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Abstract Let X be a holomorphic family of compact complex projective algebraic
manifolds with fibers X over the open unit 1-disk A. Let Kx, and Kx be respec-
tively the canonical line bundles of X; and X. We prove that, if L is a holomorphic
line bundle over X with a (possibly singular) metric e”¥ of semipositive curvature
current on X such that e ¥|x, is locally integrable on Xo, then for any positive
integer m, any s € I'(mKx, + L) with |s|> e® locally bounded on Xo can be
extended to an element of I' (X,m Kx + L). In particular, dim I" (X, m Kx,+L)
is independent of ¢ for @ smooth. The case of trivial L gives the deformational in-
variance of the plurigenera. The method of proof uses an appropriately formulated
effective version, with estimates, of the argument in the author’s earlier paper on
the invariance of plurigenera for general type. A delicate point of the estimates in-
volves the use of metrics as singular as possible for p Kx, +ap L on X, to make the
dimension of the space of L? holomorphic sections over Xo bounded independently
of p, where a, is the smallest integer > 2—;—1 These metrics are constructed from s.
More conventional metrics, independent of s, such as generalized Bergman kernels
are not singular enough for the estimates.
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0 Introduction

For a holomorphic family of compact complex projective algebraic manifolds,
the plurigenera of a fiber are conjectured to be independent of the fiber. The
case when the fibers are of general type was proved in [Siu98]. Generalizations
were made by Kawamata [Kaw99] and Nakayama [Nak98] and, in addition,
they recast the transcendentally formulated methods in [Siu98] into a com-
pletely algebraic geometric setting. Recently Tsuji put on the web a preprint
on the deformational invariance of the plurigenera for manifolds not necessar-
ily of general type [Tsu01], in which, in addition to the techniques of [Siu98],
he uses his theory of analytic Zariski decomposition and generalized Bergman
kernels. Tsuji’s approach of generalized Bergman kernels naturally reduces
the problem of the deformational invariance of the plurigenera to a growth
estimate on the generalized Bergman kernels. This crucial estimate is still
lacking. We will explain it briefly in (1.5.2) and discuss it in more details in
§6 at the end of this paper.

In this paper we use an appropriately formulated effective version, with
estimates, of the argument in [Siu98] to prove the following extension the-
orem (Theorem 0.1) which implies the invariance of semipositively twisted
plurigenera (Corollary 0.2). The results in this paper can be regarded as
generalizations of the deformational invariance of plurigenera.

Theorem 0.1. Let 7 : X — A be a holomorphic family of compact complex
projective algebraic manifolds over the open unit 1-disk A = {z eC l l2] < 1}.
Fort € A, let Xy = m~1(t) and K; be the canonical line bundle of X;. Let
L be a holomorphic line bundle over X with a (possibly singular) metric e~ %
whose curvature current 3%65(,0 is semi-positive on X such that e=%|x, is
locally integrable on Xo. Let m be any positive integer. Then any element
s € I'(Xo,m Kx, + L) with |s|* =% locally bounded on Xo can be extended
to an element 3 € I'(X,m Kx + L) in the sense that 3|x, = s A 7* (dt),
where Kx is the canonical line bundle of X.

Corollary 0.2. Let 7 : X — A be a holomorphic family of compact complex
projective algebraic manifolds over the open unit 1-disk A with fiber X,. Let
L be a holomorphic line bundle over X with a smooth metric e~¥ whose
curvature form gagcp 18 semi-positive on X . Let m be any positive integer.

Then the complex dimension of I'(X¢,m Kx, + L) is independent of t for
te A.

Corollary 0.3. Let 7 : X — A be a holomorphic family of compact complex
projective algebraic manifolds over the open unit 1-disk A with fiber X,. Let
m be any positive integer. Then the complex dimension of I' (X;,m Kx,) is
independent of t for t € A.

So far as the logical framework is concerned, the method in this paper
simply follows that of [Siu98], the only difference being the monitoring of es-
timates in this paper. Some of the estimates are quite delicate. The estimates
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depend on a choice, at the beginning, of singular metrics for the twisted pluri-
canonical line bundles of the initial fiber. In contrast to the metrics chosen in
[Siu98], for the effective argument in this paper metrics as singular as possible
have to be chosen for the twisted pluricanonical bundles on Xg, as long as
the relevant sections on X, remain L2. The use of usual abstractly-defined
general metrics for the twisted pluricanonical line bundle of the initial fiber,
such as generalized Bergman kernels on Xj, would contribute an uncontrol-
lable factor in the final estimate (see (1.5.2) below). If one uses generalized
Bergman kernels on X as for example in [Tsu01], there are difficulties with
norm changes similar to the norm-change problems encountered in the papers
of Nash [Nas54], Moser [Mos61], and Grauert [Gra60]. The norm changes in
our case mean the need to shrink the domain for supremum estimates in
each of an infinite number of steps. Our situation here is different from those
which could be handled by the norm-change techniques of Nash [Nas54],
Moser [Mos61], and Grauert [Gra60] (see §6, in particular (6.4)). The diffi-
culty here with the use of generalized Bergman kernels cannot be overcome.

The method of this paper should be applicable to give the deformational
invariance of the plurigenera twisted by a numerically effective line bundle,
i.e., Corollary 0.2 in which L is assumed to be numerically effective instead
of having a smooth metric with semi-positive curvature. In this paper we
give the easier semi-positive case to avoid one more layer of complication in
our estimates. For the numerically effective case of Corollary 0.2 we have to
use a sufficiently ample line bundle A so that m L + A is very ample for any
positive integer m and to keep track of the limiting behavior of the m-th
root of some canonically defined smooth metric of m L + A. In order not
to be distracted from the main arguments of this paper by another lengthy
peripheral limiting process, we will leave the numerically effective case of
Corollary 0.2 to another occasion.

Unlike the case of general type (see (1.5.1)), for the proof in this paper a
genuine limiting process is being used. It is not clear whether this proof can
be translated into a completely algebraic geometric setting. Of course, instead
of L being semi-positive, the algebraic geometric formulation of Corollary 0.2
would have to assume that L is generated by global holomorphic sections
on X. The difficulty of translating the limiting process into an algebraic
geometric setting occurs already for the case of trivial L (Corollary 0.3).

A more general formulation of the deformational invariance of plurigenera
is for the setting of a holomorphic family of compact Kahler manifolds. Such
a setting is completely beyond the reach of the methods of [Siu98] and this
paper. For that setting, the only known approach is that of Levine [Lev83)
in which he uses Hodge theory to extend a pluricanonical section from the
initial fiber to its finite neighborhood of second order over a double point of
the base. The conjecture for the Kahler case is the following.

Congecture 0.4. (Conjecture on Deformational Invariance of Plurigenera for
the Kihler Case) Let m: X — A be a holomorphic family of compact Kahler
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manifolds over the open unit 1-disk A with fiber X;. Then for any positive
integer m the complex dimension of I' (X;,m Kx,) is independent of ¢ for
t e A.

The case of twisting by a numerically effective line bundle can be formu-
lated for the Kahler case in the form of a conjecture as follows.

Conjecture 0.5. (Conjecture on Deformational Invariance of Plurigenera for
the Kaehler Case with Twisting by Numerically Effective Line Bundles) Let
7 : X = A be a holomorphic family of compact Kihler manifolds over the
open unit 1-disk A with fiber X;. Let L be a holomorphic line bundle on
X which is numerically effective in the sense that, for any strictly negative
(1,1)-form w on X and any compact subset W of X, there exists a smooth
metric for L whose curvature form is > w on W. Then for any positive integer
m the complex dimension of I' (X, (L|X;) + m Kx,) is independent of ¢ for
te A

Since the complex dimension of I' (X;, (L|{X:) + m Kx,) is always upper
semi-continuous as a function of ¢, to prove its independence on ¢ it suffices
to show that every element s of I (X¢,, (L|X¢,) + m Kx,,) can be extended
to an element 5 of I'(X,L + m Kx) in the sense that s A 7* (dt) = 3|X4,.
Thus Corollaries 0.2 and 0.3 follow readily from Theorem 0.1. Most of the
rest of this paper is devoted to the proof of Theorem 0.1. For notational
simplicity, in referring to the extension of a twisted pluricanonical section on
Xy to X, we identify Kx, with Kx|Xo by the map which is defined by the
wedge product with «* (dt).

In the proof of the deformational invariance of the plurigenera in [Siu98],
there are the following four major ingredients.

(i) Global generation of the multiplier ideal sheaf after twisting by a suffi-
ciently ample line bundle (by the method of Skoda [Sko72}).

(ii) Extension of sections from the initial fiber which are L? with respect to
a singular metric on the family with semi-positive curvature current (by
the method of Ohsawa-Takegoshi [OT87])).

(iii) An induction argument on m, which uses the two preceding ingredients
and regards a section of the m-canonical bundle as a top-degree form
with values in the (m —1)-canonical bundle, in order to construct singular
metrics on the (m —1)-canonical bundle on the family and extend sections
of the m-canonical bundle from the initial fiber.

(iv) The process of raising a section on Xo to a high power £ and later tak-
ing the £-th root after extending to X its product with the canonical
section sp of some fixed effective line bundle D on X. For the case of
general type, when m Kx is written as the sum of D and a sufficiently
ample line bundle A for some large m, multiplication by sp provides
us with the twisting by A which is needed for the global generation of
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the multiplier ideal sheaf in the first ingredient. This technique of taking
powers, extending the product with sp, and taking roots is to eliminate
the effect of multiplication by sp, or equivalently to eliminate the effect
of multiplication of a section of A.

The rough and naive motivation underlying the idea of the proof in [Siu98]
is that, if one could write an element (™) of I'(Xo,m K X,) a8 a sum of
terms, each of which is the product of an element s(1) of I (Xo,Kx,) and
an element s(™=1) of I'(Xy, (m — 1) Kx,), then one can extend s(™) to an
element of I' (X, m Kx) by induction on m. Of course, in general it is clearly
impossible to so express s(™) as a sum of such products. However, one could
successfully implement a very much modified form of this rough and naive
motivation by using the above four ingredients in the case of general type.
The actual proof in [Siu98] by induction on m, which uses the modified form
of the argument, appears very different from this rough and naive motivation
and is not recognizable as related in any way to it, but it was in fact from such
a rough and naive motivation that the actual proof in [Siu98] evolved. The
modification is to require only s(1) to be just a local holomorphic function
and twist each m Kx, by the same sufficiently ample line bundle A on X
so that locally the absolute value of 3™ can be estimated by the sum of
absolute values of elements of I" (Xo,(m — 1) Kx, + A). Such an estimate
enables us to inductively get the extension and then to use the technique of
taking powers and roots to get rid of the twisting by A.

The assumption of general type is used in the fourth ingredient listed
above. For manifolds not necessarily of general type, in the fourth ingredient
multiplication by sp is replaced by multiplication by a section s4 of A and
one has to pass to limit as the integer, which is both the power and the root
order, goes to infinity, in order to eliminate the effect of multiplication by s 4.
To carry out the limiting argument, one needs to have a good control of the
estimates, which necessitates the use of an effective version of the argument
of [Siu98).

Besides proving Theorem 0.1, the paper includes in §3 a simple approach
to extension theorems which uses the usual basic estimates and two weight
functions (see §3) and explains in §6 the delicate point of the estimates,
especially why there are difficulties with the simple natural approach of using
generalized Bergman kernels.

Every metric of holomorphic line bundles in this paper is allowed to be sin-
gular, but, so far as regularity is concerned, its curvature current is assumed
to be no worse than the sum of a smooth form and a semi-positive current.
For a metric e™® of a holomorphic line bundle, we use the notation Z, to
denote the multiplier ideal sheaf which consists of all holomorphic function
germs f such that | f|2 e~ % is locally integrable. Multiplier ideal sheaves were
introduced by Nadel [Nad89)] for his vanishing theorem. Nadel’s vanishing the-
orem, in the algebraic setting and in the special case of algebraically-definable
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singular metrics, is reducible to the vanishing theorem of Kawamata-Viehweg
[Kaw82], [Vie82].

