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ABSTRACT

The study of moduli spaces is a cornerstone of algebraic geometry. In this thesis, we investigate moduli spaces
of two kinds. First, we study realization spaces of 103 line configurations. We prove that these spaces all have
dense rational points (in both the Zariski and analytic topologies). We find that for exactly four out of the ten
103 configurations, the realization space admits a compactification by a K3 surface of maximal Picard rank,
which is itself a moduli space of GIT-stable "weak" realizations. Next, we turn to the moduli space SUC(2) of
semistable rank 2 vector bundles with trivial determinant on a smooth projective curve C. Generalizing Tevelev-
Torres' proof of the BGMN conjecture, we construct a noncommutative resolution of singularities of SUC(2)
(crepant if the genus of C is even) with a semiorthogonal decomposition into blocks equivalent to even
symmetric powers of C. This provides evidence (via the Kuznetsov rationality proposal) toward the
longstanding expectation that SUC(2) is a rational variety.
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Chapter 1

Introduction

This thesis concerns moduli spaces in algebraic geometry. Broadly speaking, given a class C of

geometric objects, a   for C is a geometric space whose points are in one-to-one cor-

respondence with objects in C up to a suitable notion of isomorphism. Moreover, the geometry

of the moduli space should encode the ways these objects can vary in nice families. As a basic

but critical example, take C to be the set of lines through the origin in Rn+1. The moduli space

for C is real projective space RPn, discovered by Renaissance artists studying perspective. Other

important examples include moduli spaces of (smooth or stable) algebraic curves, Hilbert schemes,

and Quot schemes (see Subsection 1.1.1 for more).

In algebraic geometry, the geometric spaces we consider are algebraic varieties or, more generally,

schemes. In modern categorical language, the data of a moduli problem is a contravariant functor

F from the category of schemes to the category of sets which associates to each scheme T the set

F (T ) of appropiate families over T of objects in C, and to each morphism f : T ′ → T a pullback

map F (f) which takes families over T to families over T ′. A (ne) moduli space for this functor

is a scheme M which represents F , in the sense that F is isomorphic to the functor Hom(−,M).

That is, a morphism to M is exactly a family of objects in C. In particular, one has a universal

family on M itself (corresponding to the identity morphism M → M), such that any other family

is a pullback of the universal one.

Unfortunately, many functors of interest are not representable by schemes. There is no ne

moduli space of elliptic curves, for instance. There are two main workarounds. One option is to

relax our notion of moduli space such that we only require a (universal) natural transformation

3



F → Hom(−,M), rather than an isomorphism; such M are called  moduli spaces, which are

easier to come by. Alternatively, we can enlarge our category of geometric spaces, which leads to

the theory of algebraic stacks. Moduli stacks uphold our ideal of what a moduli space should be,

but are signicantly more dicult to work with than varieties or schemes. Studying the geometric

properties of moduli spaces and stacks is a central pursuit in modern algebraic geometry.

In this work, we focus on two kinds of moduli space: realization spaces of line congurations

and moduli spaces of vector bundles on curves. A  is a collection L of subsets of

P = 1,    , n such that ℓ∩ ℓ′ ≤ 1 for all ℓ, ℓ′ ∈ L. We think of the elements of P as points in the

projective plane, and elements of L as lines containing those points. An n3  satises

the additional conditions that L = n, each line contains three of the points, and each point is

contained in exactly three of the lines. A  of L over a eld k is a map P → P2(k) such

that the images of distinct p, q, r ∈ P are collinear if and only if there is an ℓ ∈ L with p, q, r ∈ ℓ.

The realizations of L over k modulo projective transformations of P2 correspond to the k-points of a

quasiprojective variety called the   of L. Our key question is: what is the geometry

of the realization spaces of 103 congurations? For example, what are their dimensions? Do they

have singularities? If they are surfaces (as we would expect from a näıve dimension count), where

do they fall in the classication of algebraic surfaces? Finally, do they have dense rational points

with respect to either the Zariski topology or the classical analytic topology?

For a smooth projective curve C of genus g ≥ 2 and line bundle Λ ∈ Picd(C), one can construct

the moduli space MC(2,Λ) of semistable rank 2 vector bundles on C of determinant Λ. (Here,

a vector bundle E is semistable if every line subbundle L ⊂ E has degree at most d2.) It’s

easy to see that up to isomorphism, MC(2,Λ) depends only on the parity of the degree d of

Λ. When d is even, this moduli space is conventionally denoted SUC(2). Tevelev and Torres

[TT21,Tev23] recently proved the BGMN conjecture (named for Belmans–Galkin–Mukhopadhyay

and Narasimhan), which states that when d is odd, the bounded derived category Db(MC(2,Λ))

of coherent sheaves on MC(2,Λ) admits a semiorthogonal decomposition with blocks equivalent

to Db(SymkC) for 0 ≤ k ≤ g − 1. We ask if their methods can be generalized to study the even

degree case. While it is known that a direct analog of the BGMN conjecture cannot be true due

to its singularities, we instead seek a noncommutative resolution of singularities of SUC(2) (see

Subsection 1.1.4).
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1.1 Background

1.1.1 Moduli spaces and GIT

The theory of moduli spaces began in [Rie57] with Riemann’s count of the 3g − 3 parameters (or

) on which the complex structure of a compact Riemann surface of genus g ≥ 2 depends. We

refer to [AJP16] for the early history of the subject, including the contributions of Klein, Poincaré,

Hilbert, Teichmüller, and many others. Noteworthy examples of classical moduli problems in

algebraic geometry are linear systems of divisors, the Jacobian variety of a curve, and Chow varieties

(see [Kol23, Sec. 1.1]). The most important foundational developments for the present thesis are

those of Grothendieck and Mumford. In a series of ten talks at Henri Cartan’s seminar in 1960–

1961 [Gro62], Grothendieck introduced the modern perspective on moduli problems in terms of

representable functors. That is, when trying to dene a moduli space for some class of objects

C, one should rst introduce a functor Schop → Set which assigns to each scheme T the set of

nice families over T of objects in C, and then construct a scheme which represents this functor.

A fundamental example is the Hilbert scheme Hilb(X) of a projective variety X, constructed by

Grothendieck in [Gro95]. This represents the functor T → Subschemes of T ×X at over T.

An essential tool in the construction of such moduli spaces is Mumford’s geometric invariant

theory (GIT), introduced in [Mum65]. Building on Hilbert’s classical theory of invariants [Hil93],

GIT is a method for constructing quotients of a quasiprojective varietyX by the action of a reductive

algebraic group G. An ordinary quotient space often does not exist in the category of varieties; this

is exemplied by the obvious action of the multiplicative group Gm on An+1, where the quotient

fails to be separated due to the origin lying in the closure of every other orbit. Mumford’s solution

is to remove a closed subset of  points before taking the quotient. More precisely, one rst

chooses an ample line bundle L on X together with a berwise linear action of G extending the

one on X (a ). The   Xss(L) ⊆ X is dened to be the union


s Us over

G-invariant global sections s ∈ H0(X,L⊗n)G with n > 0, where Us = x ∈ X  s(x) ̸= 0. The

GIT  XLG is then given by gluing together ane schemes of the form SpecAG
s , where

Us = SpecAs.

There is a natural surjection π : Xss(L) → XLG induced by AG
s → As which is a categorical

quotient, meaning that any G-invariant map from Xss factors through π. Moreover, there is an
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open subset Xs(L) ⊆ Xss(L) called the   such that the restriction of π to Xs(L) is a

geometric quotient, in the sense that its bers are closed G-orbits. Returning to our example of Gm

acting on An+1, we we can take L = O(1), the trivial line bundle An+1 ×A1 with the linearization

λ · (x, v) = (λx,λv). The semistable locus (which here equals the stable locus) is then An+1 ∖ 0,

and the GIT quotient An+1LGm is projective space Pn, as one would expect. This construction

is used extensively in moduli theory.

A pertinent question is how the quotient XLG depends on the choice of G-linearized ample line

bundle L. This has been studied in detail by Dolgachev and Hu in [DH98]. The set of G-linearized

ample line bundles span the G-  CG(X) in NSG(X)⊗R, where NSG(X) is the group of

all G-linearlized line bundles on X modulo homological equivalence. This cone is then divided into

nitely many  and , where the class of L lies on a wall exactly when Xs(L) ̸= Xss(L).

