
Homework 1

Math 652
Spring 2020

Due Friday, February 7 2020

Problem 1 (2+5+1+2 points).

1. Show that ∆h, an operator on L(Ωh), is symmetric. That is, show that
for any v, w ∈ L(Ωh) we have

〈∆hv, w〉h = 〈v,∆hw〉h.

Hint: Use the summation by parts formula from class. But be careful!
Remember that the formula only applies to functions v, w : Ω̄h → R defined
over the entire mesh Ω̄h with v = w = 0 on Γh. On the other hand, the
elements of L(Ωh) are functions v : Ωh → R defined over the interior Ωh
of the mesh. This is not a serious difficulty at all, but make sure you
understand why not.

2. You may be accustomed to thinking of linear operators as matrices. To
represent ∆h as a matrix one would first choose an enumeration of Ωh.
One conventional choice is to begin with (1, 1) and count along rows first
and then columns. For example, with N = 4, the enumeration of Ωh would
be

1 (1,1)
2 (1,2)
3 (1,3)
4 (2,1)
5 (2,2)
6 (2,3)
7 (3,1)
8 (3,2)
9 (3,3)

Given an enumeration, each function v : Ωh → R corresponds to a vector
ṽ ∈ R(N−1)2 . It is probably clear to you what the rule defining ṽ must be,
but in case it isn’t, here is an example which can serve as a definition: For
the enumeration above, we would have ṽ6 = v(2h, 3h) and ṽ2 = v(1h, 2h).
What is the matrix corresponding to ∆h under this enumeration? Don’t
hesitate to ask if this question is not clear to you. It’s important.
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3. Is the matrix corresponding to ∆h symmetric for all enumerations of Ωh?

4. When is it necessary to write ∆h explicitly as a matrix? Could you code
CG or Gauss–Seidel without explicitly choosing an enumeration and con-
strucing a matrix? Could you use the LU and QR decompositions provided
in SciPy? Could you prove the theoretical results below?

You have seen one proof of stability of ∆h based on summation by parts
and the discrete Poincaré inequality. It is also possible to prove stability us-
ing Fourier analysis, which gives explicit expressions for all eigenvectors and
eigenvalues. You will carry out this approach in the problem below.

Problem 2 (5+3+3 points).

1. Define φk` : Ωh → R by

φk`(mh, nh) = sin(kπmh) sin(`πnh).

Show that for any 1 ≤ k ≤ N −1 and 1 ≤ ` ≤ N −1, φk` is an eigenvector
of ∆h with eigenvalue

2

h2
(cos(kπh) + cos(`πh)− 2) .

Since ∆h is an operator on a space L(Ωh) of dimension (N −1)2, one can
conclude that these are all of the eigenvectors. Hint: Use the angle sum
identity for the sin function.

2. Recall the definition of the h-norm for functions v : Ωh → R:

‖v‖h =

{
h2

N−1∑
m,n=1

}
.

(If it concerns you that the sums only go up to N−1, then you can imagine
that v = 0 on Γh and the sums go all the way to N .) Show that

‖∆−1h ‖h =
h2

4(1− cos(πh))

and that

lim
h→0

h2

4(1− cos(πh))
=

1

2π2
.

Hint: By the first problem, you know that Ωh is symmetric. It follows that
‖∆−1h ‖2 = max{|λ|−1;λ ∈ σ(∆h)}. Since the `2 and h-norms are related
by a constant multiple, the `2 and h operator norms are the same.

3. Show that

κ2(∆h) =
1 + cos(πh)

1− cos(πh)
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and that

κ2(∆h) ∼ π2

2h2

in the limit as h→ 0. Note: The “∼” above means show that

κ2(∆h)
π2

2h2

→ 1.

Finally, I would like you to prove a discrete version of the Poincaré inequality
to complete the proof of stability outlined in class. It’s worth noting that this
proof of stability works in many cases where a proof by Fourier analysis is not
feasible. For example, it will work with only minor modifications in the case of
non-constant coefficients.

Problem 3 (5+3 points).

1. Prove that for any v : Ω̄h → R with v = 0 on Γh.

‖v‖h ≤ ‖D−x v‖h.

Of course, we then have ‖v‖h ≤ ‖D−y v‖h as well by symmetry. Hint:
Mimic the proof of the Poincaré inequality from class. All steps are more
or less the same.

2. Combine the summation by parts lemma and the discrete Poincaré in-
equality above to prove the stability result

‖∆hv‖h ≥ ‖v‖h.

Hint: Again, mimic the proof of the analogous result for C1 functions from
class.

The above seems like enough for this week. I’ll assign some computations
next week.
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