂ W .
Note that λ ≡ 1 on U , and the collection of subsets U is an open cover of M .

Since M is compact, there are finitely many Ui, where i = 1, 2, · · · ,m, such that
{Ui} is a cover of M . Let {(Wi, φi)} be the corresponding local coordinate charts, and
λi ∈ C∞(M) the smooth functions. For each i, we define Fi : M → Rn+1, where φi :

Wi → Rn and Fi = (λiφi, λi), and define F : M → R(n+1)m by F = (F1, F2, · · · , Fm).
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First, we shall that F is an immersion. To see this, for any p ∈ M , there is a
Ui such that p ∈ Ui. Then observe that since λi ≡ 1 on Ui, Fi = (φi, 1) in a small
neighborhood of p. Since φi : Wi → Rn is a local diffeomorphism, it follows easily that
Fi, hence F , must be an immersion near p.

It remains to show that F is one to one. To this end, let p, q ∈ M such that
p 6= q. We choose a Ui such that p ∈ Ui. In particular, λi(p) = 1. If λi(q) = 1,
then Fi(q) = (φ(q), 1) 6= (φi(p), 1) = Fi(p). If λi(q) < 1, then Fi(q) 6= Fi(p) as well.

This shows that F is one to one. Since M is compact, F : M → R(n+1)m must be a
topological embedding, hence a smooth embedding.

�

A natural question asks what is the minimal value of N in Theorem 3.11. One
possible way to reduce the dimension of RN in the smooth embedding theorem is to
compose F : M → RN with a map πl : RN → RN−1, where πl is the projection of
RN onto RN−1 along a line l in RN . It turns out that, based on the so-called Sard’s
Theorem (see below), one can show that, as long as N > 2n+1 (here n is the dimension
of M), for a generic choice of line l in RN , the map πl ◦ F : M → RN−1 continues to
be a smooth embedding. Repeating this argument, one can show that there exists a
smooth embedding of M into R2n+1, which is called the Whitney Embedding Theorem.

Theorem 3.12. (Sard’s Theorem) Let U ⊂ Rm be any open subset. Then for any
smooth map F : U → Rn, the complement of regular values (i.e., the set of critical
values) of F in Rn has measure zero.

There is a whole package of transversality theory in differential topology that is
based on Sard’s Theorem, see [2].

Regarding Whitney Embedding Theorem, an interesting question asks for a given
individual smooth manifold M , what is the minimal value of N such that there is a
smooth embedding of M in RN?

Exercise: Consider F : R3 → R4, where F (x, y, z) = (x2 − y2, xy, xz, yz). Show
that F (S2) ⊂ R4 is an embedded submanifold which is diffeomorphic to RP2.

However, there is no smooth embedding of RP2 into R3.

4. Lie groups and Lie group actions

Definition 4.1. Let G be a group. If G is a smooth manifold such that the multipli-
cation map G×G→ G, (g, h) 7→ gh, and the inverse map G→ G, g 7→ g−1, are both
smooth maps, then G is called a Lie group. A homomorphism between Lie groups
which is also a smooth map is called a Lie group homomorphism. A subgroup of
a Lie group which is also an embedded submanifold is called a Lie subgroup. (A Lie
subgroup is naturally a Lie group.)

Example 4.2. (1) General linear groupsGL(n,R), GL(m,C) are naturally Lie groups.
(2) Orthogonal groups O(n), SO(n), unitary groups U(m), SU(m), are Lie sub-

groups of GL(n,R), GL(m,C) respectively.
(3) S1 ⊂ C under complex multiplication, S3 ⊂ R4 = H under quaternion multipli-

cation, are Lie groups. It is known that S3 is isomorphic to SU(2).
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(4) (Spin groups) For any n > 2, π1(SO(n)) = Z2. The universal cover of SO(n),
denoted by Spin(n), is called a spin group. It is known that Spin(3) = S3, and
Spin(4) = S3 × S3.

(5) Let G be a finite or countably infinite group, given with the discrete topology.
Then G is a 0-dimensional Lie group, called a discrete group.

Definition 4.3. Let M be a smooth manifold, G a Lie group, with e ∈ G being the
identity element. A smooth left-action of G on M is a smooth map θ : G×M →M ,
with θ(g, p) denoted by g · p, which satisfies the following conditions:

g1 · (g2 · p) = (g1g2) · p and e · p = p, ∀g1, g2 ∈ G, p ∈M.