Each chamber is an equivalence class under the relation L ∼ L′ ⇐⇒ Xss(L) = Xss(L
′); the other

equivalence classes are unions of nitely many , which are connected subsets of walls. This

analysis shows that there are nitely many possible GIT quotients of X by G. The authors also

show that under certain conditions, the GIT quotients on opposite sides of a wall are related by

a birational transformation similar to a Mori ip. These wall crossing transformations are an

essential component of Tevelev’s proof of the BGMN conjecture [Tev23].

1.1.2 Line congurations

Congurations were dened by Reye in 1876 and studied by Kantor and Schroeter, among others;

see [Gro97] and references therein for a historical treatment. Gropp notes a lack of interest in line

congurations throughout most of the 20th century, but the subject was renewed in the 80s and

90s. This was partly due to the advent of powerful symbolic algebra software, as exemplied by

Sturmfels and White’s computer-assisted proof that all 113 and 123 congurations are realizable

over Q [SW90], which completed the classication of n3 congurations for n ≤ 12. Other noteworthy

results include Mnëv’s universality theorem [Mnë88] and Vakil’s so-called Murphy’s law [Vak06].

The starting point for our study of 103 conguration is Sturmfels’ article [Stu91]. There,

Sturmfels oers a strategy for describing realization spaces using geometric construction sequences

and Caley algebra. He also introduces the problem of determining whether the rational realizations

of a conguration are dense, and notes that the answer is unknown for a particular 103 conguration.
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1.1.3 Derived categories

The derived category D(A) of an abelian category A was introduced by Verdier in his thesis

[Ver96]. The objects of this category are cochain complexes with terms in A, and the morphisms are

(homotopy classes of) complex morphisms together with formal inverses for quasi-isomorphisms. (A

quasi-isomorphism is a complex morphism which induces isomorphisms in all cohomology groups.)

These categories are the natural context for derived functors such as Tor and sheaf cohomology.

Morally, the framework of derived functors allows one to keep track of chain complexes up to

quasi-isomoprhism, rather than just the cohomology groups of such complexes. Moreover, derived

functors can now be applied to chain complexes, rather than just objects, which in particular allows

for the composition of derived functors. When A = Coh(X) is the category of coherent sheaves

on a smooth projective variety X, we typically restrict ourselves to the bounded derived category

Db(X) := Db(Coh(X)) whose objects have only nitely many nonzero cohomology groups.

While Verdier viewed derived categories as a mere technical device, Db(X) was later found to

be a powerful and subtle geometric invariant in its own right. The rst instance of this viewpoint

is Mukai’s paper [Muk81], wherein the author constructs a very nontrivial equivalence between the

derived category Db(X) of an abelian variety X and the derived category of its dual variety X. This

is done by introducing F-M . Given an object K ∈ Db(X ×Y ) (called the 

in analogy with integral transforms), the Fourier-Mukai functor PK : Db(X) → Db(Y ) is given by

F → Rq∗(Lp∗F
L
⊗K) where p and q are projections from X × Y onto X and Y , respectively. The

equivalence Db(X) ∼= Db( X) is given by PF where F is the normalized Poincaré bundle on X × X.

Further fundamental results on derived categories in algebraic geometry are due to Bĕılinson,

Kapranov, Bondal, Orlov, and others (e.g., [Bĕı83,BK89,Orl92,BO95]). Of special importance is

the notion of  , where a derived category is broken down into smaller

subcategories with simple relations among them; namely, a sequence of (admissible) subcategories

⟨D1,    ,Dn⟩ is called  if Hom(A,B) = 0 for all A ∈ Di, B ∈ Dj with i > j (see

[Huy06, Ch. 1] for details). Bĕılinson showed that Db(Pn) admits a semiorthogonal decomposition

⟨O,O(1),    ,O(n)⟩ (where O(k) is shorthand for the image of the Fourier-Mukai functor PO(k) :

Db(pt) → Db(Pn)). In [Orl92], Orlov proved his blowup formula, which states that the derived

category of the blowup of X along a smooth center Z admits a semiorthogonal decomposition of the
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form ⟨Db(X), Db(Z),    , Db(Z)⟩, where Db(Z) appears codim(Z)−1 times. This was generalized in

[BO95] to handle ips over projective bundles. In the same groundbreaking paper, Bondal and Orlov

prove an essential criterion for fully-faithfulness of Fourier-Mukai functors, give a semiorthogonal

decomposition for the intersection of two even-dimensional quadraics, and show that a variety is

determined by its derived category if its cannonical bundle is ample or anti-ample.

Essential to the present endeavor is the theory of windows as developed by Teleman, Halpern-

Leistner, and Ballard–Favero–Katzarkov [Tel00,HL15,BFK19]. Halpern–Leistner showed that the

derived category of a GIT quotient (or rather the quotient stack [XssG]) is equivalent to a win-

dow subcategory Gw of the equivariant derived category Db([XG]). Gw consists of objects whose

restriction to each Kempf–Ness stratum of the unstable locus have weights lying in a prescribed

range, or window. (Here,  refers to the action of the one-parameter subgroup associated to

the stratum; see [HL15, Theorem 2.10] for a precise statement.) This technique be used to describe

the eect of Dolgachev–Hu’s wall-crossing transformations on the derived categories of GIT quo-

tients: under certain weight conditions, the derived category on one side of the wall embeds into

the one on the other side. Some applications of this technique, including to one of the problems at

hand, can be found in Torres’ thesis [Tor21].

To end this subsection, we mention Kuznetsov’s article [Kuz16] on rationality problems and

derived categories. Kuznetsov suggests that irrationality of a smooth projective variety X should

be detectable by the presence of Griths components, meaning semiorthogonal components of

Db(X) with geometric dimension at least dimX − 1. On the other hand, if a variety is expected

to be rational, the geometric blocks in its derived category should hint at how to construct the

birational map to projective space. This is still largely conjectural, as the set of Griths components

is not even well dened. Nevertheless, this proposal is considered an important heuristic in the

study of derived categories and rationality.

1.1.4 Noncommutative resolutions of singularities

In [Kuz08], Kuznetsov denes a  (or )    of a

variety X as a smooth triangulated category D with an adjoint pair of functors f∗ : D → Db(X)

and f∗ : Perf(X) → D such that f∗ ◦ f∗ ∼= Id. (This denition is motivated by the relationship

between Db(X) and the derived category of an ordinary (commutative) resolution of singularities

8



when X has rational singularities.) A noncommutative resolution is said to be () 

if the identity functor is a relative Serre functor (see [Kuz08, Section 3]). By the Bondal–Orlov

conjecture [BO02], it is expected that a noncommutative crepant resolution should be minimal in

the sense that it embeds as an admissible subcategory of any other resolution.

Based on work of Spenko and Van den Bergh [SVdB21,SVdB23], Pădurariu [Păd21] constructs

a noncommutative resolution of singularities of the good moduli space of a symmetric stack satis-

fying various technical assumptions. He shows that this resolution always embeds into the derived

category of the Kirwan resolution.

1.1.5 Moduli of vector bundles

The early development of moduli spaces of vector bundles was carried out in the 1960s by Mumford,

Narasimhan, Seshadri, Ramanan, Newstead, and others (e.g., [Mum65,NS64,New68,NR69]). We

refer to [TT21] for an account of the history of and prior results toward the BGMN conjecture. In

that paper, Tevelev and Torres prove this conjecture up to the possibility of a phantom block;

the same result was obtained independently in [XY21] using dierent methods. In [Tev23], Tevelev

eliminates this possibility, completing the proof.

Tevelev’s proof proceeds by instead studying the derived categories of Thaddeus’ moduli spaces

of stable pairs Mi [Tha94]. These are smooth projective varieties that parameterize pairs (E,ϕ) of a

rank 2 vector bundle E on C of determinant Λ with a nonzero global section ϕ ∈ H0(C,E), subject

to a GIT-stability condition depending on the integer parameter i ∈ [0, g − 1]. M0 is a projective

space, whose derived category is well understood via the Beilinson exceptional collection. As shown

in [TT21], Db(Mi−1) embeds into Db(Mi) as a window subcategory. Mi−1 and Mi are related by

a standard ip of projective bundles over SymiC, so the orthogonal complement of Db(Mi−1) in

Db(Mi) consists of blocks equivalent to Db(SymiC).

