Homework 4

Math 652

Spring 2020
Due Monday, March 9, 2020

There are many Fourier transforms. They all have similar properties. For example, let $N \in \mathbb{N}$ and $\Delta x=1 / N$, and consider the set of periodic functions defined on the spatial mesh

$$
\Omega=\{k \Delta x ; k=0, \ldots, N\} .
$$

Here, as in class, periodic means that $f(0)=f(N)$. Now define Fourier modes $\psi^{k}: \Omega \rightarrow \mathbb{C}$ by

$$
\psi^{k}(\ell \Delta x)=\exp (2 \pi i k \ell \Delta x)
$$

The appropriate inner product in this context is the weighted inner product

$$
\langle u, v\rangle_{\Delta x}=\Delta x \sum_{\ell=0}^{N-1} u(\ell \Delta x) \overline{v(\ell \Delta x)}
$$

introduced for the analysis of the diffusion equation, and the corresponding norm is of course $\|u\|_{\Delta x}=\langle u, u\rangle_{\Delta x}^{\frac{1}{2}}$.

Problem $1(3+2+2+5$ points $)$.

1. Show that $\left\{\psi^{k} ; k=0, \ldots, N-1\right\}$ is an orthonormal set.

Hint: Use the geometric sum formula.
2. Consider the matrix

$$
U=\left(\psi^{0}|\ldots| \psi^{N-1}\right)
$$

Prove that $\sqrt{\Delta x} U$ is an isometry of $\|\cdot\|_{\Delta x}$. That is, show that for any periodic $v: \Omega_{\Delta} \rightarrow \mathbb{C}$, we have

$$
\|\sqrt{\Delta x} U v\|_{\Delta x}=\|v\|_{\Delta x}
$$

Note: A better way to think of the above result: U is a norm preserving mapping from the space of periodic functions on $N \Omega=\{0,1, \ldots, N\}$ with the $\|\cdot\|_{2}$-norm to the space of periodic functions on Ω with the $\|\cdot\|_{\Delta x}$-norm.
Note: I made some incorrect statements about this in class. In fact, one should define an operator K to be unitary over a Hermitian product if its
inverse equals its adjoint K^{*} over that product. In this case, the conjugate transpose is not the adjoint, since the inner product is weighted. This is inconsequential for our proof of Lax-Richtmeyer stability of Lax-Friedrichs, but nonetheless what I wrote was wrong.
3. Prove that $\sqrt{\frac{1}{\Delta x}} U^{-1}$ is an isometry of $\|\cdot\|_{\Delta x}$.

Note: A better way to think of the above result: U^{-1} is a norm preserving mapping from the space of periodic functions on Ω with the $\|\cdot\|_{\Delta x}$-norm to the space of periodic functions on $N \Omega=\{0,1, \ldots, N\}$ with the $\|\cdot\|_{2}$-norm.
4. Prove that $U^{-1}=\Delta x U^{\dagger}$.
5. Recall that the Lax-Friedrichs method is based on the operator

$$
A_{\Delta}=\frac{\Delta x^{2}}{2 \Delta t} D_{\Delta}^{2}-a D_{\Delta}^{c}
$$

where we define

$$
\begin{aligned}
M_{\Delta} u_{\Delta}(\ell, n) & =\frac{u_{\Delta}(\ell+1, n)+u_{\Delta}(\ell-1, n)}{2} \\
D_{\Delta}^{c} u(\ell, n) & =\frac{u_{\Delta}(\ell+1, m)-u_{\Delta}(\ell-1, m)}{2 \Delta x}
\end{aligned}
$$

For each $k=0, \ldots, N-1$, show that ψ^{k} is an eigenvector of A_{Δ} and compute the corresponding eigenvalue.
With apologies for all the mistakes, given the above, we have that

$$
\begin{aligned}
\left\|L_{\Delta}^{n}\right\|_{\Delta x} & =\left\|\left(I+\Delta t A_{\Delta}\right)^{n}\right\|_{\Delta x} \\
& =\left\|\left(I+\Delta t U \Lambda U^{-1}\right)^{n}\right\|_{\Delta x} \\
& =\left\|\sqrt{\Delta x} U(I+\Delta t \Lambda)^{n} \sqrt{\frac{1}{\Delta x}} U^{-1}\right\|_{\Delta x} \\
& =\left\|(I+\Delta t \Lambda)^{n}\right\|_{\Delta x}
\end{aligned}
$$

and Lax-Richtmeyer stability follows from an analysis of the spectrum of A_{Δ}, as discussed in class, when $|a \Delta x / \Delta t| \leq 1$.

Problem 2 (5 points). I claim that the stability condition

$$
\frac{\Delta t}{\Delta x^{2}} \leq \frac{1}{2}
$$

for the solution of the heat equation by forwards Euler is "unreasonable," i.e. it requires a Δt that is smaller than would otherwise be desireable. But I also claim that the stability condition

$$
\left|\frac{a \Delta t}{\Delta x}\right| \leq 1
$$

for Lax-Friedrichs is very reasonable. Write a couple paragraphs arguing this position. Some points to consider in your answer:

1. Are the parts of the consistency error corresponding to spatial and time discretization of balanced size when the stability condition holds?
2. Should the constant a appear in the stability condition? What happens if we rescale time in the advection equation by a linear factor?

Finally, I would like for you to prove the easy part of the Lax equivalence theorem.

Problem 3 (10 points). Let u solve the partial differential equation

$$
\frac{\partial u}{\partial t}=L u
$$

where L is some linear partial differential operator, with appropriate initial and boundary conditions. For example,

$$
L=D \Delta-a \cdot \nabla
$$

for the advection-diffusion equation. Let $\left(\Delta t_{m}, \Delta x_{m}\right)$ be a sequence of discretization parameters with $\left(\Delta t_{m}, \Delta x_{m}\right) \rightarrow(0,0)$ as $m \rightarrow \infty$. Let L_{Δ} be a linear operator arising from a consistent finite difference approximation of L. That is, assume that

$$
u(\cdot,(n+1) \Delta t)=L_{\Delta} u(\cdot, n \Delta t)+H_{n}(\cdot)
$$

where $\left\|H_{n}\right\| \leq C \Delta t\left(\Delta x^{p}+\Delta t^{q}\right)$ for some constant C independent of $\Delta t, \Delta x$. Assume that L_{Δ} is Lax-Richtmeyer stable along $\left(x_{m}, t_{m}\right)$. Show that

$$
\max _{n=0, \ldots,\lfloor T / \Delta t\rfloor}\left\|u_{\Delta}(\cdot, n \Delta t)-u(\cdot, n \Delta t)\right\| \leq C(T)\left(\Delta x_{m}^{p}+\Delta t_{m}^{q}\right)
$$

for some constant $C(T)$ that may depend on T, but not on u or m.
Hint: Use the discrete version of variation of parameters as in our study of forwards Euler for the heat equation.