A smooth right-action of G on M is a smooth map θ : M ×G→M , with θ(p, g)
denoted by p · g, which satisfies the following conditions:

(p · g1) · g2 = p · (g1g2) and p · e = p, ∀g1, g2 ∈ G, p ∈M.

Remarks: If p · g is a given right-action, then (g, p) 7→ p · g−1 is a left-action.
Hence without loss of generality, we shall only consider left-actions here. A smooth
manifold equipped with a smooth left-action (or right-action) of G is called a smooth
G-manifold. Note that for any g ∈ G, θg : M → M defined by θg(p) = g · p is a
diffeomorphism, with inverse θ−1

g = θg−1 .

Definition 4.4. (1) For any p ∈M , the subset G · p := {q ∈M |q = g · p for some g ∈
G} is called the orbit of p under the G-action. The set of orbits M/G := {G·p|p ∈M}
is called the quotient space, which comes with a natural map π : M →M/G sending
p to its orbit G · p. We give M/G the quotient topology. The G-action is called
transitive if M = G · p for some p ∈M .

(2) For any p ∈M , the isotropy subgroup at p is the subgroup

Gp := {g ∈ G|g · p = p}.
The G-action is called free if Gp = {e} (i.e., is trivial), ∀p ∈ M , and the G-action is
called effective if g ∈ Gp for all p ∈M implies that g = e.

Example 4.5. (1) (Trivial actions) The map θ : G ×M → M such that θ(g, p) = p
for any g ∈ G, p ∈M .

(2) For G = GL(n,R), M = Rn, the smooth left-action θ : G ×M → M given by
θ(A, v) = Av, ∀A ∈ G, v ∈ Rn.

(3) Given any smooth left-action G ×M → M , and a Lie group homomorphism
ρ : H → G, there is a canonically induced smooth left-action H ×M → M , defined
by h · p = ρ(h) · p, ∀h ∈ H, p ∈M .

(4) Let G = O(n) ⊂ GL(n,R), M = Sn−1 ⊂ Rn, the smooth left-action in (2)
induces a smooth left-action of O(n) on Sn−1 (cf. Proposition 3.7).

(5) For any Lie group G, there is a canonical smooth left-action of G on G itself,
given by Lg : G→ G sending h to gh for any g, h ∈ G. Lg is called a left translation.
There is also a canonical right-action, defined by Rg : G→ G, where Rg(h) = hg, for
any g, h ∈ G. Rg is called a right translation.

(6) (Linear representations). Let V be a finite dimensional real vector space, GL(V )
be the group of automorphisms of V . (Note that V can be identified with Rn for some
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n, hence a smooth manifold, and GL(V ) with GL(n.R) hence a Lie group.) Given any
Lie group homomorphism ρ : G → GL(V ), there is an induced smooth left-action of
G on V via ρ, i.e., (g, v) 7→ ρ(g)(v), ∀g ∈ G, v ∈ V .

(7) (The adjoint representation). Let G be any Lie group. Consider the following
smooth left-action of G on G itself, defined by θ(g, h) = ghg−1. Note that for any
g ∈ G, θg : G → G leaves e fixed, i.e., θg(e) = e. Thus ∀g ∈ G, (θg)∗ ∈ GL(TeG).
The representation Ad : G → GL(TeG), where Ad(g) = (θg)∗, is called the adjoint
representation.

Definition 4.6. Let M,N be smooth G-manifolds. A smooth map F : M → N is
called equivariant if F (g · p) = g · F (p) for any g ∈ G, p ∈M .

Theorem 4.7. Let F : M → N be an equivariant map between two smooth G-
manifolds. Suppose the G-action on M is transitive. Then F has constant rank. As
a consequence, for any q ∈ N , the subset F−1(q) ⊂M is an embedded submanifold.

Proof. Let θ : G×M → M , ϕ : G×N → N be the G-actions on M , N respectively.
Fix a point p0 ∈M , then since the G-action on M is transitive, for any p ∈M , there
is a g ∈ G such that g · p0 = p. Now observe that F∗ : TpM → TF (p)N equals the

composition (θg)
−1
∗ : TpM → Tp0M , F∗ : Tp0M → TF (p0)N , and (ϕg)∗ : TF (p0)N →

TF (p)N , hence has the same rank as F∗ : Tp0M → TF (p0)N . This shows that F has
constant rank. It follows easily from Theorem 3.2 that for any q ∈ N , the subset
F−1(q) ⊂M is an embedded submanifold.

