
Homework 7

Math 652
Spring 2020

Due Monday, April 20

The following problem verifies some important properties of the BFGS method.
Here, the definitions of Hk, sk, and yk are taken from Chapter 6 in Nocedal and
Wright. See also the lecture of 4/8.

Problem 1 (2+5+3 points).

1. Suppose that Bk is positive definite. Show that the Quasi-Newton search
direction

pk = −Bk∇f(xk)

is a descent direction.

2. Assume that the curvature condition ytksk > 0 holds and that Hk is sym-
mmetric positive definite. Prove that Hk+1 is symmetric positive definite.

3. Show that Hk+1yk = sk.

Last semester, I demonstrated that the steepest descent method from linear
algebra converges slowly for ill-conditioned problems. To be precise, recall that
if A is SPD, then the unique minimizer u of the functional

I[v] =
1

2
vtAv − f tv

solves the linear equation Au = f . One can compute the minimizer by steepest
descent with an exact linesearch, i.e. a linesearch that yields the exact minimum
of φk. Last semester, we saw that for the steepest descent method,

‖xk − u‖A ≤
(
κ2(A)− 1

κ2(A) + 1

)k

‖x0 − u‖A.

(Here, ‖v‖A := 〈v,Av〉 is the A-norm.) This estimate correctly suggests that
convergence is slow when the condition number κ2(A) is large. Note: The result
above appears as Theorem 3.3 in Nocedal and Wright.

A similar difficulty arises in the minimization of general (not necessarily
quadratic) functions f . If the Hessian D2f(x∗) is ill-conditioned at the mini-
mum x∗, then steepest descents will converge slowly. This makes sense, since

1

according to Taylor’s theorem,

f(x) = f(x∗) +∇f(x∗)
t(x− x∗) +

1

2
(x− x∗)tD2f(x∗)(x− x∗) +O(‖x− x∗‖3).

Therefore, minimizing f over a neighborhood of the minimizer x∗ is nearly the
same thing as minimizing a quadratic functional such as I above with A =
D2f(x∗). (Theorem 3.4 in Nocedal and Wright is an elaboration of this idea.)

Of course, our statement about Hessians and condition numbers is rather
abstract. What it really means for a function f to be ill-conditioned is that the
value of f is very sensitive to some small perturbations of the inputs but not
sensitive to others. One simple example is the Rosenbrock function

f(x, y) = (1− x)2 + 100(y − x2)2.

This very ill-conditioned function is often used to test optimization methods.
Its unique minimizer is (1, 1).

Problem 2 (2 points). Plot of the graph of the Rosenbrock function for x ∈
[−2, 2] and y ∈ [−1, 3]. Observe that the level sets are highly elongated. This
is the signature of an ill-conditioned function. Hint: I suggest that you adapt
the code at https: // matplotlib. org/ 3. 1. 1/ gallery/ images_ contours_
and_ fields/ contour_ demo. html to produce the plot. Make sure that you
print some contours for small values of the function, say less than one, and also
some contours for slightly larger values.

We observe that any function can be made ill-conditioned by changing the
units of the inputs. For example, let f : R2 → R. Suppose that the first variable
is measured in seconds and the second in meters. If we have measurements taken
in microseconds and kilometers, we have to convert them to meters and seconds
before applying f . In effect, we must define a new function

fD(x) = f(Dx), where D =

(
10−6 0

0 103

)
.

Of course, D is ill-conditioned (κ(D) = 109), so fD will generally be ill-
conditioned even if f was not. As a consequence, steepest descents may converge
quickly for f but slowly for fD.

We do not want the performance of an optimization method to depend on
the choice of units. One way to ensure that it does not is to use only scale
invariant methods. Let f : Rd → R be an objective function, and let F ∈ GL(d)
be a linear change of variable. Define

fF (x) = f(F (x)).

Let xk be the sequence of iterates produced by a certain optimization method
when applied to f starting from x0. Let xFk be the sequence produced by the
same method when applied to fF starting from the point F−1x0. An optimiza-
tion method is scale invariant if and only if

xFk = F−1xk

2

https://matplotlib.org/3.1.1/gallery/images_contours_and_fields/contour_demo.html
https://matplotlib.org/3.1.1/gallery/images_contours_and_fields/contour_demo.html

for all F ∈ GL(d) and k ≥ 0. For a scale invariant method, the rate of conver-
gence is indeed independent of the choice of units.

Problem 3 (1+1+3 points).

1. Show that
∇fF (z) = F t∇f(Fz).

Note: The formula is backwards from the usual chain rule (the factor of
F is on the left), since the gradient is always understood to be a column
vector, whereas the derivative f ′ is always a row vector. It has to be this
way, because you take ∇f to be a column vector when you do Newton’s
method.

2. Show that
D2fF (z) = F tD2f(Fz)F.

Hint: Use that D2fF (z)w = d
dε

∣∣
ε=0
∇fF (z + εw) for all w ∈ Rd.

3. Show that Newton’s method is scale invariant.

The BFGS method is also scale invariant, which is a major motivation for
its particular rule for updating the approximations Hk to the inverse Hessians.

Problem 4 (5 points). Implement the steepest descent method using the back-
tracking line search, which is Algorithm 3.1 in Nocedal and Wright. Apply
your steepest descent algorithm to the Rosenbrock function. Use the parameters
ᾱ = 1, c = 10−4, and ρ = 1

2 . Start with x0 = (−2,−1). Plot a sequence of
iterates. Do you see roughly why convergence is so slow?

You may choose any reasonable termination condition for your steepest de-
scent algorithm. One standard choice is to terminate whenever the size of gra-
dient shrinks below some tolerance, e.g. when ‖∇f(xk)‖2 ≤ 10−10. Another is
to terminate when too little progress is made in lowering the value of the ob-
jective, e.g. when f(xk)− f(xk+1) ≤ 10−10. Sophisticated implementations will
use some combination of the two. If you choose the gradient based condition
with a small tolerance, you will probably find that the steepest descent method
simply cannot find any points meeting the condition. Thus, you may want to
break your loop if no progress is made, no matter what.

Important Note: Your code will have to be robust to overflow! The gradient
of the Rosenbrock function is large at x0. Therefore, the first value tried in your
line search will be far from x0. In fact, it will be so far from the origin that the
value of the Rosebrock function will be too large for floating point. You might
look into the function numpy.isfinite for detecting infinite values. When such
a value arises, there is no cause for concern, you can simply multiply the step
by ρ like you would do for any other value that does not satisfy the sufficient
decrease condition.

You may recall from last semester that Newton’s method converges super-
linearly. In fact, let x∗ be a local minimizer of the function f , and assume that

3

the Hessian of f is positive definite at x∗. One can show that there exists ρ > 0
so that if ‖x0 − x∗‖ ≤ ρ, then

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2

for some constant c > 0. That is, Newton’s method converges quadratically.
(Compare the estimate for above for steepest descent, which only shows linear
convergence.) BFGS also converges quadratically under conditions outlined in
Chapter 6 of Nocedal and Wright.

Problem 5 (5 points). Use BFGS to find the minimum of the Rosenbrock
function. Start with x0 = (−2,−1). You may use SciPy’s built-in optimization
function to do this. Try the following:

from scipy.optimize import minimize

BFGS_output=minimize(rosen,

np.array([-2,-1]),jac=rosen_der,tol=10**(-16),method=’BFGS’,

options={’return_all’: True}).

Does it look like BFGS converges quadratically or at least superlinearly for this
problem? How does the approximate inverse Hessian generated by BFGS com-
pare with the actual inverse Hessian at the minimizer?

4

