
Homework 8—Final Exam

Math 652
Spring 2020

Optional, Due Thursday May 7, if you want it graded

Since most of you have a final project presentation for the Applied Math
MS (and since I forgot to post the exam until now), the final exam is strictly
extra credit. You do not have to complete it if you are busy with other things.
However, I encourage you to have a look, since it will help you to understand
the lectures on constrained and convex optimization. If you want me to grade
it, please turn it in by May 7.

You have already seen in your study of variational problems related to the
finite element method that (strictly) convex minimization problems with ob-
jective functions that are bounded below have a unique solution. Something
weaker but roughly similar is true for convex programs.

Problem 1. Consider the general convex program

minimize f(x)

s. t. Ax = b

gi(x) ≤ 0 for all i ∈ I .

(Here, we assume that f is convex and all the constraint functions gi are convex.
A is a matrix and b is a vector.)

1. Show that the feasible region Ω is convex.

2. Show that any local solution of the convex program is a global solution.

3. Show the set of global solutions is convex.

4. Would any of this still be true if I changed the inequality constraint to
gi(x) ≥ 0, where gi is convex?

Writing optimization problems in standard forms is an essential skill in con-
vex optimization. I’ve given you one good exercise below. I suggest Exercises
4.5, 4.6, 4.11, and 4.12 in Boyd and Vandenberghe, as well, if you are interested.

Problem 2. Let v : Rn → Rm. Assume that v is smooth Consider the uncon-
strained, possibly nonsmooth, problem to

minimize ‖v(x)‖∞.
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Reformulate this problem as a smooth constrained optimization problem. Think
about how many constraints are required in order to do this.

Recognizing convex functions is an essential skill in formulating problems as
convex programs. Here are a few example forms of convex functions that might
not be obvious.

Problem 3.

1. Suppose that {fi : i ∈ I} are convex functions. Show that g(x) = supi∈I fi(x)
is convex. Note: If you don’t know how to handle the supremum, just as-
sume that I is finite and make it a maximum. It is important to realize
however that the cardinality of I doesn’t actually matter. It could be un-
countable even.

2. Show that the “log-sum-exp” function

f(x) = log

(∑
i

exp(xi)

)

is convex. Note: This function arises all the time when you consider
logarithms of probabilities. It comes up in machine learning too, for slightly
different reasons.

3. Show that if g is monotone nondecreasing and convex and f is convex,
then g ◦ f is convex.

Finally, you should make sure that you understand the KKT conditions. I
propose that you try the following exercise. This isn’t well-posed. It’s something
we could discuss, but there isn’t really anything to turn in here.

Problem 4. Interpret the KKT conditions in the case of linear constraints
(both equality and inequality). Draw lots of pictures. Use what you know from
linear algebra. Pay special attention to the LICQ. The proof of the KKT condi-
tions basically says that the things that are true in the linear case carry over to
the nonlinear case using the implicit function theorem. The linear case already
contains all of the real insights.
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