Iterating this wall-crossing procedure gives a semiorthogonal decomposition of Db(Mg−1) with

blocks given by Db(SymkC) for 0 ≤ k ≤ g − 1, as in the conjecture. On the other hand, there

is a forgetful morphism ζ : Mg−1 → N := MC(2,Λ) given by (E,ϕ) → E; this morphism is

birational, so Lζ∗ gives a fully faithful embedding of Db(N) into Db(Mg−1). This yields a dierent

semiorthogonal decomposition of Db(Mg−1) than the one above. In [Tev23], Tevelev devised a long

series of mutations relating these two decompositions, which breaks up into a series of simpler steps
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dubbed weaving patterns. The blocks that wind up in Lζ∗(Db(N)) are exactly those conjectured

by BGMN.

In the even degree setting, it is known that SUC(2) has rational singularities along the strictly

semistable locus. There are three desingularizations studied in the literature: one due to Seshadri

[Ses77] based on moduli of parabolic bundles, one due to Narasimhan–Ramanan [NR78] based on

Hecke correspondences, and one due to Kirwan [Kir86] in the more general setting of GIT quotients.

The geometric relationship between these desingularizations is worked out in [KL04,CCK05]. The

Hodge numbers of Seshadri’s model are computed in [DB02] by motivic methods. This computation

led to Belmans’ conjecture [Bel21] on the blocks that should appear in a noncommutative crepant

resolution of SUC(2).

In contrast to odd degree, where N is known to be rational [KS99], whether SUC(2) is a rational

variety is a longstanding open question (except if g = 2, in which case SUC(2) is known to be a

projective space [NR69]). Early attempts to solve this problem were unsuccessful [New75,New80,

Tyu64,Tyu65].

1.2 Goals and methodology

As mentioned, our goal in studying 103 line congurations is to understand the geometry of their

realization spaces. Up to isomorphism, there are exactly ten such congurations, so we can study

them one by one. Following Sturmfels’ suggestion [Stu91], we address the question of whether

the rational points of these realization spaces are dense in the real points. We approach this

problem from the perspective of elliptic surfaces; see [SS10] for a comprehensive review. It is clear

from Sturmfels’ construction of one such realization space (R(LV) below) that it is an elliptic

surface; we study the Mordell–Weil group of this surface to generate many rational points. We

apply similar techniques to construct and analyze the other surfaces. We also study the algebro-

geometric properties of these spaces, such as their canonical bundles, Hodge numbers, Picard ranks,

etc. using standard techniques. Finally, we wish to compactify these realization spaces, and give a

modular interpretation of these compactications. We make essential use of the software packages

Magma [BCP97] and Macaulay2 [GS06] for computations.

Our objective in studying the moduli space SUC(2) is to generalize the techniques of Tevelev
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and Torres to explicitly construct its noncommutative resolution of singularities. As described in

Subsection 1.1.5, this involves a two-ray game where the Fano varities P3g−2 and SUC(2) are real-

ized as extremal contractions of another Fano variety M = Mg−1. We endeavor to use the geometry

of M mutate the usual Bĕılinson semiorthogonal decompostion of Db(P3g−2) into a semiorthogonal

decomposition of Db(M) compatible with the contraction to SUC(2); the result should give the

desired noncommutative resolution. The Thaddeus space M is qualitatively insensitive to degree,

so many of Tevelev–Torres’ methods and results will still apply. On the other hand, there are a

number of technical complications stemming from the existence of strictly semistable bundles, and

some new ideas and methods will be required. In particular, one needs to be much more careful in

distinguishing various moduli stacks when the degree is even.

1.3 Results

Our results on line congurations are detailed in Chapter 2. We show in Theorem 2.1.1 that

the realization space of each of the ten 103 conguration has analytically dense rational points. In

Theorem 2.1.2, we nd that four of these realization spaces admit compactications by K3 surfaces,

and compute enough invariants of these surfaces to determine them up to isomorphism. We also

give a modular interpretation of these K3 surfaces in terms of weak realizations.

In Chapter 3, we construct the desired noncommutative resolution D of SUC(2) as a subcategory

of Db(M). It has a semiorthogonal decomposition with blocks equivalent to Db(Sym2kC) for

0 ≤ 2k ≤ g − 1. We nd that it agrees with Pădurariu’s construction [Păd21] and that it is

strongly crepant when g is even, in which case our result conrms Belmans’ prediction [Bel21].

This decomposition provides evidence (via Kuznetsov’s proposal above) that SUC(2) is rational.

1.4 Further research

The most natural followup to our study of line congurations would be to study realization spaces

of n3 congurations for n > 10. By the arguments in Section 2.1, n = 11 should give Calabi–Yau

threefolds (of interest in physics). The number of congurations grows fairly quickly with n, and

the computational techniques used in our treatment are unlikely to scale well to larger dimensions

(though more specialized software packages, such as the matroid facilities of OSCAR [DEF+24],
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may be adequate). While Sturmfels’ approach to explicitly constructing the realization space will

still work, the powerful theory of elliptic surfaces is no longer available, so a dierent method of

proving density would be necessary.

Two-ray games such as the one used in our study of SUC(2) are of great interest. It is con-

jectured that one can play a similar game with any Fano varieties X,Y, Z related by extremal

contractions Y  X  Z, where a semiorthogonal decomposition of Db(Y ) is mutated via X

into a semiorthogonal decomposition of Db(Z). Indeed, mirror symmetry suggests that the braid

relating these decompositions should be given by the monodromy of the eigenvalues of the rst

Chern class of X acting on small quantum cohomology as the base varies; this is related to the

Dubrovin and Gamma conjectures [Dub98,GI19]. It would be worthwile to attempt similar inves-

tigations for other triples of Fano varieties, e.g., toric Fanos. Our result also suggests that to prove

the rationality of SUC(2) for g = 3, one should try to embed Sym2C into P6 and blow up; this

approach has proven dicult to put into practice.
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Chapter 2

Line congurations

2.1 Introduction

As discussed in Chapter 1, a  on a nite set P (called the set of ) is a set L of

subsets of P (called ) such that any two lines have at most one point in common. A 

of L in P2 over a eld k is a map P → P2(k) such that for all distinct p, q, r ∈ P , their images in

P2(k) are collinear if and only if there is a line in L containing p, q, r. The set of all realizations over

k of a conguration L can be identied with the k-points of a quasiprojective variety V ⊂ (P2)n,

where n = P . The condition that three points are collinear is expressed as the vanishing of a

corresponding minor of the 3×n matrix of coordinates of (P2)n, and V is cut out by one equation or

inequation of this type for each triple. However, this variety is too large; we would like to identify

realizations that are related by projective transformations of P2. This quotient space VPGL(3)

is called the   of the conguration, denoted R(L). This quotient is constructed

by means of geometric invariant theory, and the choice of stability condition gives rise to various

compactications of R(L), each with its own interpretation as a moduli space of (weak) realizations

of L (see Section 2.4).

Specializing to the case of n3 congurations, we observe that the equation dening a line ℓ ∈ L

has degree 1 in the coordinates of the points on ℓ, and degree 0 for other points. Since each point

lies on exactly three lines, the sum of the multidegrees of the n equations of lines in L is (3, 3,    , 3).

This is exactly opposite the multidegree of the canonical class of (P2)n. If the projective variety

W ⊃ V cut out by these n equations were a complete intersection of codimension n in (P2)n, the
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adjunction formula would imply that the canonical bundle of W is trivial. The same argument

applies in any open subset of (P2)n; in particular, if the semistable locus of W is such a complete

intersection in (P2)nss, then the corresponding GIT quotient will have trivial canonical bundle as

well (see Lemma 2.4.1). In other words, we expect the realization spaces of n3 congurations to

have compactications with Calabi–Yau type geometry. Such varieties are of signicant interest

for their dicult arithmetic and their relevance to physics. For example, in the 103 case, R(L) has

expected dimension

2n− L − dimPGL(3) = 20− 10− 8 = 2,

so we would hope for a K3 surface. Similarly, 113 congurations would give Calabi–Yau threefolds,

and so on.

As a test of this philosophy, we study the realization spaces of 103 congurations. It was

shown by Kantor [Kan81] that there are precisely 10 such congurations (up to relabeling), and

Schroeter [Sch89] found that all but one of them admit realizations over elds of characteristic 0.