The structure of this paper is as follows. In §1 we review the argument of
[Siu98] for the deformational invariance of plurigenera for the case of general
type. The purpose of the review is to first present the logical framework
of the argument without the estimates so that it can serve as a guide for
following the later complicated details of the estimates in the effective version.
Sections 2, 3, 4, and 5 with detailed estimates correspond respectively to the
first, second, third, and fourth ingredients listed above. Section 6 contains
some remarks on the difficulties of using generalized Bergman kernels for
the effective arguments for the problem of the deformational invariance of
plurigenera for manifolds not necessarily of general type.

1 Review of Existing Argument for Invariance of
Plurigenera

The first two ingredients of the argument of [Siu98] for the deformational
invariance of plurigenera for general type uses the global generation of multi-
plier ideal sheaves (by the method of Skoda [Sko72]) and an extension theorem
of Ohsawa-Takegoshi type [OT87]. Let us first recall the precise statements
of these two results.

1.1 Global Generation of Multiplier Ideal Sheaves [Siu98, p.664, Prop. 1]

Let L be a holomorphic line bundle over an n-dimensional compact complex
manifold Y with a Hermitian metric which is locally of the form e~¢ with
¢ plurisubharmonic. Let Z; be the multiplier ideal sheaf of the Hermitian
metric e~¢. Let F be an ample holomorphic line bundle over Y such that for
every point P of Y there are a finite number of elements of I'(Y, E) which all
vanish to order at least n + 1 at P and which do not simultaneously vanish
outside P. Then I'(Y,Z; ® (L + E + Ky)) generates I ® (L + E + Ky) at
every point of Y.

Theorem 1.2. (Extension Theorem of Ohsawa-Takegoshi Type) [Siu98,
p.666, Prop. 2]. Let v : Y — A be a projective algebraic family of compact
complex manifolds parametrized by the open unit 1-disk A. Let Yo = v~1(0)
and let n be the complex dimension of Yy. Let L be a holomorphic line bun-
dle with a Hermitian metric which locally is represented by e~X such that
V—188x > w in the sense of currents for some smooth positive (1,1)-form
wonY.LetO<r<land A, ={te A | |t| < r}. Then there exists a pos-
itive constant A, with the following property. For any holomorphic L-valued
n-form f on Yy with
Ifle™ < o0,
Yo
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there exists a holomorphic L-valued (n + 1)-form f on v 1(4,) such that
flve = f A*(dt) at points of Yy and

| e < 4, / e

Note that Theorem 2.1 (respectively Theorem 3.1) below is an effective
version of Theorem 1.1 (respectively Theorem 1.2).

1.3 Induction Argument in Aziomatic Formulation

To prepare for later adaptation to the effective version, we now formulate
axiomatically the induction argument of [Siu98). The induction argument
is the precise formulation of the rough and naive motivation explained in
the Introduction. The main idea of the induction argument is to start with
suitable metrics e=%» for pK Xo + D on Xy with semi-positive curvature
current on Xy. The induction step is to use a sufficiently ample line bundle A
to extend L? sections of m K Xo + D + A with respect to e=¥m-1 from X to
X and to produce a metric e™*™ of mKyx + D+ A on X with semi-positive
curvature current so that L? sections of (m + 1) Kx, + D + A on Xo with
respect to e~¥m are L? with respect to e~Xm|y, .

Fix a positive integer mg and a holomorphic line bundle D over X. Assume
that A is a sufficiently ample line bundle on X so that for any point P of X,
there are a finite number of elements of I'(Xo, A) which all vanish to order at
least n+1 at P and which do not simultaneously vanish outside P. Thus the
theorem 1.1 of global generation of multiplier ideal sheaf on X, holds with
twisting by A|X,.

Suppose we have

(i) ametric e=» for p Kx, + D over X, with semi-positive curvature current
on X for 0 < p < myg, and
(ii) a metric e=%2 of D over X , with semi-positive curvature current on X ,

such that

(a) Z,, C Z4,_, on Xq for 0 < p < my,
(b) Z,,|y, agrees with Z,,, on X,.

Proposition 1.4. If a holomorphic family w : X — A of compact complex
projective algebraic manifolds satisfies Assumptions (i), (i) and Conditions
(a), (b) of (1.8), then any element f € I (Xo,mo Kx, + D + A) which locally
belongs to I‘,,mo_ , can be extended to an element ferr(X,mgKx + D+ A).

Proof. By (1.1) and Condition (a) of (1.3), we can cover Xo by a finite number
of open subsets Uy (1 < A < A) so that, for some nowhere zero element
& € I'(Uy, —Kx, ), we can write

Nmo—l

HfU= 3 p{momtN)glmo=1) (1.4.1)

k=1
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where b,(c'"°_1"\) is a holomorphic function on U, and

sMmDep (X0, Zpmy 5 ((mo — 1) Kx, + D + A)) .

Moreover, we can assume that the open subsets U) are chosen small
enough so that, for 1 < p < mg — 2, inductively by (1.1) we can write

NP
6P |Uy = Y bV ) (1.4.2)
k=1

where bg{" ,;‘\) is a holomorphic function on Uy, and

s € I'(Xo,Z,,_, (pKx, + D + A)) .

For this we have used already Condition (a) and have also used Assumption

(i) of (1.3) in order to apply (1.1) on the global generation of multiplier ideal
sheaves.

We are going to show, by induction on 1 < p < myg, the following claim.
(1.4.3) Claim
s € I'(Xo,pKx, + D + A)

can be extended to
8P eI (X,pKx + D + A)
for1<j<N,and 1< p<m.
The case p = 1 of Claim (1.4.3) clearly follows from Assumption (ii) and
Condition (b) of (1.3) and the extension theorem (Theorem 1.2). Suppose
Claim (1.4.3) has been proved for Step p and we are going to prove Step

p+ 1, where p is replaced by p + 1.
Let

Ny 2
Xp = IOgZ Igl(cp)l
k=1

so that e™X» is a metric of p Kx + D+ A. Since §§-”)|Xo = sg-p) for1<p<N,
by Step p of Claim 1.4.3, it follows from (1.4.2) that the germ of s§-"+1) at any
point of X, belongs to T, Xo for1 < j < Npy1. By the extension theorem 1.2,

stV € I (Xo, (p+1) Kx, + D + A)
can be extended to

s er(X,(p+1)Kx + D+ 4)
finishing the verification of Step p + 1 of Claim (1.4.3).
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Since §§-m°_l)|Xo = sg.""’—l) for 1 < p < Np,-1 from Claim (1.4.1),
by (1.4.3) the germ of f at any point of Xy belongs to IXmo-ll xo+ BY the
extension theorem 1.2

f eI (Xo,moKx, + D+ A)

can be extended to

fer(X,(moKx + D+ 4)) .

1.5 Metrics for the Induction Argument for the Case of General Type

We now discuss how the metrics e~%» in the axiomatic formulation of the
induction argument can be chosen for the case of general type.

In [Siu98], a sufficiently large positive number a is chosen so that a X x =
D + A for some effective divisor D. Let

sﬁ”",--. ,3,(1"':) €I'(Xo,mKx,)

be a basis over C. Let sp be the canonical section of D whose divisor is D
and h4 be a smooth metric of A with positive curvature form.

For the case of general type, one can simply use
amg 2p
Yp = logz |3§m°) ° +log|sp|?

—

for0<p<my-1.

1.5.1  In the proof of the invariance of plurigenera in [Siu98] the infinite

series
co qm 2
o=10g 3" en 37 |47
m=1 i=1
is used to define

¢p=pyp+loglspl®

where a sequence of positive numbers ¢, (1 < m < o0) is chosen which
decreases sufficiently rapidly, as m increases, to guarantee local convergence
of the infinite series . The infinite series ¢ was introduced in [Siu98] more
for notational expediency than for absolute necessity. In effective arguments
where estimates have to be controlled, clearly we should avoid the complica-
tions of unnecessary infinite processes. So the metric given in (1.5) is more to
our advantage than the one given in [Siu98] in the form of an infinite series.
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1.5.2  Reason for Metrics for Pluricanonical Bundles on Initial Fiber as
Singular as Possible. As a matter of fact, in order to guarantee convergence
in the effective arguments where D is set to be 0, the more singular the metric
e~%» of p Kx, is, the easier it is to control the estimates. For the extension
s{mo) € ' (Xy,mp Kx,) to X in the effective argument, we will use the metric

1

|s<mo>|r’n% '

e ¥r =

It is introduced in (4.1) as e"?¥. (The metric e P¥ in (4.1) contains also
the contribution from the semi-positive line bundle L and would be equal to
e~ %» when L is the trivial line bundle. Here for simplicity we assume L =0
in our discussion here in (1.5.2).)

The reason why we want more singularity for e~%» = e P¥ is that, for
the final estimates, a uniform bound, independent of p, is needed for the
complex dimension of I' (XO,I% (pKx, + A)) If some other less singular
metrics are used for p Kx,, one may run into the difficulty that the complex ’
dimension of I" (Xo,Z,, (p Kx, + A)) grows as a positive power of p. When
we take the ¢-th root of the extension of (s("‘°))l s, from Xy to X, where
s4 € I'(X,A), and let £ — oo, in the estimate there is a contribution of
the factor which is the £-th root of the product of the complex dimension
of I' (Xo,Z,, (p Kx, + A)) for 0 < p < £my. If the complex dimension of
r (Xo,l"‘pp (pKx, + A)) grows at least like a positive power of p, a positive
power of the factor (Z!)% occurs in the final estimate and becomes unbounded
as ¢ goes to infinity. The occurrence of such a factor is due to the estimate in
(5.3.4). So the use of usual abstractly-defined general metrics for p K x,, such
as generalized Bergman kernels, would not work in the effective argument.

1.6 Taking Powers and Roots of Sections for the Case of General Type.

We take s € I'(Xo,mo Kx,). To finish the last step of the proof of the de-
formational invariance of the plurigenera for general type, we need to extend
s to an element of I' (X, mo Kx,).

Take a positive integer £ and let m = mo£. We use the formula (1.5) to
define ¢, for the larger range 0 < p < m —~ 1. Then the germ of stsp at any
point of Xy belongs to Z,__,. By Theorem 1.1 on the global generation of
multiplier ideal sheaves, we can write

gm
stsp = Z bi sfcm) (1.6.1)
k=1

locally on X for some local holomorphic functions by on Xo and for

8™ € I (Xo,Zp,,_, (mKx, + D+ A)) .
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Then, by Proposition 1.4 with mg replaced by m, sfcm) can be extended to

5™ e I'(X,mKx + D+ A) = ' (Xo, (m + a) Kx)

for 1 <k < qy. Let

ideal sheaf 7, x,-

Im 2
xm =1log ) |5
k=1

From (1.6.1) the germ of of s’sp at any point of X, belongs to the multiplier

We now apply Hoélder’s inequality. Let hp be a smooth metric for D
without any curvature condition. Let tho be a smooth metric for K,
without any curvature condition. Then dVx, := (K xo)_l is a smooth volume
form of X,. Let % + el—, = 1 for £ sufficiently large. Since Tl, =1- % and
¢ = 44, it follows that Holder’s inequality gives

/ |s|2e_(m_":i93)x"‘ dVx,
Xo

Al

< (/xo |stsp|” hp e—t(ﬁrﬂ;)xmdvxo)% /xo Z—l—

< (sup hicy 7

Xo

=)' (L

2 m,
3(3D)%| hDe_(“"T&)X"‘) ——;—-——— dVx,

2
|(s0)?| ko
1-3
dVx
1 [}
hD |8D|2) -1
Istlez hp e“x"'deo ) 4 )
(hKXo)a
1-4
/ dVy,
Xo (hD ISDlz)ﬁ_l

which is finite for £ sufficiently large. Hence

/ Islze_(mm;al)x'" < (sup th e(m;-l-a)x"') / |3|25_(m_";-ni)x"‘ dVXo <00,
Xo Xo Xo

By the extension theorem 1.2, s can be extended to an element

This finishes the review of the argument of [Siu98].