�

Example 4.8. Let F : G→ H be a Lie group homomorphism. Consider the G-action
on G by left translations, and the G-action on H by the left translations of G via F .
Then it is easy to check that F is equivariant. Since the left translations on G are
transitive, it follows from Theorem 4.7 that for any h ∈ H, F−1(h) is an embedded
submanifold of G. In particular, the kernel K := F−1(e) is a Lie subgroup of G. For
example, let SL(n,R) be the set of real n × n matrices with determinant 1. Then
SL(n,R) is a Lie subgroup of GL(n,R), because it is the kernel of the determinant
homomorphism.

Definition 4.9. A smooth G-action on M is called proper if the map Θ : G×M →
M ×M , sending (g, p) to (g · p, p), is a proper map.

Remarks: (1) For a proper action, Gp is compact for any p ∈M .
(2) Compact Lie group actions are proper.
(3) For a proper, discrete Lie group action, Gp is finite. Hence for any p ∈M , there

is a Gp-invariant neighborhood of p: we simply pick any neighborhood U of p, and let
V := ∩g∈Gp(g · U), which is Gp-invariant.

Theorem 4.10. (Quotient Manifold Theorem) Let M be a smooth manifold, equipped
with a smooth G-action by a Lie group G, which is free and proper. Then the quotient
space M/G is a smooth manifold of dimension dimM − dimG, with a unique smooth
structure such that the quotient map π : M → M/G sending p to its orbit G · p is a
submersion.
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Example 4.11. (1) Consider S2m+1 ⊂ Cm and the smooth action of S1 on it via
complex multiplication. The action is clearly free and proper, and it is easy to see
that the quotient map is the Hopf fibration S2m+1 → CPm.

(2) Consider the action of Z2 = {±1} on Sn, given by the antipodal map

τ : (x1, x2, · · · , xn+1) 7→ (−x1,−x2, · · · ,−xn+1).

The quotient map is the 2 : 1 covering Sn → RPn in Example 1.9.
(3) For any 0 < q < p where gcd(p, q) = 1, we consider the Zp-action on S3,

generated by
(z1, z2) 7→ (exp(2πi/p)z1, exp(2πiq/p)z2).

It is clearly free and proper. The quotient manifold S3/Zp is a 3-dimensional manifold,
called a lens space, and is denoted by L(p, q). Note that L(2, 1) = RP3.

(4) Consider a smooth, free and proper action of a discrete Lie group G on M . In
this case, the quotient manifold M/G has the same dimension as M , and the quotient
map π : M → M/G is a smooth covering map. Conversely, for any regular smooth
covering map, the action of the group of deck transformations on the covering manifold
is a smooth, free and proper action of a discrete Lie group.

We begin a proof of the Quotient Manifold Theorem with the following

Lemma 4.12. For each p ∈M , the orbit G · p is an embedded submanifold of M .

Proof. Consider the map θp : G→M by θp(g) = g ·p, which is equivariant with respect
to the left translations on G and the given G-action on M . Since the left translations
on G are transitive, θp has constant rank by Theorem 4.7. On the other hand, θp is a
one to one map, as the G-action is free. Being one to one in turn implies that θp must
be an immersion, because if otherwise, θp being of constant rank will violate Theorem
3.2. Consequently, in order to show G · p is an embedded submanifold, it remains to
show that θp is a proper map. But this follows from the assumption that the G-action
on M is proper.

�

As a consequence, we have

Lemma 4.13. Let k = dimG, n = dimM − dimG. Then for any p ∈ M , there is a
local coordinate chart (U, φ) centered at p (i.e., φ(p) = 0), such that

(i) φ(U) = U1 × U2 ⊂ Rk × Rn, with coordinates (x1, · · · , xk, y1, · · · , yn);
(ii) each orbit of the G-action intersects U either in empty or in a single slice of

the form: y1 ≡ c1, y2 ≡ c2, · · · , yn ≡ cn.