Following Schroeter’s numbering, we refer to these congurations as LI,LII,    ,LX. To illustrate

our methods, we focus our discussion on

LV = 124, 138, 179, 237, 259, 350, 456, 480, 678, 690, (2.1.1)

where P = 0,    , 9 and 124 = 1, 2, 4, etc. This conguration was studied by Sturmfels in

[Stu91], who gave a concrete description of its realization space using a geometric construction

sequence. Our choice of this particular conguration was motivated by the question, left open by

Sturmfels, of whether its realizations over Q are dense in the realizations over R. We give a positive

answer to this question for all 103 congurations.

Torm 2.1.1. F  103  L,    R(L)(Q)    

  R(L)(R)       .

It turns out that for many 103 congurations, the would-be K3 surfaces are either not of the

expected dimension (LI) or are reducible (LII, LIII, LIV, LVI, and LVII). For the other four, the

Calabi–Yau dream is achieved.
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Torm 2.1.2. L L     103  LV, LVIII, LIX,  LX.

() T   R(L)     Z-     K3  

P  20   −7, −8, −7,  −11, .

() T K3        GIT-    L.

In Section 2.2, we observe that Sturmfels’ calculation gives rise to an algebraic surface S with

an elliptic bration. We use computations in its Mordell–Weil group to prove Theorem 2.1.1 for

L = LV. Similar techniques are used for the other congurations. In Section 2.3, we construct

a K3 surface S as the minimal resolution of S. We compute its singular bers, Picard number,

and discriminant, which identify it as the universal elliptic curve over Γ1(7). The other three K3

surfaces are constructed likewise, proving Theorem 2.1.2(i). In Section 2.4, we review GIT quotients

in general and for the case of (P2)nPGL(3). We describe the correct choice of GIT quotient for

our problem and use computer algebra to prove Theorem 2.1.2(ii).

Throughout, we work with varieties over C, though our results (except for those on analytic

density) hold over any algebraically closed eld of characteristic 0.

2.2 Elliptic brations and density of rational realizations

Sturmfels’ parameterization of R(LV) goes as follows (see [Stu91, §2] for details): x points 1,

2, 3, and 5 to standard coordinates [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], and [1 : 1 : 1] using a

projective transformation. Let [a : b : c] be homogeneous coordinates for point 6, and [0 : u : v]

homogeneous coordinates for point 7 along the line 23 (both in general position to avoid unwanted

collinearities). The positions for the other 4 points are then determined, with one condition to

ensure that 6, 9, 0 are collinear:

u2a2c− uva2c− v2b3 + uvb2c+ v2ab2 − uvabc+ uvac2 − u2ac2 = 0 (2.2.1)

It’s clear that every realization of LV (up to PGL(3)) can be obtained in this manner for a unique

choice of ([u : v], [a : b : c]) satisfying (2.2.1), and that almost all choices yield such a realization.

Sturmfels also gives an example of a realization of LV over Q, so R(LV)(Q) is nonempty.
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We observe that equation (2.2.1) is irreducible and homogeneous of bidegree (2, 3) in [u : v] and

[a : b : c], so it denes an irreducible surface S ⊂ P1 × P2. The above analysis shows that R(LV)

is isomorphic (over Q) to a dense open subset of S. Moreover, Computation 2.5.1 shows that this

subset is contained in the smooth locus Ssm of S. Hence, to prove Theorem 2.1.1 for L = LV, it

suces to show that Ssm(Q) is analytically dense in Ssm(R).

The generic ber E of the projection π : S → P1 onto the rst factor is a smooth cubic plane

curve over the function eld K = k(P1) whose K-points are identied with the sections of π. That

is, π gives an   of S. The point ([u : v], [1 : 1 : 1]) lies in S for all u : v ∈ P1, so we

have a section

o = [1 : 1 : 1] ∈ E(K)

dened over Q. Choosing o for the identity makes E into an elliptic curve over K.

The abelian group MW(S) = E(K) of sections of π is called the (geometric) Mordell–Weil group

of S. This group is nitely generated [SS10, Theorem 6.1] and amenable to computer calculations,

which will allow us to show the existence of many rational points. As an easy demonstration of

this technique, we prove the following:

Proposton 2.2.1. S(Q)    S     Z .

P. We nd another section

s = [1 : t : t] ∈ E(K)

dened over Q, where t = uv ∈ K. We check in Computation 2.5.2 that s is not torsion in MW(S),

so π admits innitely many sections dened over Q. That is, S contains an innite collection of

irreducible curves isomorphic to P1 over Q. Their union is certainly Zariski-dense; a proper closed

subset of S must have codimension at least 1 by irreducibility, and therefore can contain only

nitely many irreducible curves. Since each section has a dense set of Q-points, this proves that

S(Q) is Zariski-dense.

The proof of analytic density proceeds along similar lines.

Convnton 2.2.2. For the remainder of this section only, we use the analytic topology when

working with real loci. In particular, dense, open, and connected are understood with

respect to this topology.
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Lmm 2.2.3. L E      R,   p   - R-. T 

  p    E(R)      E(R)  ,  p      

  E(R).

P. The real locus of an elliptic curve has either one or two connected components, both dif-

feomorphic to circles. Being a compact connected real Lie group of dimension 1, the identity

component E0 of E(R) is a normal subgroup isomorphic (as a Lie group) to the circle group RZ.

If E(R) = E0, then the claim follows from the standard fact that irrational rotations have dense

orbits in RZ.

Otherwise, E(R) has two components, E0 and E1, with the quotient E(R)E0
∼= Z2. If p ∈ E0,

then its orbit is contained in E0 and not dense in E(R). Otherwise, we have E1 = p + E0 and

2p ∈ E0. The orbit of 2p is dense in E0 by the above, and its image under translation by p is dense

in E1.

Lmm 2.2.4. S f : X → P1      Q    o. L F (t)

       f−1(t)  t ∈ P1(R). S      

Ui ⊆ P1(R)   si ∈ MW(X)   Q  

(1)


i Ui    P1(R),

(2)  si     MW(X), 

(3)   t ∈ Ui  F (t) ,  F (t)    si(t)    -

  F (t).

T Xsm(Q)    Xsm(R),  Xsm      X.

P. When F (t) is smooth, we regard it as a real elliptic curve with identity o(t). As a curve in

X, any positive multiple of si in MW(X) intersects the identity section in nitely many points, so

the set

Ti,n = t ∈ P1(Q)  si(t) has order n in F (t)

is nite. By Mazur’s classication of torsion subgroups of elliptic curves over Q [Maz77], Ti,n can

only be nonempty if n ≤ 12, so Ti =


n>0 Ti,n is nite. It follows that the set

Di = (Ui ∩ P1(Q))∖ Ti,
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where si(t) is not torsion in F (t), is dense in Ui. By assumption (3) and Lemma 2.2.3, the orbit of

si(t) (which consists of rational points) is dense in F (t) for all t ∈ Di.

Suppose W ⊆ Xsm(R) is open and nonempty. Xsm(R) is a real manifold of dimension 2, so

nonempty Zariski-open sets are (analytically) dense. In particular, the dierential df is nonzero on

such a subset, so f is a submersion on some nonempty open subset of W . Submersions are open

maps, so f(W ) ⊆ P1(R) contains an open set. By (1), f(W ) intersects some Ui, and hence some

Di. Then W meets meets F (t) for some t ∈ Di. F (t) has dense rational points, so the proof is

complete.

Corollry 2.2.5. W   ,    s, r ∈ MW(X)   Q 

 s  -, r  ,    t ∈ P1(R)  F (t)   , r(t)

   -   F (t). T Xsm(Q)    Xsm(R).

P. Let U = t ∈ P1(R)  F (t) is smooth, which is a dense open subset of P1(R). Let

U0 =

t ∈ U  F (t) is connected or s(t) lies in

the non-identity component of F (t)



and U1 = U ∖ U0. Both are easily seen to be open. The result follows from Lemma 2.2.4 with

s0 = s and s1 = s+ r.

Rmrk 2.2.6. By continuity, it suces to check the condition on r(t) for one t in each connected

component of U . Roughly speaking, r(t) cannot jump between components except when F (t)

degenerates.

Lmm 2.2.7. T 2.1.1   L = LV.

