
Homework 6—Midterm Exam

Math 652
Spring 2020

Due Friday, April 10, 2020

1 Spectral Methods

First, we review a few facts about the (semi-discrete) Fourier transform defined
in class on February 26. For any 1-periodic function u : R → C, we define
û : Z→ C by

û(k) = 〈ψk, u〉 =

∫ 1

x=0

u(x) exp(−2πikx) dx.

Here, the functions {ψk, k ∈ Z} defined by

ψk(x) = exp(2πikx)

are called the characters. When we used the Fourier transform to solve the
advection-diffusion equation, we proved that for any 1-periodic u ∈ Cn,

d̂nu

dxn
(k) = (2πik)nû(k).

We also recall that

‖u‖L2 = ‖û‖`2 =

{∑
k∈Z

û(k)2

} 1
2

.

You have recently verified something similar for the finite Fourier transform.
The general result is sometimes called Plancherel’s theorem. It is pretty easy to
prove once you remember that the characters are orthonormal and that by the
Fourier inversion formula

u =
∑
k∈Z

û(k)ψk,

where the sum converges in L2.
The Fourier transform provides a means of characterizing Sobolev spaces.

We say that a 1-periodic function u is weakly differentiable if there exists a
1-periodic Du so that for any 1-periodic v ∈ C∞,∫ 1

x=0

Du(x)v(x) dx = −
∫ 1

x=0

u(x)v′(x) dx.
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Let Hn(R/Z) be the set of all 1-periodic functions with n weak derivatives such
that each weak derivative is in L2. One can show that u ∈ Hn(R/Z) if and only
if ∑

k∈Z
(1 + k2)n|û(k)|2 <∞.

Problem 1 (2+1 points).

1. Show that if u ∈ H1(R/Z), then

d̂u

dx
(k) = 2πikû(k).

Hint: You can use the argument from class. You just have to check that
all the steps work when u is only weakly differentiable.

2. Show that if u ∈ H1(R/Z), then∑
k∈Z

(1 + k2)|û(k)|2 <∞.

I won’t make you prove that
∑

k∈Z(1+k2)n|û(k)|2 <∞ implies u ∈ Hn(R/Z),
but I will say that you now know enough analysis to do it, at least mostly.

We now consider the accuracy of a Galerkin method based on the Fourier
characters. This is an example of a spectral method. Let

Vm = span{ψ−m, . . . , ψm}.

Our goal is to estimate the best approximation error

inf
v∈Vm

‖u− v‖2,

where u is the solution of some boundary value problem (or other similar vari-
ational problem).

Problem 2 (5+3 points). Let u ∈ Hn(R/Z). Define

Smu =

m∑
k=−m

û(k)ψk

1. Show that

‖u− Smu‖2 = O

(
1

m(n− 1
2 )

)
in the limit as m→∞.

Hint: Observe that if
∑

k∈Z û(k)2k2n <∞, then we can only have |û(k)|2 >
1/k2n for at most finitely many k, hence |û(k)|2 ≤ C/k2n for some con-
stant C.
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2. How would the above result change if you wanted to measure the error in
the H1(R/Z)-norm instead of in L2?

Observe that if u ∈ C∞, then

‖u− Smu‖2 = O

(
1

m`

)
for all ` > 0! In this case, one says that the approximations converge with
infinite order or at spectral speed. By comparison, convergence of finite ele-
ments is quite slow. For example, if we take V to be the set of all periodic,
piecewise affine functions with respect to the mesh {0, 1/N, 2/N, . . . , 1}, then
by the standard analysis based on the Bramble–Hilbert lemma, we have only
the estimate

‖u− uV ‖2 = O

(
1

N2

)
.

This is the best general estimate for a finite element method based on piecewise
affine functions, no matter how smooth the solution u might be. Thus, we con-
clude that finite element methods do not converge at spectral speed. However,
this does not mean that finite element methods are useless. Spectral methods
lead to system matrices that are dense, so it can be very costly to solve the
minimization problem. Also, for BVPs on domains of complicated shapes it can
be difficult or impossible to choose an appropriate basis for a spectral method.