§e F(X,mon) .

- MEE msiMMli
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2 Global Generation of Multiplier Ideal Sheaves
with Estimates

Now we give the effective version, with estimates, of the global generation of
multiplier ideal sheaves.

Theorem 2.1. (Effective Version of Global Generation of Multiplier Ideal
.Sheaves). Assume that for every point Py of Xy one has a coordinale chart
Up, = {|2(7)| < 2} of X with coordinates

2P0 = (P, o)

centered at Py such that the set Up, of points of Up, where !z(P °)| <1is
relatively compact in Upo. Let wy be a Kdhler form of Xo. Let Cx, be a
positive number such that the supremum norm of 5z§P°) with respect to wy is
<Cx, onUp, for 1 < j<n. Let 0 <ry <ty <1. Let A be an ample line
bundle over Xy with a smooth metric ha of positive curvature. Assume that,
for every point Py of Xy, there exists a singular metric hy p, of A, whose
curvature current dominates cawo for some positive constant c4, such that

ha
W S h'A,Po
on Up, and
ha,py (2(50)
sup v_ﬂp___ <Cryra
r1<|2(Po)|<rg hA(z( D))

and

sup <ct

Xo NA,Py

for some constants Cy,,, and C* > 1 independent of Py. Let m be a pos-
itive integer. Assume that there is a (possibly singular) metric e~¥=-1 for
(m - 1) Kx, with semi-positive curvature current. Let

1 1 272 Cx, \ 2
b —_ f = £r2%Xo

Let0 <r <1 and let

01’0,1’ = UPo N {IZ(PO)

T
< .
n\/C"}

Let N, be the complex dimension of the subspace of all elements

s € I'(Xo,m Kx, + A)
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such that
/ s e=#m-1h, < 00.
Xo

Then there exist

0'{'"),--- ,0%’3 EP(Xo,meo +A)

Je

(1 < k < Ny) such that, for any Py € X, and Jor any holomorphic section s
of m Kx, + A over Up, with

with \
a,(cm)l e ¥m-1h, <1

/ ls|2e=#m-thy = C, < oo,
Up,

(]

one can find holomorphic functions bpy,m,k on U, Py,r Such that

Npm

m

$= prthmyk U’(C )
k=1

onUp, ,» and

N,
A 1
sup E 'bPo,m,klz < ——20b C, .
Upy.r k=1 (1-r)

The proof of Theorem 2.1 will depend on the following lemma.

Lemma 2.2. Under the assumption of Theorem 2. 1, given any holomorphzc
section 38 of m Kx, + A over U, P, With

/ |8|2e~m~1hy = C, < o0
Uy

there exist o € I‘(Xo,meo-}-A) and v; € I'(Up,,mKx, + A) for 1 <

J< nsuchthats—o=3"_, z(P") v; with

/ Ialze_“’"‘“hA <c'c,
Xo

/ |v,~|2 e“""'-‘hA < Cb Ca .
P

Ur,
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Before we prove Lemma 2.2, we recall the following result of Skoda [Sko72,
Th. 1, pp.555-556].

Theorem 2.3. (Skoda). Let 12 be a pseudoconvez domain in C™ and v be o
plurisubharmonic function on Q2. Let gy, ..., gp be holomorphic functions on
2. Let o > 1 and ¢ = inf(n,p — 1). Then for every holomorphic function f
on 12 such that

/ﬂ IFPlg"2 %Y dA < o0 ,

there exist holomorphic functions hy, ..., h, on 22 such that

p
F=Ygih |
=1

and

[ et Eemevan < 2 [ | ppjgie-tevan, |
7 a-1Jg |

where }
1 1
2 2

r 14
gl = (Xl ) o Ihl= 2]
i=1

j=1

and dA is the Euclidean volume element of C™.
2.4 Proof of Lemma 2.2.

We take a smooth cut-off function 0 < p(z) < 1 of a single real variable z so
that o(z) =1 for z < rf and o(z) = 0 for > r? and

|26 <

7'1

Let op, = 0 (lz(Po) |2) Then the supremum norm of Jgp, with respect to wp
is no more than

21‘20){0
2_ .2 °
T2 — T}

Consider s8gp,. Then

/}; Iségpoize_v"‘"h,;,po
)

- h
= [l erenrn (22)
Xo ha

hap, 512 —pm_s 27,Cx, \?
sup -h— |8 69p0| e rm hA < C,-l,,.z = 3 C, .
TlS|z(P°)|ST2 A Xo T2 1"1

IA
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We now solve the equation fu = s 591:0 with the estimate

_ 1 27, Cx, \?
/)‘{ lu|26 qomh'A,Po < a Crlﬂ': (_22")%) Cs .
o

T2 —"

Let o = spp, — u. Then

/ Ia,lze—cpm-th - / ISQPo _ ul2e~¢m-1hA
Xo

Xo

<9 / (s + [uf?) em-1h4

Xo
h
<20, +2/ [ul?e=#m~1h4 p, (—f‘—)
Xo hA;-PO

h
<2C,+2 (sup A ) / [ul? € ¢m=1h g p,
Xo hA,Po Xo
1 2 2
<2 (1 +C =G,y 1, (—239"7) ) c,
which is < C* C,. Since s — o = (1 — op,) 8 + u, it follows that

ls-o*  _, / |1 = ery) s|* + [u® _
—————e Pmhy <2 e ¥mhy
-/Upo Iz(Po)IZ("H) Up, Iz(PO)l2("+l)

1 1 279 Cx, 2
= (rf<ﬂ+l> +oCnm (552) )0

because gp, = 1 on {Iz(P°)| <r}and

ha
= < ha,p
|2(Po) [H+HD) ’
on Up,. By Skoda’s theorem 2.3 with g; = z;, p=n, and e = T, we can

write
n

_ (Po), .
s—0= E zj vy,
J=1

where v; is a holomorphic section of m Kx, + A on Up, with

7 — / ls—o®  _
—_— e m— hA S n —_— ¢ Vm—lhA
/(.]Po lz(P0)|2ﬂ U, |z(P0)|2(ﬂ+l)

2
<o ( 1 1 C,.h” (27‘7;2 CX20) ) C, < Cb Cs

< S5+ —
rf("”) ca 2T

for 1 < j < n. Since Up, = {|2(")| < 1}, it follows that
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/ |v,—|2 e Pm-1h, < CVC, . O
P,

0

2.5 Proof of Theorem 2.1.

Let
a§"‘),--- ,05\',1) € I'(Xo,m Kx, + A)

be an orthonormal basis, with respect to e”¥™-1h4 on X, of the subspace
of all elements o(™ € I" (X, m Kx, + A) such that

J

By Lemma 2.2 there exist
o €I (Xo,mKx, +A)

2
a("‘)| e ¥Pm-1h,y<o0.

and
vj € F(Upo,meo +A)
for 1<j<msuchthat s—o=37, 24P y; with

/ lo|2e=¥m-1hy < c'C,
Xo

and
/ |’u,-|2 e ¥m-1h < C'C,.
Po
We can uniquely write o = kN:l Ck a,(cm) with ¢ € C for 1 < k < N,;;. Then
s=Nm g o™ 4+ PO z§P°) v; on Up, and

Nrm
Y lal*<ctc,.
k=1

We are going to iterate this process. We do it with s replaced by v; and use
induction. This iteration process is simply an effective version, with estimates,
of Nakayama’s lemma in algebraic geometry. For notational convenience in
the iteration and induction process, we rewrite the index 1 < j < n as
1 < j; £ n. We now replace s by v;, in the preceding argument and get

2 M, (R
_ m Py
Vi = zck,ilak + Z %5, Vg2
k=1 Fa=1

with ¢ j, € C and vj, j, € I'(Up,,m Kx, + A) such that

N,
= 2
ckil? <C [ v, Pe?mtha < (C°) C,
WJ1 J1
k=1 Ury




and

0

/ lvjhjzlz e_‘Pm_lhA < Cb/
Up U
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lvjllze-‘pm_lh/i < (C'b)2 C,.

By induction on £ and applying Lemma 2.2 with s replaced by vjy ... je_y, We

get
Nm

Ujryee demy = § :Ck,jl,-.-,jl 10

k=1

with ckj,,... .-, € C and v, ... j, € I' (Up,,m Kx, + A) such that

Nm v+1
Z Ickyjl)"' :jv |2 S (Cb)

+Z Ck+z Z Chkjy,

k=1
and
Us,
Thus
n
8§ = § : Ujr,ee0de®d * "
j 1,0 )j[=l
v=1 le

Let

bPo,m k=c+ Z Z Ck,j1,

v=1 jy,--

2t

1]!’

Py
)+ Z (Fo) Yjsyee vfe—1.de

Jje=1

Cs

/ Iv]-l,... e 2 e ¥Pm-1p, < (Cb)t Cs.

Po) .,

WJu ]1

LPo)

.11

We are going to verlfy that the series defining bp, ; x converges to a holo-

morphic function on U Po,r and

sup Z 1bpy,mk|* <

UPo r k=1
Since

sup

_(1-)

r

ce,.

2
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it follows that on Up, , and for 1 < v < oo one has the estimate

2
Nm n

Z Z Ck,j1, ..’]uz§f°) . J(f‘o)

k=1 [j1, 4y =1

7‘2 v N n
n2 Cb 2l X ki

k=1 [j1, Ju=1

< (nz Cb) Z Z |cky.‘11, T )]vl

k=1j1, =1

2 v n Nm
— r v i 12
- n2 Cb n |ck1]11"‘»]v|

Juade=1 k=1

<(35) » L (@) -mea. sy

Jiedu=1

Let F, denotes the N,,-tuple
F, = (Fv,ly"' aFu,Nm)

of holomorphic functions on Up, , with

n

_ . (Po) | (Po)
Fox = § ki R,
i adu=1

for v > 1 and Fox = cx. Then the pointwise L? norm |F,| of F, is the
function

(|F,,,1|2 doet lFu,N...'z)% :

|Fy| <7 4/C"C,

By (2.5.1),

on Up, . Hence

ZF Z'r Ve g, = \/cb Cs -
v=0 v=0
Since -
by = Z Fok,
v=0

it follows that by is holomorphic onU Po,r and

1
sup Z 1675 m, il

UPO,r k=1 ( r)

—20"0,. o
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3 Extension Theorems of Ohsawa-Takegoshi Type from
Usual Basic Estimates with Two Weight Functions

In this section we are going to state and derive the extension theorem of
Ohsawa-Takegoshi type with estimates which we need for the effective ver-
sion of the arguments of [Siu98]. Such extension theorems originated in a pa-
per of Ohsawa-Takegoshi [OT87] and generalizations were made by Manivel
[Man93] and a series of papers of Ohsawa [Ohs88], [Ohs94], [Ohs95], [Ohs01)].
Ohsawa’s series of papers [Ohs88], [Ohs94], [Ohs95], [Ohs01] contain more
general results, which were proved from identities in Kihler geometry and
specially constructed complete metrics. Here we use the simple approach of
the usual basic estimates with two weight functions. We choose to derive here
the extension theorem we need instead of just quoting from more general re-
sults, because the simple approach given here gives a clearer picture what and
why additional techniques of solving the 8 equation other than the standard
ones are required for the proof of the extension result. The derivation given
here is essentially the same as the one given in [Siu96] with the modifications
needed for the present case of no strictly positive lower bound for the cur-
vature current. The only modifications consist of the use of |(u,dw)]| instead
of |u| in some inequalities between (3.5.2) and (3.6.1). The modification sim-
ply replaces the strictly positive lower bound of the curvature current in all
directions by the strictly positive lower bound of the curvature just for the
direction normal to the hypersuface from which the holomorphic section is
extended. The precise statement which we need is the following.