P. We rst compute a generalized Weierstrass form for E. Computation 2.5.2 gives

y2 = x3 + a(t)x2 + b(t)x (2.2.2)

where

t = uv ∈ K, a(t) =
8t3 − 15t2 + 8t

(t− 1)2
, b(t) = 16t2

(For convenience, we use ane coordinates throughout the proof.) The surface S′ ⊂ P1 × P2 given
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by equation (2.2.2) in (t, x, y) is birational to S over Q. It therefore suces to show that S′
sm(Q)

is dense in S′
sm(R).

As with S, we have an elliptic bration π′ : S′ → P1. We study the real locus F (t) of the ber

over t ∈ U = P1(R) ∖ 0, 1,∞ as a real curve in R2 with coordinates (x, y). F (t) is smooth for

t ∈ U , and it has two components if and only if x2 + a(t)x+ b(t) has distinct real roots, i.e.,

a(t)2 − 4b(t) =
t3

(t− 1)4
(16t2 − 31t+ 16) > 0

The quadratic factor is strictly positive, so F (t) has two components exactly when t > 0. Further-

more, a(t) and b(t) are positive for t > 0, so


x,±


x3 + a(t)x2 + b(t)x


(2.2.3)

is a real point for any x ≥ 0. Since x3 + a(t)x2 + b(t)x has a root at 0, the identity component of

the ber over t > 0 is exactly (2.2.3) for x ≥ 0.

We now apply Corollary 2.2.5. We saw in the proof of Proposition 2.2.1 that E(K) has a

non-torsion element s dened over Q. Computation 2.5.2 exhibits the torsion section

r =


−4t,

4t2

t− 1


,

dened over Q. Moreover, it lies in the non-identity component of F (t) when t > 0, so the proof is

complete.

P  T 2.1.1. Following [Stu91], we construct the realization spaces of the other 103

congurations in the same fashion: choose four points p1,    , p4 ∈ P , no three on a line in L, such

that p1, p2 ∈ ℓ for some ℓ ∈ L. Fix these points to [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], and [1 : 1 : 1]. Let

the third point on ℓ be [u : v : 0], and let [a : b : c] be another point in general position with the rst

ve. Nine lines suce to determine the positions of the remaining points, and the tenth line gives

a bihomogeneous equation FL([u : v], [a : b : c]) = 0 of bidegree (2, 3). Imposing open conditions

to exclude additional collinearities presents the realization space as a subvariety of P1 × P2. This

construction is carried out for each conguration in Computations 2.5.3 and 2.5.4.
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Two congurations are special. One is LI, the well-known Desargues conguration. Here, the

nine collinearities imply the tenth (Desargues’ theorem), so FLI
is identically 0. R(LI) is a Zariski-

open subset of P1 × P2, so it has dense rational points. The other is the unique non-realizable 103

conguration LIV, for which the claim is vacuous.

For all other congurations, the realization space is a surface. For congurations LII, LIII,

LVI, and LVII, the surface given by FL = 0 is reducible. In each case, all but one component

are eliminated by the open conditions, leaving a smooth rational surface as the realization space.

Again, density is immediate.

For the remaining congurations LV (treated above), LVIII, LIX, and LX, the equations FL = 0

dene irreducible surfaces SV = S, SVIII, SIX, and SX in P1 × P2 with elliptic brations given by

projection to P1. For these, the proof proceeds as exactly in Lemma 2.2.7: We rst check that

the singularities of each surface are disjoint from the corresponding realization space. We then

compute a Weierstrass form for the generic ber. We nd a non-torsion section s, as well as a

torsion section r which always lies in the correct component of the ber. (Per Remark 2.2.6, this

only requires checking in nitely many bers.) With these data, which we collect and verify in

Computation 2.5.4, the result follows from Corollary 2.2.5.

2.3 The K3 surfaces

In this section, we study the surface S = SV from Section 2.2 and its elliptic bration π in greater

detail. While the general ber of an elliptic bration is a smooth curve of genus 1, there may be

nitely many points where the ber degenerates into something singular. Our bration π has ve

such singular bers. The bers π−1([0 : 1]), π−1([1 : 1]), and π−1([1 : 0]) are unions of lines in P2,

and π−1


31±3
√−7

32 : 1


are a conjugate pair of nodal cubics. S itself has seven isolated singular

points, all of which are contained in the rst three singular bers (see Computation 2.5.1).

In the same computation, we nd that these singularities are all Du Val of type An for n ≤ 3.

Du Val singularities can be resolved by a nite sequence of blowups at isolated double points. The

result is a minimal smooth surface S with a birational morphism  : S → S. The composition

π = π gives an elliptic bration of S whose singular bers are those of S with each Du Val

singularity replaced by a chain of rational curves. This is depicted in Figure 2.1.
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Figure 2.1: The elliptic brations of S and S, drawn over R with coordinate t = uv on P1. The
marked points are Du Val singularities of S and are replaced by a chain of rational curves in S.
Smooth bers, as well as the nodal bers (not pictured), are unchanged by .

A smooth surface with a minimal elliptic bration is called an   (see [SS10]). All

possible singular bers of an elliptic surface were determined by Kodaira. In his notation, the

nodal cubic bers are of type I1. Inserting the appropriate trees of exceptional curves, we nd that

π−1([0 : 1]) and π−1([1 : 0]) are of type I∗1, while π−1([1 : 1]) is of type I8. (One can also compute

the list of Kodaira bers directly, which gives the same result; see Computation 2.5.2.) From this

information, we obtain the topological Euler charateristic of S(C):

e(S) =


F

e(F ) = 1 + 1 + 7 + 7 + 8 = 24

where the sum is over singular bers [SS10, Theorem 6.10]. This is the correct Euler characteristic

for a K3 , i.e., a complete nonsingular surface X with trivial canonical bundle ωX
∼= OX

and irregularity h1,0(X) = h1(X,OX) = 0.

Lmm 2.3.1. S   K3 .

P. We rst compute the canonical bundle ωS on S. Recall that S has bidegree (2, 3) in P1×P2,

while the canonical bundle ωP1×P2 has bidegree (−2,−3). S is a regular in codimension 1, so by
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the adjunction formula,

ωS = (ωP1×P2 ⊗O(S))S = (O(−2,−3)⊗O(2, 3))S = OS 

We can also compute h1(S,OS) using the short exact sequence

0 → O(−2,−3) → O → OS → 0

of sheaves on P1 × P2. The corresponding long exact sequence in cohomology is

· · · → H1(P1 × P2,O) → H1(S,OS) → H2(P1 × P2,O(−2,−3)) → · · · 

Since h1,0(P1 × P2) = h2,3(P1 × P2) = 0, we have h1(S,OS) = 0 as well.

Since the singularities of S are all Du Val, the resolution  is crepant [Rei14], i.e.,

ωS = ∗ωS = ∗OS = OS 

Moreover, Du Val singularities are rational, meaning the natural map

OS → R∗OS

of complexes on S is a quasisomorphism. Applying R1Γ yields

h1(S,OS) = h1(S,OS) = 0,

so S is a K3 surface.

Rmrk 2.3.2. The resolution  is an isomorphism away from the singular points of S, which are

disjoint from the open subset isomorphic to R(LV). It follows that S also has such a subset, so it

is the compactication of R(LV) by an elliptic K3 surface promised in Theorem 2.1.2(i).

We now compute enough standard invariants S to determine it up to isomorphism. First is

the P  ρ(S), the rank of the Néron–Severi group NS(S) of divisors modulo algebraic
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equivalence, which we compute using the Shioda–Tate formula.

Lmm 2.3.3 ([SS10, Theorem 6.3, Corollary 6.13]). F    X  

,   NS(X)A ∼= MW(X)  A         

    . H,

ρ(X) = 2 +


F

(mF − 1) + rankMW(X),

 mF          F .

Lmm 2.3.4. T P  ρ(S)  20.

P. In the proof of Proposition 2.2.1, we exhibited a non-torsion member of MW(S) ∼= MW(S),

so its rank is at least 1. By Lemma 2.3.3,

ρ(S) ≥ 2 + (0 + 0 + 5 + 5 + 7) + 1 = 20

But 20 is the largest possible Picard number for a K3 surface [Huy16], so in fact rankMW(S) = 1

and ρ(S) = 20.