There is a more refined (but also much more complicated) explanation of
the convergence properties of spectral methods in the book by Arieh Iserles; see
the course website for a link to the online version. There are many things that
can go wrong with spectral approximations, so the book is a worthwhile read.

2 Functional Analysis

Functional analysis is the study of infinite-dimensional vector spaces. It concerns
generalizations of finite-dimensional results such as the rank-nullity theorem.
For example, suppose that for some domain Ω ⊂ Rd it can be shown that the
zero function is the only solution of the differential equation

∆u = 0

within the space C∞0 (Ω). If C∞0 (Ω) were finite-dimensional, we could conclude
that since ker ∆ = 0, Rg ∆ = C∞0 (Ω) by rank-nullity, and therefore there must
be a unique solution of the equation ∆u = f for any f ∈ C∞0 (Ω). Unfortunately,
however, C∞0 (Ω) is infinite-dimensional, so rank-nullity does not apply. Instead,
to show existence and uniqueness of solutions, one can apply a generalization
of rank-nullity called the Fredholm alternative to a weak formulation of the
problem.

Functional analysis is the foundation for a modern understanding of numer-
ical methods for PDEs. A complete exposition is beyond the scope of this class,
but the following problems should explain why it is necessary.
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Definition 1. Let V and W be normed vector spaces with norms ‖·‖V and
‖·‖W , respectively. Let L : V → W be a linear operator. We say that L is
bounded if and only if there exists some c > 0 so that

‖Lx‖W ≤ c‖x‖V .

Remark 1. One can show that a linear operator is bounded if and only if it is
continuous. It’s easy. You can do it as an exercise, if you like.

If V is finite-dimensional, then every linear operator L : V →W is bounded.
However, when V is infinite-dimensional, a linear operator may be unbounded.

Problem 3 (3 points). Let V be the set of all continuously differentiable
functions u : [0, 1]→ R. Define

‖v‖V = ‖v‖∞

for all v ∈ V . Let W be the set of all continuous functions, and define

‖w‖W = ‖w‖∞.

Let L : V →W by

Lv =
dv

dx
.

Show that L is unbounded.

Hint: It will suffice to exhibit a sequence un of elements of V with ‖un‖V = 1
for all n so that ‖Lun‖W →∞ as n→∞.

You have already seen another example of an unbounded operator. In the
first semester of this course, you showed that the L1 and L∞ norms on C([0, 1])
were not equivalent. In particular, there exists a sequence un of functions in
C([0, 1]) so that ‖un‖L1 = 1 but ‖un‖L∞ →∞ as n→∞. Let V be the space
C([0, 1]) equipped with the L1-norm, and let W be the same space equipped
with the L∞-norm. According to your homework, the linear operator i : V →W
by iu = u is unbounded.

The rather trivial operator i above is an example of an embedding, i.e. an
inclusion of one vector space into another that contains the original space. We
now consider another nicer embedding. Recall the Sobolev embedding theorem
from class:

Theorem 1 (Sobolev embedding). Let Ω ⊂ Rd be bounded with Lipschitz bound-
ary. If r > d/2, then there exists a c > 0 so that for any u ∈ Hr(Ω),

‖u‖L∞(Ω) ≤ c‖u‖Hr(Ω).

One consequence of the Sobolev embedding the following vitally important
lemma which was used in class to develop error estimates for finite elements:

4



Problem 4 (3 points). Let T ⊂ R2 be a triangle. Show that the affine inter-
polant IT : H2(T ) → H1(T ) is bounded, i.e. there exists a constant C > 0 so
that

‖ITu‖H1(T ) ≤ C‖u‖H2(T ).

Hint: Use the Sobolev embedding, and remember that you have a nice explicit
formula for ITu in your notes from before break.

Problem 5 (3 points, extra credit). Show that if r > d/2, then any u ∈ Hr(Ω)
is continuous. Hint: Use the Sobolev embedding, remember that for any function
u ∈ Hr(Ω) there exists a sequence un of C∞ functions so that ‖u−un‖Hr(Ω) → 0
as n → ∞, and remember that if a sequence of continuous functions converges
uniformly, then the limit is continuous.
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