Theorem 3.1. LetY be a complex manifold of complex dimension n. Let w
be a bounded holomorphic function on Y with nonsingular zero-set Z so that
dw 1s nonzero at any point of Z. Let L be a holomorphic line bundle over Y
with a (possibly singular) metric e=* whose curvature current is semipositive.
Assume that there exists a hypersurface V inY such thatVNZ is a subvariety
of codimension at least 1 in Z and Y — V is the union of a sequence of Stein
subdomains §2,, of smooth boundary and 02, is relatively compact in 2041 If
f is an L-valued holomorphic (n — 1)-form on Z with

/|f|2e"‘<oo,
z

then fdw can be extended to an L-valued holomorphic n-form F on'Y such

that
1
/ |F|> e < 81re\/2+ - (sup|w|2> / 2 e".
Y € \vy z

We will devote most of this section to the proof of Theorem 3.1. We will
fix v and solve the problem on {2, instead of on Y, and we will do it with the
estimate on L? norms which is independent of v and then we will take limit
as v — oo. For notational simplicity, in the presentation of our argument,

=@ asd pij§
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we will drop the index v in 2, and simply denote £, by f2. After dividing
w by the supremum of |w| on Y, we can assume without loss of generality
that the supremum norm of w on Y is no more than 1. Moreover, since {2, 4+1
is Stein there exists a holomorphic L-valued holomorphic (n — 1)-form f on
2,41 such that (f A dw) |(2y41 N Z) is the restriction of f to 2,41 N Z. Of
course, when such an extension f is obtained simply by the Stein property of
2, +1, we do not have any L? norm estimate on f which is independent of v.

3.2 Functional Analysis Preliminaries.

We recall the standard technique of using functional analysis and Hilbert
spaces to solve the 8 equation. Consider an operator T which later will be
an operator modified from . Let S be an operator such that ST = 0.
The operator S later will be an operator modified from the 8 operator of
the next step in the Dolbeault complex. Given g with Sg = 0 we would
like to solve the equation Tu = g. The equation Tu = g is equivalent to
(v, Tu) = (v,g) for all v € Ker SNDom T*, which means (T*v,u) = (v,g) for
all v € Ker S N Dom T*. To get a solution u it suffices to prove that the map
T*v — (v,g) can be extended to a bounded linear functional, which means
that there exists a positive constant C such that [(v,g)| < C||T*v|| for all
v € KerS N DomT*. In that case we can solve the equation Tu = g with
Jlul| < C. We could also use the equivalent inequality

(v, 9)I? < C* (IT*ol* + IS]1%)
for all v € Dom S N Dom T™.
3.3 Bochner-Kodaira Formula with Two Weights.

The crucial point of the argument is the use of two different weights. One
weight is for the norm and the other is for the definition of the adjoint of
8. We now derive the formula for the Bochner-Kodaira formula in which the
weight for the norm is different from the weight used to define the adjoint of
. Formulas, of such a kind, for different weight functions were already given
in the literature in the nineteen sixties by authors such as Hérmander (for
example, [Hor66}). There is nothing particular new here, except that we need
the statement in the form precisely stated below for our case at hand.

We start with a weight e ™% and use the usual Bochner-Kodaira formula for
this particular weight. Let 7 be a positive-valued function and let e™¥ = e”,
We will use the weight e~¥ for the definition of the adjoint of 8. We use &,
(respectively 5,7,) to denote the formal adjoint of 8 with respect to the weight
function e~¥ (respectively e~¥). We agree to use the summation convention
that, when a lower-case Greek index appears twice in a term, once with a
bar and once without a bar, we mean the contraction of the two indices by
the Kihler metric tensor. An index without (respectively with) a bar inside
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the complex conjugation of a factor is counted as an index with (respectively
without) a bar. We use (-,-) to denote the pointwise inner product. Let V
be the covariant differentiation in the (0, 1)-direction. The formula we seek
is the following.

Proposition 3.4. Let 2 be defined by r < 0 so that |dr| with respect to
the Kdhler metric is identically 1 on the boundary 812 of 2. Let u be an
(m,1)-form in the domain of the actual adjoint of 3 on 2. Then

d,u,0, e“"+/ Ou, Ou) e¥
/ﬂ( 4 ¢“> n( u, Ou)
= / Ugug(050ar)e™" + / (Vu,Vu)e™®
an Q o
+ | Ugum |050a "P—/(a )uaﬁ“e‘
/r;uﬁ'"' (aﬁ '/’)e 0 n 8
al) D -
+ 2Re/n (T) ua( ¢u)e e,

Proof. The usual Bochner-Kodaira formula for a domain with smooth bound-
ary for the same weight (also known as the basic estimate) gives

/n <5;u,?9:,u> e ¥+ /n (3u,5u) e ¥
-_—/ n‘fua-(aﬁaar)e—"’+/ (Vu,Vu)e_“’
an 2
+ | Tmug(050.p)e7%. 3.4.1
| v (20 (3.4.1)

The relation between the formal adjoints of 8 for different weights is as fol-
lows:

¥ -
5;,11 = —e¥d, (e“"ua) = —%60, (11 e_"’ua) = —? us +dyu .

Thus
2
|5;u|2e_" ‘—aTua+6¢u e ¥
o, 2 Oal 77 o i Al |2 -
= Lﬂua —2Re (Tua (6'1, ))e ‘P+|a¢ulze L2

We now rewrite (3.4.1) as

/<8¢u 6¢u e “’+/ <3u Ou) e~

=/ ﬁua(agaar)e_“’+/ (Vu,Vu) e ¥
an n

+ [ (optae) e - [ |21

— ug| e”?

7
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+ 2Re / Gan ua ‘* e'“’ : (3.4.2)
From ¢ = ¢ — logn it follows that
98 = 0 — af;” o0 7;\26"

Hence we can rewrite (3.4.2) as
B,u,0yu e_“’+/ Ou,O0u) e ?
/n (8yu,3,u) | (0u,0u)
=/ Ei‘ua(c‘)gaar)e“"-i-/ (Vu,Vu)e™®
an [r]
— - 6a3ﬁ"7 —
+/u—ua 050q e"’—/( )uaue‘P
al (ﬂ ¢) n n g
Oa e\
+ 21:{.(’:/.‘.7 (-7’—-) Uz (8'1)11,)8 . -

3.5 Choice of Two Different Weights.

Since {2 is weakly pseudoconvex, the Levi form of r is semi-positive at every ’
point of the boundary 042 of §2. The inequality in Proposition 3.4 becomes

[ Guwdyyee+ [ @uwyer > [ Tua(0m8)

356371 R Oan _
() e ) o

Take any positive number A > e, where e is the base of the natural logarithm.

Let

A
Ep = —=-1.
€

For any positive € < g¢g, we let

=lo A
n="08 |w|2 + €2’
_1
|w]?2 +€2°
Then 1 > 1 on {2, because the supremum norm of w is no more than 1 on £2.
2

’7:

£
~Ou0an = ut ¥ 3
w
Ol = e
Ogn = — e

[w|2+e2”

Wi

Ct

it :

wl
sic




2)

Ty
]

We have the estimate

}2Re/ Gan ua(a,,,u)e"“’

w e | -
< 2/{)#—[(%&0” |6¢u| e™v

P -
o wE+e2 (. dw)|* e~ + o [l +52 |83u]” e

w 2 _ = _
= [ s wdaey+ [ iyure
Choose ¥ = |w|? + k. Since

|wl?

— ' u,d 2
lw|2+€2|(u w)l

1059 )uxtg > |(u, dw)|* >

it follows that
Uzug | 0509 e“"+/ v u?e™¥
/n B a( 50 ) o |9yl
= [ nadgtyazzet + [ Bl
> [ A et + [ 185l
~ Jalw?+e? 2

2Re / ug (Bv,u)e“"’

v

)

where the last inequality is from (3.5.2). Adding [, 7|5:1,u|2 e ¥
sides of (3.5.1), we obtain

/ <(7I + ’7)5:/,%5;10 eV + / (nBu,du)e™
2 o}

> / Tz (O50at) €7 + /n vByulfe™
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(3.5.2)

to both

aaaﬁn) . /(aan) (500 e-
- —_— | uqy + 2R — lug |O%u)e™?
/n( n ) "ere “Ja\Tn (¢ )

_/ (?E_agﬂ) uaﬁe"”
n n
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We now consider the operator T defined by Tu = 8(y/n+ yu) and the
operator S defined by Su = /5 u. Then ST = 0 and we can rewrite (3.5.3)
as

Ty + IS0l 2 [ ot ) e . (354)

Here || - ||la,y means the L? norm over {2 with respect to the weight func-
tion e~
3.6 Choice of Cut-Off Function.

Choose any positive number § < 1. Choose a C* function 0 < g(z) <1 of a
single real variable z on [0, 00) so that the support of g is in [0,1] and o(x) is
identically 1 on [0, {] and the supremum norm of £ o(z) on [0,1] is no more
than 1+ 4.

Let g.(w) = (Jlﬂi) and let

f/\dw bo. 7 2
o (Frdu) iy (1) .

w €2

We would like to solve the equation T h, = g, for some (n, 0)-form h. on 0.
For that we would like to verify the inequality

(. 9)a.ul” < C (IT* ulldyy + 1S ullh,y)

for some positive constant C and for all « € Dom S N Dom T*. Here (., ) a9

means the inner product on {2 with respect to the weight function e~ ¥. We
have

(gl = [ 1 ge)l e

Ll () )
e
(1w o)

< C(|IT* “”2}),11; +IS u"%),v/a) )

fadw , [|w?
Ce = L £2 Q’ ( €2

e ¥

2
(it +)?
€2

IA

where 2
(P +e5? _,
2

and tk

Ase -

lim sy
e—=0
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and the last inequality is from (3.5.4). We can solve 8(v/n + 7 h.) = g, with

/ lhel?e ¥ <C.. (3.6.1)
2

As £ - 0, we have the following bound for the limit of C..

2, .2\2
limsup C, < (/ |f|2e"‘) (limsup (1+96)? Mldwjz)
€0 a2ny =0 |

w|<e €8

< 87 (1+6)° |F|2e™ . (3.6.2)
aony

3.7 Final Step in the Proof of Theorem 3.1.

We now set _
Fe=gp.fANdw—-wyn+vhe.
Then )
51_1% A gef/\dwl e =0,

because f A dw is smooth in a relatively compact open neighborhood of {2 in
Y —V and the support of g, f A dw approaches a set of measure zero in 2 as
€ — 0. The supremum norm of wy/7 + 7 on 2 C {|w| < 1} is no more than
the square root of

1
+&

1 1
2
sup (logA+logw2_'_&_2+:'_'_2 2)_<_logA+E-+-1,

0<z<1
because the maximum of ylog% on0<y<loccursaty= % where its value
is 1 as one can easily verify by checking the critical points of ylog L. Since
A is any number greater than the base of natural logarithm e and ¢ is any
positive number, when we take limit as A — e and § = 0 and v — oo and
we use (3.6.2) and

/ |h€]2 e " <eC,
Q

from (3.6.1) and supy, |w| < 1, it follows that the limit of F is an L-valued
holomorphic n-form on Y whose restriction to Z is f A dw with the following
estimate on its norm.

1
/IFlze_"381re\/2+—/IfIZe_".
Y €Jz

This finishes the proof of Theorem 3.1. The following version of extension
from submanifolds of higher codimension follows from successive applications
of Theorem 3.1.