It follows from the Torelli theorem for K3 surfaces that K3 surfaces X of Picard number 20 are

determined by their   T (X), the orthogonal complement of NS(X) in H2(X,Z)

[Huy16, Sch10]. This is an even, positive-denite lattice of rank 2. Following [Sch10], we say that

a K3 surface over Q has P  20  Q if ρ(X) = 20 and NS(X) is generated by divisors

dened over Q. Elkies showed that there are exactly 13 such K3 surfaces, corresponding to the 13

primitive lattices of class number 1 [Elk07, Sch10]. They are determined by the discriminant d of

T (X), or equivalently (up to sign) the discriminant of NS(X).

Lmm 2.3.5. S  P  20  Q   d = −7.

P. We use the Cox–Zucker formula [CZ79; Huy16, §11.3]:

d = RMW(S)tors

2



F

nF 
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Here, MW(S)tors is the torsion subgroup of MW(S), nF is the number of components of the singular

ber F appearing with multipilicity 1, and R is the , the discriminant of the Mordell–Weil

lattice ΛMW(S) = MW(S)MW(S)tors with respect to the height pairing ⟨−,−⟩ (see [Shi90]). (Note

that this pairing takes values in Q, so ΛMW(S) is not a true lattice, despite the name.)

I1, I∗1, and I8 bers have nF = 1, 4, and 8, respectively. In Computation 2.5.2, we nd

that the subgroup H ⊆ MW(S)tors consisting of sections dened over Q is isomorphic to Z4,

so MW(S)tors = 4k. Since MW(S) has rank 1, R is equal to ⟨g, g⟩ for a generator g of ΛMW(S).

We compute ⟨s, s⟩ = 78 for the section s from the proof of Proposition 2.2.1. Writing s = ng for

some n ∈ Z, we have R = 78n2. Putting this all together, we nd that

d = 7

8n2
· 1

(4k)2
· 1 · 1 · 4 · 4 · 8 =

7

k2n2


Since T (S) is an even lattice of rank 2, d must be an integer congruent to 0 or 1 modulo 4; we

deduce that k2 = n2 = 1 and d = −7. In particular, MW(S)tors = H and s generates ΛMW(S), so

the Mordell–Weil group is generated by sections dened over Q. Since the identity section and all

components of the reducible bers are also dened over Q, we conclude that S has Picard rank 20

over Q.

Comparing with the table of all K3 surfaces with Picard rank 20 over Q in [Sch10, §10], we

reach the remarkable conclusion that S is isomorphic to the universal elliptic curve over Γ1(7). As

a sanity check, we nd our Kodaira bers and Mordell–Weil group among the 20 elliptic brations

of that modular surface [Lec15, Table 3, row 2], and we verify in Computation 2.5.2 that the two

surfaces have isomorphic generic bers.

Having fully analyzed S = SV, we turn to the other three congurations of interest.

P  T 2.1.2(). We follow the same steps to prove that the minimal resolutions SVIII,

SIX, and SX are also K3 surfaces of Picard number 20. The proof that they are K3 is identical to

that of Lemma 2.3.1. Since SVIII, SIX, and SX have degree (2, 3) in P1 × P2, we need only check

that they have only Du Val singularities; this is done in Computation 2.5.4. We also compute the

singular bers of each surface, and check that


F (mF − 1) = 17. Since each Mordell–Weil group

has an explicit non-torsion element, Lemma 2.3.3 shows that the Picard number is 20.
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X Singular bers MW(X) R d

SV
∼=SIX 2I1, 2I

∗
1, I8 Z⊕ Z4 78 −7

SVIII I∗0, 2I
∗
2, I2 Z⊕ Z2⊕ Z2 1 −8

SX 3I1, I2, I5, I6, I8 Z⊕ Z2 11120 −11

Table 2.1: The data required to identify each K3 surface, collected in Computation 2.5.4: the
singular bers, the Mordell-Weil group, the regulator, and the discriminant.

As in Lemma 2.3.5, we can identify these K3 surfaces X = SVIII, SIX, and SX up to isomor-

phism by computing the group H ⊆ MW (X)tors of torsion sections dened over Q, together with

the height pairing ⟨s, s⟩ for some non-torsion section s dened over Q. This is done in Computa-

tion 2.5.4, with the results collected in Table 2.1. In each case, the Cox–Zucker formula and the

requirement that d be an integer congruent to 0 or 1 modulo 4 imply that H = MW (X)tors and

s generates ΛMW(X). Hence they all have Picard rank 20 over Q, and so are determined up to

isomorphism by their discriminant.

Surprisingly, we nd that SV and SIX are isomorphic over P1, as checked explicitly in Compu-

tation 2.5.4. We do not know how to interpret this isomorphism in terms of the (nonisomorphic)

congurations LV and LIX. One might suspect that they are related by projective duality (ex-

changing points and lines), but in fact all 103 congurations are self-dual. If this isomorphism does

arise from some combinatorial relationship, it is more subtle than this.

2.4 Moduli space interpretation

Recall that the K3 surface S has an open subset R (its interior) which parameterizes the line

arrangements realizing the conguration LV. We would like to extend this interpretation to the

complement of the interior (the boundary), which ought to parameterize degenerate realizations

where additional triples become collinear. We make this precise using the machinery of geometric

invariant theory (GIT), which was reviewed in Chapter 1. We will need the following fact:

Lmm 2.4.1. S    G  Xss    Xs = Xss. T   

ωY  Y = XG       ωXss     G-  .
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P. There is a G-equivariant short exact sequence

0 → ρ∗ΩY → ΩXss → g∨ ⊗OXss → 0 (2.4.1)

where ΩY and ΩXss denote the cotangent bundles on Y and Xss, ρ : Xss → Y is the quotient map,

and g is the Lie algebra of G with the adjoint representation (e.g., [Tor23, §2.2]). Since G acts

trivially on the top exterior power of g, taking the top exterior power of (2.4.1) yields

ρ∗ωY
∼= ωXss

as G-linearized line bundles. Hence, if either bundle has a nowhere-vanishing G-invariant global

section, the other does as well. Since G-invariant sections of ρ∗ωY are exactly sections of ωY , the

lemma is proved.

For our purposes, we take X = (P2)n for n ≥ 4 and G = PGL(3). We refer to points of (P2)n

as  of n points in P2. Line bundles on (P2)n are all of the form

O(d1,    , dn) = π∗
1O(d1)⊗ · · ·⊗ π∗

nO(dn)

where πi is the i-th projection onto P2. These have a canonical PGL(3)-linearization when 3 divides


i di and are ample when di > 0. It turns out that the semistable locus has a straightforward

description in this case.

Lmm 2.4.2 (e.g., [Inc10, Proposition 1.1]). L d =


i di  wi = did. T (p1,    , pn) 

       :   p ∈ P2,


pi=p wi ≤ 1
3 ,     ℓ ⊂ P2,


pi∈ℓ wi ≤ 2

3  S      ,    .

We think of the wi as weights for the n points, where an arrangement is unstable if too much

weight is concentrated at a point or on a line. A choice of weights w = (wi) is called a ,

and the corresponding GIT quotient is denoted Qw = (P2)nwPGL(3).

Two natural weightings come to mind. For the rst, we designate 4 of the n points as heavy

and assign them weights close to 14; the others are given nearly zero weight. We call this the

 . Here, the sets of stable and semistable arrangements agree (there are no

26



  points). Per Lemma 2.4.2, an arrangement is stable exactly when no two of the

four heavy points coincide and no three of them are collinear, with no restrictions on the other

points. For this weighting, it is easy to see that the GIT quotient is isomorphic to (P2)n−4; we just

x the four heavy points to standard positions, and the others can be anywhere.

At the other extreme, we have the   δ, where all weights δi are equal to 1n.

Semistability now means that there are at most n3 coincident points and at most 2n3 points on

any line. Note that this is the same as stability unless 3 divides n. The corresponding quotient Qδ

is not as easy to describe as for the oligarchic weighting. The following lemma aords us a concrete

characterization of the stable part Qw,s of Qw for any weighting w.

Dnton 2.4.3. Four points in P2 are said to form a  if no three are collinear. We say that

an arrangement (p1,    , pn) ∈ (P2)n has a frame if some choice of four pi is a frame. The frame

f1 = [1 : 0 : 0], f2 = [0 : 1 : 0], f3 = [0 : 0 : 1], f4 = [1 : 1 : 1]

is called the  .

