
Homework 3

Math 652
Spring 2020

Due Friday, February 28, 2020

Problem 1 (2+2+2 points).

1. Whenever you introduce the matrix exponential, you are required to give
the following problem: Show that if X and Y are matrices with XY = Y X,
then exp(X + Y ) = exp(X) exp(Y ).

2. More importantly, you are also required to give this problem: Find a pair
of matrices X and Y so that exp(X + Y ) 6= exp(X) exp(Y ).

3. Suppose that A is diagonalizable, so

A = V ΛV −1,

where Λ is a diagonal matrix. Show that exp(A) = VMV −1, where M is
a diagonal matrix so that Mii = exp(Λii).

The discrete variation of parameters formula from the proof of convergence
of Euler’s method for the heat equation has a continuous counterpart called
Duhamel’s principle. Duhamel’s principle represents the solution u of the inho-
mogeneous IBVP

∂u

∂t
(x, t) =

∂2

∂x2
u(x, t) + f(x, t) for (x, t) ∈ (0, 1)× (0,∞)

u(0, t) = u(1, t) = 0 for t ∈ [0,∞)

u(x, 0) = u0(x) for x ∈ [0, 1]

in terms of solutions of the homogeneous IBVP

∂v

∂t
(x, t) =

∂2

∂x2
v(x, t) for (x, t) ∈ (0, 1)× (0,∞)

v(0, t) = v(1, t) = 0 for t ∈ [0,∞)

v(x, 0) = z(x) for x ∈ [0, 1].

with different initial conditions z. To state Duhamel’s principle, we first define
the flow map for the IBVP. The flow Φt takes an initial condition to the solution
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of the homogeneous IBVP at time t. To be precise, Φt(z) is a function defined
on [0, 1] by the formula

Φt(z)(x) = v(x, t),

where v : Ω× [0,∞)→ R is the solution of the homogeneous IBVP with initial
condition z. Thus, for any fixed t, Φt : C0([0, 1]) → C0([0, 1]) is a mapping on
the space of continuous functions

C0 := {f : [0, 1]→ R; f continuous with f(0) = f(1) = 0}.

Problem 2 (1+5+1 points).

1. Let g : R2 → R be continuous. Assume in addition that g(x, y) is contin-
uously differentiable in its first coordinate x. Show that

d

dt

∫ t

s=0

g(t, s) ds = g(t, t) +

∫ t

s=0

∂g

∂x
(t, s) ds.

Hint: You can do this almost entirely with elementary theorems that you
have known since your calculus classes. Think about the function F (t, r) =∫ t

s=0
g(r, s) ds. What is its directional derivative along the vector (1, 1)?

2. Define

w(x, t) = Φt(u0)(x) +

∫ t

s=0

Φt−s(f(·, s))(x) ds.

Show that w(x, t) solves the inhomogeneous IBVP with initial condition u0.
(The notation here is the same as in class. We define f(·, s) : [0, 1] → R
by f(·, s)(x) = f(x, s).)

3. There is a version of Duhamel’s principle for any reasonable differential
equation of the form ∂u

∂t = Lu where L is a linear operator, including
linear ODEs and PDEs such as the diffusion equation and the advection
equation. Let A ∈ Rn×n. What is the version of Duhamel’s principle for
the ODE

x′ = Ax?

Please write your Duhamel’s principle in terms of the matrix exponential
exp(At), which is the flow map for the ODE.

Let A,B ∈ Rn×n. The approximation

exp((A+B)t) ≈ exp

(
At

2

)
exp (Bt) exp

(
At

2

)
is called the Strang splitting. It is of higher order than the Lie–Trotter splitting,
as you will prove in the next problem.

Problem 3 (7 points). Prove that

exp((A+B)t)− exp

(
At

2

)
exp (Bt) exp

(
At

2

)
= O(t3).
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The point of the following problem is to give you some experience with
unstable methods. It goes without saying that you should never actually use
these methods, but when faced with a complicated problem, you might not be
able to determine whether a given method is or is not stable. It is then helpful
to know what typically goes wrong when a method is unstable.

Problem 4 (3+3 points). Consider the 1-D heat equation on [0, 1] with zero
boundary conditions and the initial value

u0(x) = sin(πx).

This is a nice test problem, because one can show that the solution is simply

u(x, t) = exp(−π2t) sin(πx).

Now recall the finite difference method

u∆(`∆x, (n+ 1)∆t) = u∆(`∆x, n∆t) + ∆tD2
xu∆(`∆x, n∆t). (1)

introduced in class. This method converges for any sequence (∆xm,∆tm) of
discretization parameters so that ∆tm ≤ 1

2∆x2
m and limm→∞(∆xm,∆tm) =

(0, 0).

1. Compute the solution of the IBVP for the heat equation with initial condi-
tion u0(x) = sin(πx) by the finite difference method (1) up to time T = 1/8
for L = 4, 8, 16, 32, 64 using the time steps

∆t =
1

2
∆x2 =

1

2L2
.

Plot u∆(·, 1/8) for each value of L.

2. Now compute the finite difference method up to time t = 1/8 for the same
values of L but with

∆t =
1

2
∆x =

1

2L
.

Plot u∆(·, 1/8) for each value of L.

Finally, I guess I should have you prove consistency of the Crank–Nicolson
method, since I glossed over it in class.

Problem 5 (5 points). Let u(x, t) be the solution of the initial and boundary
value problem for the heat equation on [0, 1] with zero boundary conditions and
initial value u0(x). Recall that the Crank–Nicolson method is defined by the
recurrence relation

u∆(·, (n+ 1)∆t) =

(
I − ∆t

2
D2

x

)−1(
I +

∆t

2
D2

x

)
u∆(·, n∆t).

Prove that

u(·, (n+ 1)∆t) =

(
I − ∆t

2
D2

x

)−1(
I +

∆t

2
D2

x

)
u(·, n∆t) +Hn,
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where
‖Hn‖∆x ≤ C∆t(∆x2 + ∆t2).

Give an explicit formula for C in terms of the derivatives of u. You may use any
theorems from class of the homework related to the trapezoidal rule or similar
methods, but if you do use such a theorem, please cite it carefully and explain
why it applies.
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