- Twny o
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Theorem 3.8. Let Y be a complexr manifold of complex dimension n. Let
1 < k < n be an integer and wy, - - - ,wy, be bounded holomorphic functions on
Y whose common zero-set is a complex submanifold Z of complex codimension
k inY (with multiplicity 1 at every point of it). Let L be a holomorphic line
bundle over Y with a (possibly singular) metric e™* whose curvature current
is semipositive. Assume that there exists a hypersurface V in 'Y such that
VNZ is a subvariety of dimension <n—-k—11inZ andY —V is the union
of a sequence of Stein subdomains £2,, of smooth boundary and 2, is relatively
compact in £2,11. If f is an L-valued holomorphic (n — k)-form on Z with

/|f|2 e < oo,
zZ

then fdwy A--- Adwy can be extended to an L-valued holomorphic n-form F
on'Y such that

k
1
/|F|2 e_"§<81rev2+—> (suplwl---wk|2)/|f|2 e ™.
Y € Y z

Proof. We can find a hypersurface V,, in 2, such that V,, N Z is of complex
dimension <n—k —1in Z and dun A - - - Adwy, is nowhere zero on 2, — V,,.
We can now apply Theorem 3.1 to the case with Y replaced

(.Q,,—V,,)ﬁ{w¢=---=wk=0}
and Z replaced by
(2, - V) N{weg1 =+ = wr =0}

and w replaced by wey1 for 0 < £ < k and use descending induction on ¢. The
theorem now follows by removable singularity for L? holomorphic functions
and the independence of the constants on 2, — V, so that one can pass to
limit as v — oo. 0

4 Induction Argument with Estimates

In this section we carefully keep track of the estimates in the induction argu-
ment of [Siu98]. We follow the logical framework set forth in the axiomatic
formulation of the induction argument in (1.3). The effective version of the
induction argument estimates the L? norm of the quotient of the absolute
value of a twisted (p + 1)-canonical section by the maximum of the absolute
value of twisted p-canonical sections. Again, this is the implementation of
the rough and naive motivation explained in the Introduction. The effective
versions of the global generation of multiplier ideal sheaves (2.1) and the ex-
tension theorem of Ohsawa-Takegoshi type (3.1) will be used in the process.
As explained in the Introduction, metrics for the relevant bundies on the
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initial fibers have to be as singular as possible (see (5.2)). Given an element

-2
of s(mo) ¢ I (Xo0,mo Kx, + L), we use the |.sr("'°)|7°2 for the construction of
metrics for a properly twisted p Kx,. To avoid fractional multiples of L, for
coefficients of L in (4.1) below we have to introduce integers closest to the
quotient £-.

Proposition 4.1. Let A, Up,, and C® be as in Proposition 2.1. Let Uy (1 <
A < A) be a covering of Xy such that each U, is of the form

1
<
2n\/5‘7}

for some point Py of X, (i.e., Uy = ffphr withr = %) Let C° be a positive
constant such that, for any holomorphic line bundle E over X with a (possibly
singular) metric hg of semi-positive curvature current and for any element

SEF(Xo,E+KXO)

/|whE<m,
Xo

with

there exists an extension

§eI'(X,E+Kx)

/WMSW/M%m
X Xo

(According to Theorem 3.1 the constant C° can be taken to be 8mey/2+ 1)

Let {ox}1<xr<4 be a partition of unity subordinate to the covering {Ux}1<a<a
of Xo. For L <A< A, let

such that

Tsa € I'(Uy, 4) ,
TL € F(U)\,L) ,
& €I'(Uy,—Kx,)

be all nowhere zero. Let L be a holomorphic line bundle over X with a (possi-
bly singular) metric e~¥ whose curvature current is semi-positive on X. Let
mo be an integer > 2 and let

s(mo) ¢ I' (Xo, mq Kx, + L)
be non identically zero such that Is(m°)|2 e~ ¥ is locally bounded on Xy. Let

o%=f
Xo

2
= _
T e mg¥

g(mo)
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Letyp = --log |3("'°)|2 s0 that e=™o% is a metric for moKx,+L and e~ 75
is locally bounded on Xo. Let £ be a positive number > 2 and let m, = £my.
For1 < p <m,, let ap denote the smallest integer which is no less than u

Let d, L—for1<p<m1andcp—ap—a,,1for2<p<m1 Let
C" be the mazimum of

2
4 CbC(%)supUPA (I E,\‘r;,;lp

e¢+(°”—7"15)"’) Jor1<A< Aand2<p<my,
b (%) —Cm, 2 ¢+(cm —-—L)v
4CC™supy,, |€m,L TA,A| et o= )eh,) for1 <A< 4.

For 1 < p < my let N, be the complex dimension of the subspace of all
elements s € I' (Xo,p Kx, + a, L + A) such that

/ ls|? e=C-D¥=doe p,, < oo .
Xo
Then there exist
sgp), ,sN)GI‘(Xo,pro+apL+A)
for 1 < p < m; with

/ lsgp)r e~ P-Dv-dro pp < q
Xo
for1 < j < N, such that
(i) sg-” ) can be extended to
8P eI'(X,pKx +a, L+ A)

for1<p<m; and1<j< N,

(i) 2
I (P+1)| —C,,+; @ p+l e—cp+l 7]
A e 3
2 = 2
X ma‘xlskSN, lsg’)l Xo A— I{AI
for1<p<m;-2and1<j< Npyy,
(i)

[T mses

for1<j < N, and
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(iv)

)

¢ 2 2
|(3(m°)) 3A| e-c"llw A QA IsA T;:'i'll e—le‘P
/ <ot [ 3
X Xo

7> P)
~(my—1
® MAX1<k< Npny 1 Isf,"" )I A=1 [3%PW

where s is any holomorphic section of A over X.
In particular, (s(’”°))t s4 can be extended to
§™) e ' (X,mKx + £ L+ A)
such that

am) |2 o—cm @ A py I.'JA'rc"‘l
F e~ °m AL
/ |5)] 5 <COC / S

X —1)| Xo

2
[

z(m |&x a4
mMaX) <k<Nmg-1 |3k A=1 )

Proof of Proposition 4.1. The nonnegative integers a, and the numbers 0 <
dp < 1 are introduced so that e~ (P—1)¥—dp¥ i3 3 metric for the line bundle
(p— 1) Kx, + apL on Xo. The integers c, are introduced so that multipli-
cation by & ‘r,: 7 defines a map from the sheaf of germs of holomorphic
sections of p Kx, + apL on U, to the sheaf of germs of holomorphic sections
of (p — 1) Kx, + ap—1L on Ux. We note that

ap=d; =0, am, =4¢ dm,=mi0, 0<c¢p<lfor2<p<m. (4.1.1)

For 1 < p < m; the local function

_ 2
p-1Dv+dpp= pm 1 log | s("‘°)| +dp ¢ is plurisubharmonic. (4.1.2)
0

By the definition of C(*) and the value of dy,, from (4.1.1) we have

e

2
e~ (Mi=D¥=dme — 0(%) (4.1.3)

Now we are going to apply Theorem 2.1 on the global generation of multi-
plier ideal sheaves with estimates to prove the following claim by descending
induction on 1 < p < m; — 1. This claim involving estimates corresponds to
the step containing (1.4.1) and (1.4.2) in the proof of Proposition 1.4.
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(4.1.4) Claim. There exist
@)
s&") ,sg)EF(Xo,pro+apL+A)

for1<p<m; -1,

(ii) holomorphic functions b(p A on Ux,for 1 <p<my —2,1< 5 < Npga,
1<k<N,,,and1<A<A and

(iii) holomorphic functions b(ml WM onU yfor1<k< N, _;and1 <A< A
such that, for 1 < A < A

(a)
- 2 Nemy-1 \
€ATA,AT,\,L'"‘ (s(m")) = Z bgcmx—l, )sl(cm,—l)
k=1
on U,
(b)

{AT —Cp+1 (P+1) Zb(l’»'\) (»)

on U, forl§p§m1—2and1§]§Np+1,
© 2
sup Z |b§cm‘_l')‘)| <ch,
U 1<k<Nm, -1
(d)

supZ'b(p"\)l <Ch
U k=1

for 1<j<Npppand1<k<N,and1<p<m; -2, and

(e)
Je

for1<k<Nyand1<p<m; -1

sg’)lz e P -dep, <1

To verify Claim (4.1.4) by descending inductionon 1 < p < my — 1, we
do first the step p = m; — 1 and start out with

_ ¢
{AT)\,AT,\,ZMI (S(mo)) € F(U,\,(m1 — 1) KXo +aml_1L+ A)
By (4.1.3) we have

b

_(ml_2)¢—dm1—-lw hA

2
—-C.
OmaTy L (s(m°)) e

A

- 2 L
< C™ sup (|€A TANATAL l ¥+ (om =)o hA) .




+1,

-

we
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By applying Theorem 2.1 with r = 1 to the line bundle (m; — 2)Kx, +
am, 1L with the metric e=(m1=2¥—dm;-1¢ from (4.1.2) we obtain

sgml_l)’ R 3%7:1__11) er (XO) (ml - 1) KXo + Amy—1 L+ A)

and holomorphic functions bfcm‘—l"\) on U), for 1 < k £ Ny, -1, such that

Nm -1

- [4 1
HTAT (s(’"°)) = 3 pmI) e
k=1
and
le—l 2
sup l bg.j:‘_l"\)l
Ux k=1
t 2
< 4Cb/ & T,\—;,,nl ™A (s(mo)) e—(m1—2)|/:—d,,,l_1 ¢
UpA '
- 2 _
< 4C sup (l €x "',\,;,m‘ TA,A| ,e"””(c"‘x a5 )e hA)
Py
t 2
. / (s(mo)) e~ (Mmi—1)¥—dn, o
Up,
b o(%) —omy [P Y (emi =75 )e b
_<_4CC°sup |£ATAL1TA,A| e 1 " g ha <C
Up, ’
and

2
sfcmp-l)l e~ (mi=Dv—dm, 10} , <1.

J.

Thus we have (4.1.4)(a) and (4.1.4)(c) and the case p = m; — 1 of (4.1.4)(e).
This finishes the initial step p = m; — 1.

Suppose we have done this for Step p and we would like to do it for the
next step which is Step p — 1. Since

EATyL sP) € I'(Un, (p— 1) Kx, + ap-1 L + A)
with

2
L ey

2 e,/,+(c,,—-,;}3)tp> /
Up,

—c, |2 -1
S sup <'§A TA,ZP‘ e¢+ (Cp mg )‘P)
Up,

o,

2
sg’)l e~ P-D¥—doio p

—C.
<sw (|avriz
Up,

Biadenot..i
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from (4.1.4)(e) of Step p, it follows from Theorem 2.1 with r =
to the line bundle (p — 1) Kx, + ap—1L with the metric e~(P=2)¥~dp-1¢ anq
from (4.1.2) that we obtain

for 1 < k < Np_; and holomorphic functions b;",: 1) on Uy, for1<j< N,
and 1 < k < N,_; such that

and

Thus we have (4.1.4)(b) and (4.1.4)(d) and (4.1.4)(e). This finishes the the
verification of Claim (4.1.4) by induction.

Next we use induction on 1 < p < m; to verify the following claim.
This claim involving estimates corresponds to Claim (1.4.3) in the proof of

Yum-Tong Siu

s~ € I'(Xo,(p - 1)Kx, + p-1 L+ A)

Ux

Proposition 1.4.

(4.1.5) Claim. One can extend s_,(,.") to

for 1 < j < Np and 1 < p < m, such that the extension

satisfies the inequalities (ii) and (iii) in the statement of Proposition 4.1.
To start the induction process when p = 1, we simply observe that, since
the curvature form of the metric h4 of A is positive on X and since

it follows from the assumption on C that s

Ny 2
sup Z Ibg’k_l"\)l <4C" sup (I ETar
k=1 Ups

applied

Np_y
by s = z": A1) 5D
k=1

2 e¢+(cp—;‘;)w) <ch.

§P eI(X,pKx+a, L+ A)

8P eI (X,pKx+a, L+ A)

2
sg)l ha <1,

J

O

; can be extended to

§D e I (X,Kx + A)

[ nesen
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-1¥ and

he the
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roof of

1.1.
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which is inequality (iii) in the statement of Proposition 4.1.
Suppose Step p has been proved and we go to the next step which is Step
p+1 < my. Since
NP
€,\ T)-‘—,:p+l 82-P+1) = Z bgl”,;)‘) 3£P)
k=1

by (4.1.4)(b) and

suleb(P’A)I <ct
A k=1

by (4.1.4)(d), it follows that

2
|3(.p+1)| e SrH1 ¥
/.Xo

l“’(p) B /;(o

Z,\_l [133

e Cr1 ¥

Pl
( 4L ) cp+l£ 8(P+1)

maxi<k<N, max; <k< N, l"g)
2
S
< (mw3tpr) [ oL
Ux k=1 Xo y=1 €1
+1f?
Cp —Cp41
b AL | €7
<C 5
XoA =1 |£z\|

By the assumption on C, one can extend sg” 1) o
57" e I'(X,(p+1)Kx +apa L+ A)
with

2
”'H e " Cr+1 ¥

O
ct / L ,
"(P)' Xo )\ 1 lEAl

which is inequality (ii) in the statement of Proposition 4.1. This finishes the
verification of Claim (4.1.5) by induction.