Lmm 2.4.4 ([KT06, Lemma 8.6]). E        

   .

P. It is clear that there are at least three non-collinear points in the arrangement, say p1, p2, p3.

If there is a fourth point not collinear with any two of p1, p2, p3, then we’re done, so suppose all

other points lie on one of p1p2, p1p3, or p1p3. Let W1 be the combined weight of all points coincident

with p1, and similarly for W2 and W3. By stability, Wi < 13. Since the sum of all weights is 1 and

W1 +W2 +W3 < 1, there must be a point p4 not coincident with p1, p2, or p3. Suppose p4 lies on

p1p2. Let W12 < 23 be the combined weight of all points on p1p2. Then W12 +W3 < 1, so there

must be a point p5 neither on the line p1p2 nor equal to p3; say it lies on p2p3. Then p1, p3, p4, p5

is a frame, as required.

It is worth noting that there do exist strictly semistable arrangements that do not admit a

frame. For example, when 3 divides n, an arrangement with n3 points at each vertex of a triangle

is semistable with respect to the democratic weighting, but does not have a frame.
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Corollry 2.4.5. T     Qw,s     

Ui =

(pi)i̸∈i ∈ (P2)n−4  (pi) ∈ (P2)ns  pi1 = f1,    , pi4 = f4



   = i1,    , i4 ⊆ 0,    , n− 1  i1 < · · · < i4.

P. Suppose (qi) ∈ (P2)ns . By Lemma 2.4.4, there are qi1 ,    , qi4 that form a frame. Consider

the PGL(3)-invariant open set


(pi) ∈ (P2)n  pi1 ,    , pi4 form a frame


 (2.4.2)

As before, the quotient of this set by PGL(3) can be identied with (P2)n−4 by xing pi1 ,    , pi4 to

be the standard frame. Intersecting (2.4.2) with the stable locus (P2)ns and passing to Qw,s yields

an open subset of Qw,s containing the image of (qi) and isomorphic to Ui. Hence these subsets

cover Qw,s, as claimed.

Qw,s carries a universal P2-bundle B → Qw,s with n sections P0,    , Pn−1 which are w-stable

in each ber P2. Here, universal means that any P2-bundle on a variety Y with n berwise

w-stable sections is the pullback of B under a unique morphism Y → Qw,s. We say that Qw,s is

a    for w-stable arrangements. The open cover Ui gives a local trivialization of

B, where the sections Pi1 = f1,    , Pi4 = f4 are constant and the others are given by the n − 4

projections Ui → (P2)n−4 → P2. This is most interesting when there are no strictly w-semistable

arrangements, so Qw,s = Qw is the entire GIT quotient.

Consider now a conguration L with n points, as in the introduction.

Dnton 2.4.6. An arrangement (pi) ∈ (P2)n is called a   of L if for all ℓ ∈ L

with i, j, k ∈ L, the points pi, pj , pk are collinear.

The set of weak realizations forms a closed PGL(3)-invariant subvariety W of (P2)n containing

the set of realizations V from the introduction as an open subset. This gives us a systematic

method for furnishing compactications of R(L), provided that we choose a weighting w such that

all realizations of L are stable.
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Dnton 2.4.7. The GIT quotient Rw(L) = WwPGL(3) ⊂ Qw is called the w-

  of L.

This is the coarse moduli space for w-semistable weak realizations of L. When there are no

strictly w-semistable arrangements, it is a ne moduli space with universal family pulled back from

the one on Qw. The closure of R(L) in Rw(L) is a compactication of R(L) whose boundary points

correspond to w-semistable degenerations of realizations of L.

With these generalities in hand, we return to our 103 congurations LV, LVIII, LIX, and LX.

Seeing how S was constructed in Section 2.2 by xing four points, one might hope to identify S or S

with the semistable realization space in the corresponding oligarchic quotient (P2)6. However, the

rational map S  (P2)6 sending a point in S to its corresponding arrangement is not a morphism;

its composition with S → S is, but this fails to be injective. The oligarchic realization space thus

turns out to lie between S and S, so it does not grant the moduli interpretation we seek.

In fact, it is the democratic weighting δ =


1
10 ,    ,

1
10


which realizes S and the other K3

surfaces. One easily checks that all realizations of any 103 conguration are δ-stable.

Notton 2.4.8. Let LN be any of LV, LVIII, LIX, and LX, and let SN be the corresponding K3

surface from Theorem 2.1.2(i). For  = i1,    , i4 ⊂ 0,    , 9 with i1 < · · · < i4, let Xi be the

closed subset of (P2)6 corresponding to weak realizations (pi) ∈ (P2)10 of LN with pi1 ,    , pi4 xed

to the standard frame. Let Xi,s = Xi ∩ Ui be the open subset of Xi corresponding to δ-stable

arrangements.

Since 3 does not divide 10, we have Qδ = Qδ,s. By Corollary 2.4.5, the Xi,s form an open cover

of Rδ(LN ).

Lmm 2.4.9. R(LN ) ⊆ Xi,s    Rδ(LN ).

P. Suppose Xi,s is nonempty. Then there is an arrangement (pi) satisfying the collinearities in

LN (and possibly some not in LN ) such that pi1 ,    , pi4 form a frame. This means there is no line

in LN containing any three of those points. It follows that they form a frame in any realization of

LN . Realizations of LN are stable, so we have R(LN ) ⊆ Xi,s, as desired.

Lmm 2.4.10. Rδ(LN )       2.
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P. In Computation 2.5.5, we nd that for every , Xi,s is either empty, or nonsingular and irre-

ducible. Since the nonempty Xi,s all intersect, it follows that Rδ(LN ) is nonsingular and connected,

hence irreducible. Since Rδ(LN ) contains R(LN ) as an open subset and R(LN ) has dimension 2,

Rδ(LN ) has dimension 2 as well.

P  T 2.1.2(). By Lemma 2.4.4, PGL(3) acts freely on (P2)10ss . From Lemma 2.4.10,

we see that the preimage W = ρ−1(Rδ(LN )) under the quotient map ρ : (P2)10ss → Qδ is smooth

of dimension 10. W is cut out by the 10 equations dening the lines of LN , so it’s a complete

intersection of codimension 10. By the argument given in the introduction, W has (equivariantly)

trivial canonical class; by Lemma 2.4.1, Rδ(LN ) also has trivial canonical class. Since SN and

Rδ(LN ) are birational (both being compactications of R(LN )), it follows that Rδ(LN ) has zero

irregularity, so it is a K3 surface. Birational K3 surfaces are isomorphic, so in fact SN
∼= Rδ(LN ).

2.5 Computations

The code used in this chapter is available online in the author’s Github repository [Sin23a].

Computton 2.5.1. In the magma/singularpoints le, we compute the singular locus of S = SV.

The result is a list of seven schemes representing the points

([1 : 1], [1 : 1 : 1]), ([1 : 1], [0 : 0 : 1]), ([1 : 1], [1 : 0 : 0]),

([0 : 1], [1 : 0 : 1]), ([0 : 1], [0 : 0 : 1]), ([0 : 1], [1 : 0 : 0]),

([1 : 0], [0 : 1 : 0])

None of these points lie in R(LV) ⊂ S, as the corresponding arrangements have unwanted collinear-

ities; the rst three have 1, 5, 7 collinear, the middle three have 1, 3, 7 collinear, and the last has

1, 2, 7 collinear. We check that these singularities are all Du Val and compute their resolution graphs

(all An for n ≤ 3; compare Figure 2.1). We also nd the singular points of bers of π : S → P1,

which gives the list of singular bers in Section 2.3.
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Computton 2.5.2. In the magma/mordellweil le, we perform the various computations in

the Mordell–Weil group MW(S) = MW(S) needed for Sections 2.2 and 2.3. In particular, we

compute the Weierstrass form for the generic ber E and show that the section s from the proof of

Proposition 2.2.1 is not torsion. We also directly compute the Kodaira bers, the torsion subgroup,

and the height pairing ⟨s, s⟩ needed to prove Lemmas 2.3.4 and 2.3.5. Finally, we check that our

elliptic bration is isomorphic to the elliptic bration given in [Lec15, Table 3, row 2].

