Homework 1

Math 652
Spring 2020
Due Friday, February 72020

Problem $1(2+5+1+2$ points).

1. Show that Δ_{h}, an operator on $L\left(\Omega_{h}\right)$, is symmetric. That is, show that for any $v, w \in L\left(\Omega_{h}\right)$ we have

$$
\left\langle\Delta_{h} v, w\right\rangle_{h}=\left\langle v, \Delta_{h} w\right\rangle_{h} .
$$

Hint: Use the summation by parts formula from class. But be careful! Remember that the formula only applies to functions $v, w: \bar{\Omega}_{h} \rightarrow \mathbb{R}$ defined over the entire mesh $\bar{\Omega}_{h}$ with $v=w=0$ on Γ_{h}. On the other hand, the elements of $L\left(\Omega_{h}\right)$ are functions $v: \Omega_{h} \rightarrow \mathbb{R}$ defined over the interior Ω_{h} of the mesh. This is not a serious difficulty at all, but make sure you understand why not.
2. You may be accustomed to thinking of linear operators as matrices. To represent Δ_{h} as a matrix one would first choose an enumeration of Ω_{h}. One conventional choice is to begin with $(1,1)$ and count along rows first and then columns. For example, with $N=4$, the enumeration of Ω_{h} would be

1	$(1,1)$
2	$(1,2)$
3	$(1,3)$
4	$(2,1)$
5	$(2,2)$
6	$(2,3)$
7	$(3,1)$
8	$(3,2)$
9	$(3,3)$

Given an enumeration, each function $v: \Omega_{h} \rightarrow \mathbb{R}$ corresponds to a vector $\tilde{v} \in \mathbb{R}^{(N-1)^{2}}$. It is probably clear to you what the rule defining \tilde{v} must be, but in case it isn't, here is an example which can serve as a definition: For the enumeration above, we would have $\tilde{v}_{6}=v(2 h, 3 h)$ and $\tilde{v}_{2}=v(1 h, 2 h)$. What is the matrix corresponding to Δ_{h} under this enumeration? Don't hesitate to ask if this question is not clear to you. It's important.
3. Is the matrix corresponding to Δ_{h} symmetric for all enumerations of Ω_{h} ?
4. When is it necessary to write Δ_{h} explicitly as a matrix? Could you code $C G$ or Gauss-Seidel without explicitly choosing an enumeration and construcing a matrix? Could you use the $L U$ and $Q R$ decompositions provided in SciPy? Could you prove the theoretical results below?

You have seen one proof of stability of Δ_{h} based on summation by parts and the discrete Poincaré inequality. It is also possible to prove stability using Fourier analysis, which gives explicit expressions for all eigenvectors and eigenvalues. You will carry out this approach in the problem below.

Problem 2 ($5+3+3$ points).

1. Define $\phi_{k \ell}: \Omega_{h} \rightarrow \mathbb{R}$ by

$$
\phi_{k \ell}(m h, n h)=\sin (k \pi m h) \sin (\ell \pi n h)
$$

Show that for any $1 \leq k \leq N-1$ and $1 \leq \ell \leq N-1$, $\phi_{k \ell}$ is an eigenvector of Δ_{h} with eigenvalue

$$
\frac{2}{h^{2}}(\cos (k \pi h)+\cos (\ell \pi h)-2)
$$

Since Δ_{h} is an operator on a space $L\left(\Omega_{h}\right)$ of dimension $(N-1)^{2}$, one can conclude that these are all of the eigenvectors. Hint: Use the angle sum identity for the sin function.
2. Recall the definition of the h-norm for functions $v: \Omega_{h} \rightarrow \mathbb{R}$:

$$
\|v\|_{h}=\left\{h^{2} \sum_{m, n=1}^{N-1}\right\} .
$$

(If it concerns you that the sums only go up to $N-1$, then you can imagine that $v=0$ on Γ_{h} and the sums go all the way to N.) Show that

$$
\left\|\Delta_{h}^{-1}\right\|_{h}=\frac{h^{2}}{4(1-\cos (\pi h))}
$$

and that

$$
\lim _{h \rightarrow 0} \frac{h^{2}}{4(1-\cos (\pi h))}=\frac{1}{2 \pi^{2}}
$$

Hint: By the first problem, you know that Ω_{h} is symmetric. It follows that $\left\|\Delta_{h}^{-1}\right\|_{2}=\max \left\{|\lambda|^{-1} ; \lambda \in \sigma\left(\Delta_{h}\right)\right\}$. Since the ℓ^{2} and h-norms are related by a constant multiple, the ℓ^{2} and h operator norms are the same.
3. Show that

$$
\kappa_{2}\left(\Delta_{h}\right)=\frac{1+\cos (\pi h)}{1-\cos (\pi h)}
$$

and that

$$
\kappa_{2}\left(\Delta_{h}\right) \sim \frac{\pi^{2}}{2 h^{2}}
$$

in the limit as $h \rightarrow 0$. Note: The " " above means show that

$$
\frac{\kappa_{2}\left(\Delta_{h}\right)}{\frac{\pi^{2}}{2 h^{2}}} \rightarrow 1
$$

Finally, I would like you to prove a discrete version of the Poincaré inequality to complete the proof of stability outlined in class. It's worth noting that this proof of stability works in many cases where a proof by Fourier analysis is not feasible. For example, it will work with only minor modifications in the case of non-constant coefficients.

Problem 3 ($5+3$ points).

1. Prove that for any $v: \bar{\Omega}_{h} \rightarrow \mathbb{R}$ with $v=0$ on Γ_{h}.

$$
\|v\|_{h} \leq\left\|D_{x}^{-} v\right\|_{h} .
$$

Of course, we then have $\|v\|_{h} \leq\left\|D_{y}^{-} v\right\|_{h}$ as well by symmetry. Hint: Mimic the proof of the Poincaré inequality from class. All steps are more or less the same.
2. Combine the summation by parts lemma and the discrete Poincaré inequality above to prove the stability result

$$
\left\|\Delta_{h} v\right\|_{h} \geq\|v\|_{h}
$$

Hint: Again, mimic the proof of the analogous result for C^{1} functions from class.

The above seems like enough for this week. I'll assign some computations next week.