2
|-§,P+1)| eCri1 ¥

(bl

ma.xj_1

Finally, since
P) Nm; -1
§,\ XA T;Zm‘ (s(mo)) = Z biml-l,a\) siml—l)
k=1

by (4.1.4)(a) and
le 1

sup Z s < o
A
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by (4.1.4)(c), it follows that

|(3(mo))l sA}z e—Cm1 ¥
/.

my—1
maxj<k<N, ' 3¢ )|

o 7o 2
P Y 758 -
/ E/\—l [N ( I3\ ) T)‘,L 6,\ (3("‘0)) e~ Sm1 ¥
Xo Max)<k<N, 8,(:’)
N, Cmy 2 —c
mi-1 sA Ty | e °™m¥?
< b(ml -1 )\) ’
< sup 5
=1 U Xo ,\ 1 1€ a4l
b A ox SA TA L e TCm1 ¥
< 3 )
Xo ,\ 1 [€x T, 4]

which is inequality (iv) in the statement of Proposition 4.1. By the assumption
on C°, (s("‘°))t 84 can be extended to

3™) e P (X, mKx +£L + A)
such that

2
C. —_
|§(m;)|ze—cm1tp 4.0 ‘SATA"EI e~ tm ¥
<Cc°cCt - .
X F(mi-1) X, |&x 742
CH l 0 A=l ATXA

MaX]1 <k<Nyny -1

5 Effective Version of the Process of Taking Powers
and Roots of Sections

This section corresponds to the effective version of the fourth ingredient listed
in the Introduction, which is the process of raising a section on the initial fiber
to a high power and later taking the root of the same order after extending
its product with a holomorphic section of some fixed line bundle on X.

5.1 To apply Theorem 2.1 on the global generation of the multiplier ideal
sheaf with estimates, we have to introduce an auxiliary sufficiently ample line
bundle A. To eliminate the undesirable effects from A at the end, we take
the ¢-th power of an mg-canonical section on X to be extended and then we
multiply the power by some section of A on X to make the extension of the
product to X possible by Proposition 4.1 and then we take the £-th root of
the extension and let £ — oo.

L= e B R N - D T =)

(S I o B

~

P T )
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The goal of the limiting process is to produce a metric for (mg — 1) Kx
on X so that the mo-canonical section on Xy has finite L2 norm on X, with
respect to it. For the limiting process, we have to control the estimates to
guarantee the convergence of the limit. We do this by using the concavity of
the logarithmic function and the sub-mean-value property of the logarithm of
the absolute value of a holomorphic function. A delicate point is that we have
to get the bound on the dimension of certain spaces of sections independent of
£. It is because of this delicate point that, as explained in the Introduction and
(1.5.2), the metric chosen for the pluricanonical line bundles of the initial fiber
at the beginning of the effective argument has to be as singular as possible.
For that purpose, one cannot use usual abstractly-defined general metrics for
the pluricanonical line bundle of the initial fiber such as generalized Bergman
kernels. The bound for the dimension in question will be given below in (5.2).

Fix a positive number mg and take a non identically zero

S(mo) (S F(Xo,mono + L) .

Our goal is to extend it to an element of I' (X, moKx + L). Since the case
of my = 1 is an immediate consequence of the extension theorem 3.1, we can
assume without loss of generality that mg > 2.

Fix an element s4 € I" (X, A) such that its zero-set in X, is of complex
codimension at least 1 in X,. We are going to apply Proposition 4.1 and let
£ — 0o. We need the following lemma concerning the bound on the dimension
of certain spaces of sections independent of £.

Lemma 5.2. In the notations of the statement of Proposition 4.1, let 1\7',,.,J
be the mazimum of the complex dimension of I' (Xo,kKx, +aL + A) for
integers 1 < k < mg and a = 0,1. Then Np < Ny, for 1 < p < mol for any
integer £ > 2.

Proof. We follow the notations of Proposition 4.1. For 1 < p < m; let I}, be
the subspace of all elements s € I' (Xo,p Kx, + ap L + A) such that

/ |s|2 e P ¥—dep oo,
Xo

Let b, be the largest integer not exceeding ’;n;ol For any s € I}, the definition

of I', implies that
s

(stmo))’s
is a holomorphic section of (p — bpmo) Kx, + (ap — bp) L + A over Xo. Thus
the map
Ep : Fp — F(Xo,(p—bpmo)Kxo +(ap—bp)L+A)

defined by s

:.p(s) = _(s(mo))b”
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is injective. We conclude that
dimc Iy < dimg I' (Xo, (p — bymo) Kx, + (ap — bp) L+ A)
Since

p—1 p—1 p—1 p—1
bps—m, bp+1>70-, ap > —— ap—1<

’

my mo ’

iii follows that 1 < p — bymg S_mo and 0 < ap — by < 1. The definitions of
Ny and N, imply that N, < Ny, for 1 < p < £my for any integer £ > 2.

The reason for imposing the condition 1 < p < €myg in the conclusion,
instead of just getting the conclusion for all positive integers p, is that tech-
nically in the statement of Proposition 4.1 the number N,, is defined only for
p <m; and m; = €my. O

5.3 Application of Induction Argument.
Take an arbitrary integer £ > 2. We now apply Proposition 4.1 to
g(mo) € F(Xo,mono + L)

so that we can extend

t
(s("“’)) 84 € I'(Xo,€moKx, + L+ A)

to
§tmod) € ' (X,EmoKx + €L+ A).
This extension from Proposition 4.1 comes with estimates. We use the no-

tations Np 4, oa, &, 72,4, CY, and C° of Proposition 4.1. By Lemma 5.2,
Npa<Np,foralll<p<e&mg-—1.

Let C? be the maximum of the following positive numbers

AQ,\l
O O
C,CC/}‘“E

emy |2 —cmy
3A TI\’L € 1

2 b
=1 |€x 7,4
A oy |mrft g
COC“/ Z . 3 for1<p<m;—-2.
Xo A=1 |£A|

The finiteness of C° follows from 0 < ¢, < 1 in 4.1.1 and from the local
integrability of e~¥|x, on X,. According to Proposition 4.1 we have

s, ,s®) € I' (Xo,pKx, +ap L+ 4)
for 1 < p < m; such that

(i)

(ii)

(iv)

Fro

for
bou

5.4
Val
Fur

To
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(i) the section .9;-’ ) can be extended to

i eI (X,pKx +ap L+ A)

for1<p<myand1<p< N,

(ii)
|§§p+1>|2 o1 ®
, 5 <C° (5.3.1)
* max ck<n, |§§=P )I
for1§p5m1—2a.nd1$j§Np+1,
(iii)
2
/ |§§."| ha < C° (5.3.2)
X
for 1 < j < Ny, and
(iv)
5m1) |2 g—cmy @
/ [ e <O, (5.3.3)
X

7>
~(my-1)
Sk

MaX1 k< Ny, -1

From (5.3.1) we have
§(P+1)|2 e—CSv+1¥9  Nppi

/ MaX1<k<Npyy |85 Z /
<
X ik X

max)<k<N, |8k i=1 max) <k<N,

2
|§§P+1)| e Crt1 ¥

2
5|

< Np41C® < N, C° (5.3.4)

for 1 <p<m;—2and1<j< Npyp. It is for this step that we need the
bound on N4, given in Lemma 5.2 which is independent of ¢.

5.4 Supremum Estimates by the Concavity of Logarithm and the Sub-Mean-
Value Property of the Logarithm of the Absolute Value of a Holomorphic
Function.

To continue with our estimates, we have to switch at this point to the use
of supremum norms. The reason is that we are estimating the ¢-th root of
the product of £myg factors, for each of which we have only an L? estimate
and we cannot continue with L? estimates by using the Holder inequality.
We switch to supremum estimates by using the concavity of logarithm and
the sub-mean-value property of the logarithm of the absolute value of a holo-
morphic function. The use of the sub-mean-value property for switching to

Tt eue mzm
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supremum estimates necessitates the shrinking of the domain on which es-
timates are made. For notational convenience we assume that the family X
can be extended to a larger one over a larger disk in C.

More precisely, without loss of generality we can assume the following.
The given family # : X — A can be extended to a holomorphic family
#: X = A of compact complex projective algebraic manifolds so that A
is an open disk of radius > 1 in C centered at 0. We can assume that the
coordinate charts Uy (1 < A < A) from Proposition 4.1 are restrictions of
coordinate charts in X in the following way. We have coordinate charts W
in X (1 < X < A) with coordinates

(ng)’ ey, zS'A)’ t)
so that
A
Uwm=X.
A=1

Moreover, we assume that for each 1 < A < A we have a relative compact
open subset Uy of W) such that

ﬁ)‘ = W)‘ﬂ{|z§'\)| <1,--- ,lzs.’\)l < 1t < 1}
and
A B
U Uy=X
A=1
and _
Un=XeNnU,.
We can also assume that there exists nowhere zero elements
£y €T (W, —Kgz), #na€l(WxA), #arel(WyL)
for 1 < A < A such that
& =&|Ux,
a4 ="74|Ux,
L =L |Ua

for1<A< A
There exists some 0 < ro < 1 such that, if we let X' =71 (4,,) and
Uy = (7,\”{|z§'\)| <royeee, |20 <, Jt] < ro},

for 1 < A < A, then X' = s, Ui Let dV,n, be the Euclidean volume
form in the coordinates system

(z()‘),t) = (zg'\),--- ,z,(,"),t).

fi




ich es-
ily X

owing.
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Likewise, from (5.3.3)
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From (5.3.4) we have
! —0p41 gp+l ~(p+1)
antl /fk (1081519'5‘\,’:,+ IT,\ AL & | AV,

1 250
At /m (loglgnﬁ?ﬁrp AL 35| ) dVion,s

—Gp+1 §p+1 ~(P+1)

1 MAX1 <G <Ny gy [T, A”',\
= 1 ].Og de(*) :
i 0,\ -1_—ap P"‘(p) ’
MaX1<k<Ny [Th,4TA,L 525k
( ~ap1pp+1c(p+1) |2
1 MAX1<i<Npyy [T, AT,\ 68
< log sl e de(A)’t
\ P maxicken, [Ty ATaE ,,,
( 1 +1 2 C;
<log St}llp prvs IT CHa| e dV,,
\ A

(p+ )l e Cr+1 ¥

/ Max;<ji<N,,, | 8
Ux

max)<k<nN, | (p)

.. 1 -
< log (Nm0 c° sup (1rn+1 | Fa 5"| P ‘Pde(,\),t)) (5.4.1)
Ux

for 1 < p < m; — 2. Here for the first inequality we have used the concavity
of the logarithm. Summing (5.4.1) from p =1 to p = m; — 2, we get

1 Qm -1 -1 2
7rn+1/i (logqugﬁx IT,\AT,\L g M) Ve,
Ui =J23¥my -1
1 -1 ~(1 2
A

my—2
- 1
+ E lOg (Nmoco S}lp (,"_n+1 l P+1E)\| ecp+l¢d‘/z(x),t)) . (542)
p=1 Ux
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1 am ~(m
,l.n+1/I7 (1°g'TA AT s ‘)l )de(Au
A

I L — mcsgm-150m1)|7) gy
artl [ 0g1<k<1v,,. AT T 2.t
N <k<

ml my o
1 / i TAATAL & (m’) v

= — og (Mg

7rn+1 - —Gmq -1 1__ my—1 Zi,

Ux &X) k< Npm, 1 |T'\ AL my—- Em‘ ( i— )|
- Gmy gml (ml)

<log | = / MATAL dv.