Proof. Let (W,ψ) be a slice chart of G ·p centered at p, with local coordinate functions
u1, u2, · · · , uk, v1, v2, · · · , vn such that W ∩G·p is given by v1 = v2 = · · · = vn = 0. We
consider the subset S ⊂W defined by u1 = u2 = · · · = uk = 0, which is an embedded
submanifold of dimension n in W . Let θ : G × S → M be the smooth map, sending
(g, q) to g · q. Then at (e, p), θ∗ : T(e,p)G×S → TpM is an isomorphism, implying that
θ is a local diffeomorphism near (e, p). With this understood, let (X,α) be a local
coordinate chart of G centered at e, (Y, β) be a local coordinate chart of S centered at
p, such that θ maps X×Y diffeomorphically onto an open subset U := θ(X×Y ) ⊂W .
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Let φ : U → Rk×Rn, where φ = (α, β)◦θ−1. Then (U, φ) is a local coordinate chart of
M centered at p. Note that φ(U) = U1×U2, where U1 = α(X) ⊂ Rk, U2 = β(Y ) ⊂ Rn.

Let (x1, · · · , xk, y1, · · · , yn) be the coordinates on Rk × Rn. From the construction
of (U, φ), it is clear that each slice y1 ≡ c1, y2 ≡ c2, · · · , yn ≡ cn lies in the same orbit
of the G-action. It remains to show that when choosing Y ⊂ S sufficiently small,
different slices lie in different orbits of the G-action. Suppose to the contrary that this
is not true. Then there exists a sequence qi ∈ Y , q′i ∈ Y , where qi 6= q′i and both {qi},
{q′i} converge to p, such that for each i, qi and q′i are in the same orbit of the G-action,
which means that there is a gi ∈ G, such that q′i = gi · qi for all i.

Exercise: Show that the properness of the G-action on M is equivalent to the
following statement: for any convergent sequence pi ∈M , and any sequence gi ∈ G, if
the sequence {gi · pi} contains a convergent subsequence, then {gi} must also contains
a convergent subsequence.

Hence the assumption that the G-action is proper implies that {gi} contains a
convergent subsequence, which is still denoted by {gi}, and let the limit be g ∈ G.
Since both {qi}, {q′i} converge to p, we have p = g · p, which implies that g = e as the
G-action is free. Hence for sufficiently large i, gi ∈ X. But this contradicts the fact
that θ is injective on X × Y , as θ(gi, qi) = q′i = θ(e, q′i), but (gi, qi) 6= (e, q′i) in X × Y .

�

Exercise: Show that the map θ : G × S → M is a diffeomorphism onto its image
in M when S is chosen sufficiently small. Such a S is called a local slice.

We now complete the proof of the theorem. First, we show that π : M → M/G is
an open map. To see this, let U be any open subset of M . To see π(U) is open in
M/G, we note that π−1(π(U)) = ∪g∈Gθg(U). Since θg is a diffeomorphism, each θg(U)
is open, which implies that π−1(π(U)) is open in M . With the quotient topology on
M/G, this shows π(U) is open. As a consequence, M/G is second countable.

Now for each (U, φ) in Lemma 4.13, we set V := π(U), which is an open subset of
M/G. We define a map ψ : V → Rn as follows. Identify U2 with {0}×U2 in φ(U), we
observe that π : φ−1(U2)→ V is a homeomorphism. We simply let ψ be the inverse of
this map followed by φ. It is clear that ψ sends V homeomorphically onto U2 ⊂ Rn.
We declare each (V, ψ) to be a local coordinate chart of M/G. One can easily check

that if (Ũ , φ̃) is another chart from Lemma 4.13, with the corresponding chart (Ṽ , ψ̃)

for M/G, then the transition map ψ̃ ◦ψ−1 is smooth. Finally, we point out that M/G
is Hausdorff is a consequence of the assumption that the G-action is proper. We leave
the details as an exercise.

Homogeneous Spaces: Let G be a Lie group, H be a Lie subgroup of G. We
consider the smooth right-action of H on G, θ : G × H → G, given by (g, h) 7→ gh,
which is clearly free. We claim it is also proper. To see this, suppose gi ∈ G is a
convergent sequence, hi ∈ H is a sequence such that gihi is convergent in G. We need
to show hi is convergent in H. Note that hi is convergent in G, so this boils down to
the following lemma.

Lemma 4.14. A Lie subgroup H of a Lie group G is a closed subset in G.