0og FOEV2M ¢

ant+l A

—a 1 —1~(m;~-1
ma.x1<k<N my~1 IT’\ ATA L"u E:\nl ( 1 )l

(/1
<log | sup (m lrl\i’"‘f,\l efm "dV,m,t)

2

/ Ig(ml)l2 e~ Sm1 ¥
l-fA (ml“l)l

MaX1 <k Nony -1

o 1 - 2
- — ¢ m
<log (C 31_11)( —3 IT)‘,L ! §A| e“™ "’dV,(x)’,)) . (5.4.3)

Again here for the first inequality we have used the concavity of the logarithm.
Adding up (5.4.2) and (5.4.3), we get

1 - .
w"“/f; (logl'r,\L‘T,\iE"" ("")l> 20 ¢
A
< ! lo
< o [, (o8, 3, i o] ) dvion,

m1—1
N 1 .
+ Z log (Nmooo sup (w"+1 | p+x€>‘| P ‘Pde(,\),t>) . (5.4.4)
p=1 Ux

By the sub-mean-value property of plurisubharmonic functions

suplog l‘r,\ ATAL ‘5’""("")!
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dV

V,

z(’*),t

(5.4.3)

rarithm.

(5.4.4)
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1 - —O0m
< S\ [ (IOg ITA,:‘TA,Z 15"”! 3("‘1)’ ) z(M) ¢ (54.5)
(7r (1 —m7o) ) Ux

Let C* be defined as the number such that —- log C* is the maximum of

1 1 2
a__;w log (Nmo c® sup ( IT'\ Lp+1 g"l ecr1 ‘Pde('\),t))

forl<A<Aand1<p<my -1 Smcecp+1 only takes the value 0 and 1
according to (4.1.1), the number C* is independent of .
Let C be defined by

1

log € = T Sup /_ (l og rug,\sk I )de(x),t.
(r— ) 1550, 15

Since m; = £my and a,,, = ¢, from (5.4.4) and (5.4.5) we obtain

Sup Sup |7y 4 Taz oL ghmo s(‘"'°) <C (C“)tmo - (5.4.6)

1<A<A US

5.5 Construction of Metric as Limit.

For 1 < A < A let x be the function on U, which is the upper semi-
continuous envelope of

hmsuplogl &""° 3(Emo) %
From the definition of x), we have
2
sup (l'r;i o glmo) e'x’*) <1 (5.5.1)
XoNU}, ’
for 1 < X < A. By (5.4.6), we have
sup x < mglog C* (5.5.2)
us

for 1 < A < A. Moreover, from the definition of y we have the transformation
rule

WS

1
Tle‘

on Uy NU), for 1 < A\, u < A. Hence the collection {e™**}, ., ., defines a
metric e X for (moKx + L) ]X " with respect to the local trivializations

e X2 — ~Xu

moKx +L - Ox

T e maZwm W
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on Uj defined by multiplication by X L§,\ on Uy for 1 < A < A. More
precisely,

j&5el* x>

e X = 5
KA

on U for 1 < X\ < A. The curvature current of e~ X is semi-positive and

A

= =1 ¢mo ,(mo)

=2 / ,(‘TA,LQ s
1<a<a Y XoNUy

<C‘Z/

1<a<A Y XoNUY

smo)|? o= (B85 )x—(35)e

_L
2€_X>‘) e?,.%XA (sz\le —(p) ( QAZ)
13y

-
2 Ym0 O\
A,L| e qp) — < 00,

where for the last inequality (5.5.1) and (5.5.2) are used. The finiteness of

1
[ (il ee)™ 2,
k4 2
XoNUj '§A|

follows from the local integrability of e~%|x, on Xo and mg > 1.

By Theorem 3.1, we can extend s(™°) to an element of I'(X’,moKx + L).
Extension to I' (X, moKx + L) follows from Stein theory and Grauert’s co-
herence of the proper direct image of coherent sheaves [Gra60] as follows.

Let F be the coherent sheaf on A which is the zeroth direct image

Rn, (Ox (moKx + L)) of the zeroth direct image, under =, of the sheaf
Ox (moKx + L) of germs of holomorphic sections of mgKx + L on X. The
Stein property of A and the coherence of ¥ imply the surjectivity of the map

F(A,.’F) — fo/mA,ofo ,

where Fy is the stalk of F at 0 and m, g is the maximum ideal of A at 0.
This finishes the proof of Theorem 0.1.

6 Remarks on the Approach of Generalized Bergman
Kernels

As discussed in (1.5.2), (5.1), (5.2), and (5.3.4), the metric for the twisted
pluricanonical bundles on X, should be chosen as singular as possible to
avoid the undesirable unbounded growth of the dimension of the space of
L? holomorphic sections. Usual naturally-defined metrics such as generalized
Bergman kernels would not be singular enough to give the uniform bound of
the dimension of the space of L? holomorphic sections. The uniform bound
of the dimensions of section spaces is needed when we use the concavity of
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the logarithm for the estimates which leads to (5.3.4). There are a number of
other natural alternative ways of estimation which do not need such a uniform
bound of dimensions of section spaces. Here we make some remarks on the
difficulties of such natural alternatives in the case of generalized Bergman
kernels on X as used, for example, in [Tsu01).

Generalized Bergman kernels use square integrable (possibly twisted)
pluricanonical sections for definition, instead of just square integrable canon-
ical sections used for the usual Bergman kernels. To use square integrable
(possibly twisted) m-canonical sections, we need a metric for the (possibly
twisted) (m —1)-canonical bundle. There are more than one way of construct-
ing a metric for the (possibly twisted) (m — 1)-canonical bundle in order to
define the generalized Bergman kernel. In order to make the definition appli-
cable to the problem of the deformational invariance of the plurigenera, one
has to use the inductive definition, which inductively constructs a metric for

the (possibly twisted) (m — 1)-canonical bundle. Such an inductive definition
is defined as follows.

6.1 Inductively Defined Generalized Bergman Kernels.

Let Y be a complex manifold of complex dimension n and E be a holomorphic
line bundle over Y. Let e~* be a (possibly singular) metric for Ky + E. We
inductively define a generalized Bergman kernel &,, as follows, so that 31; is
a metric for m Ky + E. Let #; = e" and

& (P) = sup {la(m) (P)I2

o
o™ e I'(Y,mKy +E), / 1<
Y Qm—l
for m > 2. Equivalently, we can define

#n=3 i
i

for an orthonormal basis {aj(-'")}' of the Hilbert space I',, of all o(™m) E
j
I'(Y,m Ky + E) with

ot
[ 5t <.

The reason for the equivalence is that any (™ ¢ I, with

o
,A’ ¢m—1 h

can be written as 3~ cja](-m) with 3. lcj|* = 1 and that for any P €Y one

can first choose {aj(.m)} . the orthonormal basis for the subspace of I,
i

consisting of all elements vanishing at P and then add a§"".




266 Yum-Tong Siu

6.2 How Generalized Bergman Kernels Are Used.

The use of generalized Bergman kernels is meant for the fourth ingredient
listed in the Introduction. Consider the case of L being trivial. Use X as Y.
Use as E a sufficiently ample line bundle A over X so that we have a metric
e~" for Kx + E with positive curvature on X. Let s™ € I' (Xo,moKx,)
‘be given which is to be extended to an element of I" (X, moKx). Let s4 be
an element of I' (X, A) whose restriction to Xo is not identically zero. The

setting is the following situation after (5.3). For any integer £ > 2, (s(""’)t 84
can be extended to 3(¢™0) € I' (X,fmoKx + A) such that
|5temo) |2

< (c”)'™
X ¢lmo—l —-( )

for some positive constant C independent of ¢. Hence

|§(tmo) 2 S (Co)lmo ¢tmo .

Suppose on X, one were able to prove that (Qm)# is locally bounded on X
as m — oo. If we denote by O the upper semi-continuous envelope of the limit

superior of (45,,,)"5" as m — oo, then & is a metric of Kx with semi-positive
curvature current and
/ |stmo) ? ()
1 < .
Xo @m0

Thus 5(™°) can be extended to an element of I' (X, moKx). In the rest of §6
we will discuss the difficulties of various approaches to get the local bound

of (45,,.)'"1‘ as m — oo.

6.3 Bounds of Roots of Generalized Bergman Kernels.

We now return to the general setting of Y in (6.2). Assume that on Y we
have a finite number of coordinate charts G with coordinates

(zg’\),... ,zg)) )

We assume that there exists nowhere zero elements
Herl (é,\, —KY) )
T™\E € r (GA,E) .

Let dV; be the Euclidean volume of the coordinate chart Gy For0<r<l1

o G,\,,=C~¥)\ﬂ{|z§’\)|<r,--- ,lz,(,")|<r}.
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Assume that G , is relatively compact in Gyfor1<) <Aand0<r<1.

Let Gy = Gj,1. Let

Gy = sup sup P,

1<A<AGy,,

C{": sup sup
1<A<A Gy

C; = sup sup
1<A,u<4 GANG,,

C:‘,‘ = sup sup
1<A,5<A GANG,,

2
5,\7')‘ E| e,

2
’

&
€

2
T)\E
Tu,B

m,.—1 2
|EA TA,El ’

As explained in (6.2), the kind of estimates required for the invariance of

plurigenera is a bound for (9,,,,,)""" as m — oco. We are going to inductively
estimate O, , in terms of C# and C? and show where the difficulty lies

in getting a finite local bound for limsup,,_, ., (9,,.),)71"'

. For the estimates

we will first use the plurisubharmonicity of the absolute value squares of
holomorphic sections. Later we will discuss the use of the concavity of the

logarithm.

6.4 Difficulty of Shrinking Domain from Sub-Mean-Value Property.

Take 0 < 79 < 1. Fix an arbitrary point Py € G, for some 1 < A < A. For

O0<r<l—rglet

AS.POM\) — GA n {|Z§A) _ 21(.A) (Po)l <7y

By the definition of &, there exists some

such that

and

o™ e I'(Y,mKy + E)

[l

& (Py) = |5 (Po)i2 .

, ‘z,(,'\) — zs‘)‘) (Po)l < r} .
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For m > 2 and 0 < r < 1—7p, by the sub-mean-value property of the absolute
value square of a holomorphic function, we have

(enfepmss]) B = [emepri] R0

1

(m)em —1
= (mr2)" Jaron e T"‘E| dVa

1 la-(m)|
T ()" Jaren By

< & ’ v | — Lael
< A?Eol-)x) m— 1|£ TAE‘ Asuop eI dVi )" /A‘,"o'” -

(&m-sJegm[ ) 02 v

< ( sup Pm-1 |€)\ -11_)‘—}:7'2) ( sup |§A| dV,\) (T:EYT (6.4.1)

As_PO:A) A Pg, A

Choose positive numbers r1,- -+ ,Tm-1 such that E 1 rJ < 1-—rg. Let
6i=1~(ry+---+rj-1). From (6.4.1) and by induction on m we have

m~—1 2
(¢m ‘EI\nTA—,E| )(PO) < sup, |€,\TA E|2 e" H sup jdeV,\ (6.4.2)

Ao j=1 age (nr3)"

for m > 2. The estimate is for P € G, when rp < 1 — 21_1 rj. When
we increase m, we have to add more and more r; (1 < j < m). Their sum
have to remain less than 1 and the m-th root of their product have to remain
bounded in m.

We have to decide between two choices. The first choice is to use smaller
and smaller r; to maintain a fixed positive lower bound for ro ThlS choice
results in the lack of a finite bound for the m-th root of [];—; 1—1 —!' as m goes

to infinity. The second choice is to keep the m-th root of T 3—1 —j; bounded

in m. This choice forces ry to become eventually negative so that the domain
of supremum estimates becomes empty.

This kind of difficulties with norm change, involving supremum norms on
different domains, is similar to the norm-change problems encountered in the
papers of Nash [Nas54], Moser [Mos61], and Grauert [Gra60]. However, the
situation here is different from those which could be handled by the norm-
change techniques of Nash [Nas54], Moser [Mos61], and Grauert [Gra60].
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6.5 The Compact Case and Difficulty from Transition Functions.

For the resolution of the difficulty explained in (6.4), let us consider the case
of a compact Y. When Y is compact, a shrunken cover of Y is still a cover
of Y and the difficulty of the shrinking domain for the supremum estimate
seems not to exist. However, if we use this approach to resolve the problem in
the compact case, the transition functions of the m-canonical bundle would
give us trouble.

When we consider a point of an unshrunken member of the cover as being
in another shrunken member, for the estimation of the bound in question we
have to use the transition function of the m-canonical bundle whose bound
grows as the m-th power of a positive constant. Let us more precisely describe
the contribution from the transition functions of the m-canonical bundle.

From (6.4.1) we obtain

2 &
sup sup &,, Igg"r;, gl < G

= Om_11 (6.5.1)
1SA<AGh )

B (7r (1 —1r)?

for m > 2. Since Y is compact, we can assume Y = Ui<aca Garo- Any

Py € G», belongs to some G, ., and
2
m,_—1 2
(ém Igp T)‘,E, ) (PO)

-1
& T\E
o1
'k

(#merrsa]) (2 =

< (c)" o (enernia) 20

m & b
(C;) ("rTfl_%)zTem—l,l

IA

for m > 2 by (6.5.1). Hence

m _ cpc
Oma < (Ca") ———L—az—nem-l,l (6.5.2)
| (v (1 -r0)?)
for m > 2. By induction on m > 2, we conclude from (6.5.2) that
sor \™7 (1)
am 1 < 1 2 (02* 91,1 (653)

for m > 2. When we take the m-th root of both sides of (6.5.3), we get
1-4

m

chc? ml

Fa-oy) ()

.
(Oma)™ < " (O1)®
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for m > 2 and we would have trouble bounding the factor (0'2 ) as )
m — 00. So even in the compact case, the difficulty cannot be completely We 1
circumvented, because of the undesirable contribution from the transition is n
functions of the m-canonical bundle. kern
6.6 Difficulty with Bounds for Nonempty Limit of Shrinking Domain.
This
Let us return to the general case in which Y is noncompact. We look more whic
closely at the difficulty of the shrinking domain. In our case of 7 : X — A, for I
we use the notations of (5.4) and let
7 (2 A ém(
Ux,r =W,\ﬂ{|zl | <reee, |2V < ] <r}.
- for ¢
We apply the above argument to Y = X and G, , = U, , and with n replaced
by n+1. Let 7y, -+ ,7mm-1 be positive numbers such that r, +-- -+ 7,,,_; < 1.
With §; =1—(r1 +--- +7j_1), from (6.4.2) we have Aga
m—1 2 1 _<‘
2 2 - dv;
sup P, Iﬁ,’\”f,\‘bl < (sup |§,\T,\_,}g| en) H sup I_{A_IZ_"A
ﬁ»\.Gm 0}\.5, j=1 [7,\.6,- (7”'1'
1 ( 2. ’ﬁl | '2 . suck
= z 1 sup |§AT,\:E| e sup (§A x)
an(m=1) HT:] rgz‘ Ui, =1 Uxg;
for m > 2. After we take the m-th of both sides, we end up with a factor J
(—l'—l—l’—)—: which is not bounded in m if Z;‘;l r; < 1. For example, if the an
j=1Ti)™
seqjuenée r; is non-increasing and if there exists some positive number C such
that ——1— < C for all m > 1, then Let
(M7= r})™ absc
1 1 '
- < H—2 <C? fort>1
T 11 2
j=£ 7
1
= > —= ford>1
- T > —— — 00 as m — 0o.
5o
Hen
It shows that the difficulty of the shrinking domain for the supremum estimate
is an essential one when the generalized Bergman kernels are inductively
defined.
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6.7 Non-Inductively Defined Generalized Bergman Kernels.

We would like to point out that, if the metric for the (m —1)-canonical bundle
is not constructed inductively in order to define the generalized Bergman
kernel, then we would be able to avoid the difficulty with the bound of

. i
lim sup (6, )™ .
m-—>00

This non-inductive definition works only when FE is the trivial line bundle,

which we assume only for the discussion here in (6.7). Let e~"° be a metric
for Ky. The non-inductive definition defines ®; = e*® and

&.n(P) = sup {Ia("‘) (P)|2

2
am ¢ I’(Y,me)/ Ia(m)| e—(m=1)ro < 1}
Y

for m > 2. We let _ ; )
Om,r = sup sup P, |ET|".
1<ALAGH .
Again take 0 < 19 < 1 and fix an arbitrary point Py € Gy r, for some
1 € X < A. By the definition of &,, there exists some

| o™ € I (Y,m Ky)
1 such that
2
! / |a(’")! e~(m=Dmo < g (6.7.1)
Y
and 5
b (Po) = |ot™ (R)| .

Let 0 < r < 1 —r9. For m > 2, by the sub-mean-value property of the
absolute value square of a holomorphic function, from (6.7.1) we have

(&mlex1?) (B0) = ez ()
1

2
= ()" Jagon omex | 4V

1 2 (m—1
< = | su 12 e(m—Vso gy, | .
= (xr?) (A‘,PO!')'\) 134
Hence
1
. + 1 ~1)x "
(6mr) ¢ (s st dema)
(ra o) WS

[}

[
I
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is bounded as m — oo. However, this kind of non-inductively defined gen-
eralized Bergman kernel is not useful to the problem of the deformational
invariance of plurigenera. The induction argument of [Siu98] for the problem
of the deformational invariance of plurigenera requires the inductive defini-
tion if generalized Bergman kernels are used. Moreover, the non-inductive
definition works only when E is trivial, which is not useful for the case of
manifolds not necessarily of general type.

6.8 Hypothetical Situation of Sub-Mean-Value Property of Quotients.

Now we return to the general case where E may not be trivial and e™" is a
metric for Ky + E. We would like to remark that, if

/e
¢m—1
were to have the sub-mean-value property for (™ € I (Y, m Ky), the diffi-
culty of the shrinking of the domain of supremum estimate for the inductively
defined generalized Bergman kernel would disappear. The reason is as follows.

Again fix an arbitrary point Py € Gy, for some 1 < A < A. By the
definition of &,,, there exists some

o™ e I (Y,mKy + E)

such that

/ |a('n)| (6.8.1)

and 2
B (Po) = |0 (Py)[ -

Let 0 < r < 1—r1g. For m > 2, by the hypothetical sub-mean-value property
of
|a(m)£x|2
¢'m—l ’
we would have

Qm |§ |2 _ | m 5)\'
(—Qm_*l )(Po) = (——————-%_ )(P)

2
1 lot™)gs |
< P SAL
- " L(Po N D Vi

( sup |§,\|2 dV,\)
AS‘PO'A)

an«

wh

do
6.¢

In
(5.
(6
all

Ac
in
pc

fo:
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(6.8.1)
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by (6.8.1). Hence by (6.8.2) and by induction on m, we have

2
L lﬁf\"fl\—,}gl 1 \ m—1
——3 | (P) < wr® Sup)|§A| dVi
alFo

p)
& |exrih| (Fo
and
1-%
1 1 1
Omro)™ < | ———= ( sup sup |€[* dV; (O1,m)7
(ﬂ' (1 — ro) ) lS/\SA As'PO-A)
which is bounded as m — oo. Of course, unfortunately in general
|¢,(m)§x|2
¢m—1

does not have the sub-mean-value property for o(™ ¢ I (Y,mKy + E).

6.9 Growth of Dimension of Section Space When Concavity of Logarithm is
Used.

In the case of a compact Y, for 0 < ry < 1 we can follow the method of
(5.4) and use the concavity of the logarithm for the supremum estimate of

(Gm,ro)"}"’ as m — 00. Let N,,, be the complex dimension of the space I, of
all 0™ € I' (Y,m Ky + E) such that

2
[,
Y Qm—-l
As in (5.4), for this method of estimation the bound of (Gm,,o)# cannot be
independent of m if the growth order of N,, is at least that of some positive

power of m. More precisely, the estimation analogous to that of (5.4) is given
as follows.

From the definition of m we have

P
<N,
./1;¢m—1 =0

for m > 2. By the concavity of the logarithm,
1 2 1

= O |errih| ) V-

™ Ja, (log m |83 7B AT

1 ¢m Igz\lz
= — — |} dV}
o \/GA (log ¢m—l A

1 B [E1]
<1 — —DBA 4V,
< og(w,,/m n il gy,

1,12
<logq5m_1 IEA TA,EI )dV,\
G

————2 e
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N
< log (F sup 3\& dV,\) (6.9.1)
A

for m > 2. Adding up (6.9.1) from m = 2 to m, we obtain

1 m, —1 2
=N log&m €77 k| ) VA

1 R
S s (1Og lﬁ,\f,\)}gl e ") dVx + Y7, log (%{1 supg, [I* dV,\)
A

con(
A

where for the last inequality the concavity of the logarithm is used. Using

112 - e N,
E,\'r,\,}a| e "dV,\) + Zlog (-—# sup 3\E dV,\) , (6.9.2)
A

i=2

2
the sub-mean-value property of log &, Iﬁi"‘l"\_, }3| , we obtain

_ 2 1 _ 2
sup log ®um lg';'a }g| < /G (1og¢m |§;"TA}E| )dVA (6.9.3)
A

Gao T (w(1—ro)2)"

for 0 < rg < 1. Let
1

T a\D o}
(w(l—ro)z)
1 -1 2 -K
Cy=— sup Em,E| e*dVy
™ 1<a<atay

1
Ce = —-;sup|§>‘|2dVA.
" Ga

By (6.9.2) and (6.9.3) we have
1\

(Omm)* < | CFCT™ (II Nm>

=2

1
and whether (9,,,.,,0)"k is bounded in m depends on whether (H;’;z Nm) ™

is bounded in m.
If the order of growth of Ny, is at least that of some positive power of m
(i.e., Np 2 amP — C for some positive a and S and C), then

1

(ﬁ N.| >Cm)~

i=2




(6.9.1)

(6.9.2)

Using

(6.9.3)
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for some positive C and for m sufficiently large and is therefore unbounded
in m.

Even if we start with some very singular e™*, the definition of &#,, may
make 31: gain some regularity in each step as m increases. As a result, the
growth order of N,,, may become comparable to that of the dimension of
I'(Y,mKy + E) as m — oo.

Besides the difficulty of the growth order of N,,, this method of the con-
cavity of the logarithm does not apply to the case of noncompact Y, which is
what the use of generalized Bergman kernels for the deformation invariance
of plurigenera would require.

6.10 Modification of Generalized Bergman Kernels to Make the Method of
Concavity of Logarithm Applicable to the Case of Open Manifolds.

To make the method of the concavity of the logarithm applicable to the
noncompact case of 7 : X = A at hand, we can do the following. Let F be a
holomorphic line bundle over X, e~* be a metric of Kx +F, and C% > 0. Let
@,, be the generalized Bergman metric for m Kx, + E|x, and e™*, as defined

in (6.1) with Y equal to Xo. Let a;-'") (1 € j £ Ny,) form an orthonormal
basis of the space I, of all o™ € I' (Xo,m Kx, + E|x,) with

ot
[ <.

Then inductively let &5-"') € I'(X,m Kx + E) be an extension of a§m) with

and

>

2
= max |6'(m)|
m = H .

1<i<Nm | 7
Define

R . 2
em,r = sup sup Pm |€:\n,r;,i7| ’
1SALAGa
where G r,£0, T g are as defined above when Y is replaced by X. We can
then apply the method of the concavity of the logarithm to @, on X for
1

A

the supremum estimate of ém,,) ™ as m — oo. Of course, ,, is no longer
the generalized Bergman kernel. We would still have the difficulty with the
growth order of Ny, when it is at least of the order of some positive power
of m.
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6.11 The conclusion to these remarks in §6 is that, in the various approaches
discussed above, the generalized Bergman kernels pose insurmountable diffi-
culties when they are used for estimates in the problem of the deformational
invariance of plurigenera for manifolds not necessarily of general type.
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