MATH 703: PART 1: SMOOTH MANIFOLDS 19

Proof. Suppose hi ∈ H converges to g ∈ G. We choose a slice chart (U, φ) of H
centered at e ∈ G, and choose an open subset W such that W ⊂ U . Since the map
m : G × G → G, sending (g1, g2) to g1g

−1
2 , is smooth, there is an neighborhood V

of e ∈ G, such that m(V × V ) ⊂ W . Now for large enough i, hig
−1 ∈ V , so that

for large enough i, j, hih
−1
j = (hig

−1)(hjg
−1)−1 ∈ W . Let j goes to infinity, we have

hig
−1 ∈W ⊂ U . Since H∩U is a slice in U , it is closed, which implies that hig

−1 ∈ H.
Hence g ∈ H, and H is closed. �

By Theorem 4.10, the quotient space G/H := {g ·H|g ∈ G}, which is the set of coset
gH, is a smooth manifold of dimension dimG − dimH. We observe that there is a
natural smooth left-action of G on G/H, by (g′, gH) 7→ g′gH. The isotropy subgroup
at the coset eH = H is exactly the Lie subgroup H, i.e., GH = H. Moreover, it is
clear that the action of G on G/H is transitive.

Definition 4.15. A smooth manifold M is called a homogeneous space if there is
a smooth, transitive Lie group action on it.

Theorem 4.16. Let M be a homogeneous space, with a smooth, transitive left-action
of G on it. For any point p ∈ M , the map G/Gp → M sending gGp to g · p is an
equivariant diffeomorphism.

Proof. Consider the smooth map F : G → M by F (g) = g · p, which is clearly
equivariant with respect to the left translations of G on G and the given G-action on
M . The G-action on G is transitive, so F has constant rank. On the other hand, since
the G-action on M is transitive, F is onto, which implies that F must be a submersion
given it is of constant rank. In particular, this also implies that Gp = F−1(p) is an
embedded submanifold of G, therefore must be a Lie subgroup of G.

The map F : G → M factors through G/Gp, which induces a one to one and onto
map from G/Gp to M . From the proof of the Quotient Manifold Theorem, it follows
easily that the map G/Gp →M is smooth. Note that it is equivariant, and since the
G-action on G/Gp is transitive, it must be a diffeomorphism. �

Remarks: If M is just a set with a transitive Lie group action of G, and if for a
point p ∈ M the isotropy subgroup Gp is a Lie subgroup of G, then the above proof
shows that there is a one to one and onto map from G/Gp to M . We can use this map
to give M a smooth manifold structure, so that it is diffeomorphic to G/Gp.

Example 4.17. (1) Let M = Sn, and consider the O(n + 1)-action on Sn which is
transitive. The isotropy subgroup at (0, 0, · · · , 1) ∈ Sn is O(n), so Sn is diffeomorphic
to O(n+ 1)/O(n).

(2) Let M = RPn, and consider the SO(n + 1)-action on it which is transitive.
The isotropy subgroup at l(0, 0, · · · , 1) ∈ RPn is O(n), so RPn is diffeomorphic to
SO(n+ 1)/O(n).

(3) The orthogonal group O(n) acts transitively on the Grassmannian Gk,n. One
can check that the isotropy subgroup at the k-plane spanned by the first k coordinates
is a Lie subgroup of O(n). Hence the Grassmannians are homogeneous spaces.

Exercise: Let M be the set of oriented 2-planes in R4.
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(1) Show that there is a natural left action of SO(4) on M which is transitive.
(2) Let P0 ∈M be the 2-plane of the first two coordinates given with the standard

orientation. Determine the isotropy subgroup at P0 and show that it is a Lie subgroup
of SO(4).

(3) Combining (1) and (2), show that M is a compact, connected smooth manifold
of dimension 4.

(4) Let G := S3 × S3, where S3 is the Lie group of unit quaternions. Consider the
homomorphism ρ : G→ GL(4,R) obtained as follows: for any (p, q) ∈ G, x ∈ H = R4,
ρ(p, q)(x) := pxq−1. Show that ρ induces a homomorphism from G onto SO(4), with
kernel Z2.

(5) Define a smooth left action of G on M via ρ : G → SO(4). Then the G-action
on M is also transitive. Determine the isotropy subgroup GP0 .

(6) Show that G/GP0 = S2 × S2, which implies that M is diffeomorphic to S2 × S2.
(7) There is a natural 2 : 1 covering map fromM toG2,4 by forgetting the orientation

of the 2-planes in M . With M being identified with S2 × S2, describe the Z2-action
on S2 × S2, and use it to determine G2,4.
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