Computton 2.5.3. In the magma/congurations/other folder, we give construction sequences

for the congurations which do not yield K3 surfaces. As described in the proof of Theorem 2.1.1,

we nd that the resulting equation is either trivial or reducible into rational components, and

moreover that the realization space is contained in at most one such component.

Computton 2.5.4. In the magma/congurations/k3 folder, we give construction sequences for

LVIII, LIX, and LX and repeat Computations 2.5.1 and 2.5.2 for these congurations. For LIX, we

check explicitly that SV and SIX have isomorphic elliptic brations.

Computton 2.5.5. In the macaulay2/democratic le, we show that for every , Xi is irreducible

and Xi,s is nonsingular (see Notation 2.4.8). More precisely, we show that the singular locus of Xi

is contained in the unstable locus Xi ∖Xi,s. This latter computation is performed in ane charts

and takes several hours per conguration to complete.
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Chapter 3

Vector bundles

3.1 Introduction

The main result of this chapter is the following (see Chapter 1 for denitions):

Torm 3.1.1. T       D  SUC(2)  

      Db(Sym2kC)  2k ≤ g− 1. T  

      g  ,      Db(Symg−1C)  .

T  D           

[Păd21, SVdB23]   . I ,        

   K   SUC(2). I g  , D     

  SUC(2)     [Kuz08].

A more precise statement is given as Theorem 3.3.8 below. As mentioned above, the results in

this chapter will appear in the forthcoming joint article [ST24]. For brevity, some technical proofs

are omitted or only sketched here; they will appear in full in [ST24].

This chapter is organized as follows: In Section 3.2, we obtain several explicit semiorthogonal

decompositions of the maximal (see Remark 3.2.4) Thaddeus space Mid(d) for various d (see,

e.g., Theorem 3.2.2 for a precise statement), including the case d = 2g we need (Theorem 3.2.10).

The precise statement and proof of the main result are given in Section 3.3.

A few words regarding notation: Following [Tha94,Tev23], we often denote tensor product by

juxtaposition for compactness. As in [Huy06], we usually omit R’s and L’s on derived functors
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except for emphasis (e.g., when applying derived pushfoward to a sheaf). We frequently use the

same symbol to denote canonical objects on related moduli spaces when no confusion will arise,

omitting explicit pullbacks (see Notation 3.2.1).

3.2 Semiorthogonal decompositions of spaces of stable pairs

We begin by recalling some notation from [Tev23,TT21].

Notton 3.2.1. For a line bundle Λ on C of degree d and 0 ≤ i ≤

d−1
2


, we denote by Mi(Λ)

(or simply Mi(d) or Mi when no confusion will arise) the moduli space of rank 2 stable pairs with

determinant Λ, where i indexes the stability condition. We write O(m,n) = O((m+n)H−nE) on

any of the Mi, i ≥ 1, where E is the exceptional divisor of the contraction M1 → M0 and H is the

pullback of the hyperplane divisor from M0
∼= Pd+g−2. (By abuse of notation, O(m, 0) = O(m) on

M0.) F denotes the universal vector bundle onMi×C (for any i), Fx its restriction toMi×x ∼= Mi

for x ∈ C, and Λ the line bundle ∧2Fx, which is independent of x (and not to be confused with Λ).

For any variety X and vector bundle G on X ×C, we have tensor vector bundles G⊠k and G⊠k

on X × SymkC dened by the Sk-equivariant pushforwards τSk∗ (π∗
1G ⊗ · · · ⊗ π∗

kG) and τSk∗ (π∗
1G ⊗

· · · ⊗ π∗
kG ⊗ sgn), respectively, where τ : Ck → SymkC is the quotient by Sk, πi : C

k → C are the

projections, sgn is the sign character of Sk, and the Sk-action on π∗
1G ⊗ · · · ⊗ π∗

kG permutes the

tensor factors (see [TT21, Section 2]). For D ∈ SymkC, we denote by G⊠k
D and G⊠k

D the restrictions

to X × D ∼= X of G⊠k and G⊠k
D , respectively. ⟨K⟩ denotes the essential image of a fully faithful

Fourier–Mukai functor with kernel K.

The principal goal of this section is to prove the following generalization of [Tev23, Theorem 3.1]:

Torm 3.2.2. L d ≤ 2g  id ≤

d−1
2


,  id =


d+g−1

3


− 1. L m = d+ g − 1− 3id ∈

1, 2, 3,   mn = 1  m ≤ n  0 . T

Db(Mid(d)) =


Λ−kF∨⊠j


j+k≤id−m2

j,k≥0

,

T1Λ

−kF∨⊠j

j+k≤id−m1

j,k≥0

,

T2Λ

−kF∨⊠j

j+k≤id
j,k≥0


(3.2.1)

           k,    j.

H, T1 = O(1, id −m2),  T2 = O(2, 2id −m2 −m1).
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Rmrk 3.2.3. The assumptions of the theorem are equivalent to d = 2g−α for α ∈ 0, 1, 2, 3, 5,

where id = g −

α+2
3


.

Rmrk 3.2.4. It can be seen from [TT21, Proposition 3.18] that Db(Mi(d)) is largest when

i = id. Moreover, it follows from [Tha94, 5.3, 6.1] that Mid is Fano when m = 1, 2. When m = 3,

Db(Mid) and Db(Mid+1) are equivalent, and the anticanonical bundles on Mid and Mid+1 are big

and nef but not ample.

3.2.1 Generalized weaving

We begin with some notation. Fix d ≤ 2g and write Mi(d) = Mi for i ≤

d−1
2


.

Notton 3.2.5. For 0 ≤ k ≤ i, we denote by Dk
i the structure sheaf of the reduced subscheme

Dk
i = (D,F, s) ∈ SymkC ×Mi : sD = 0,

whose ber over D ∈ SymkC is Mi−k(Λ(−2D)) [TT21, Remark 3.7]. For t ∈ [0, id + 1), let

Dk,s
t = Dk

⌊t⌋ ⊗ Lk,s
t where

Lk,s
t =





O(s, sk) k = ⌊t⌋

O


s
t−k


, s+


s

t−k


(k − 1)


k < ⌊t⌋ 

Our rst step is to prove the following:

Lmm 3.2.6 (cf. [Tev23, Corollary 2.10]). F t ∈ (0, id + 1) ∖ Z,    



Db(M⌊t⌋) =

Dk,s

t


0≤k≤⌊t⌋

0≤s≤d+g−3k−2

(3.2.2)

        xk,s(t) =
s

t−k ,    k.

We interpret t as time, with the block ⟨Dk,s
t ⟩ moving in the x-t plane with trajectory x =

xk,s(t) (or x = kϵ for s = 0, where ϵ ≪ 1). When the blocks cross paths, they change order and

undergo mutations dictated by the line bundle Lk,s
t . When t crosses an integer level i, we embed

Db(Mi−1) into Db(Mi), introducing several new blocks as its orthogonal complement, and proceed

with the process. We refer to this weave as the Farey Twill; see [Tev23, Section 2] for detailed
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illustrations in the case d = 2g − 1. This program is facilitated by several technical lemmas, which

have direct analogs in [Tev23]; we give their precise statements in Subsection 3.2.3, and refer to

[ST24] for their proofs.

To pass from Mi−1 to Mi, we need the following windows embeddings, in the sense of [HL15]:

Proposton 3.2.7 ([TT21, Proposition 3.18]). F d > 0  1 ≤ i ≤ id ≤

d−1
2


,   

  ι : Db(Mi−1(d)) → Db(Mi(d))      

Db(Mi(d)) = ⟨ι(Db(Mi−1(d))),Di,0
i ,Di,1

i ,    ,Di,d+g−3i−2
i ⟩

W i > 1,            [0, i)  

    Mi−1  Mi.

Rmrk 3.2.8. Note that Di
i is isomorphic to the projective bundle PW+

i ⊂ Mi via the second

projection [TT21, Section 6], and that Li,s
i = O(s, si) restricts to O(s) on the bers M0(d− 2i) ∼=

Pd+g−2i−2 of this bundle [TT21, Remark 3.7].

P  L 3.2.6. When 0 < t < 1, (3.2.2) is the Bĕılinson collection ⟨O,O(1),    ,O(d+g−2)⟩

on Pd+g−2. Given (3.2.2) for t = i + ϵ with i ∈ Z, ϵ ≪ 1, we achieve (3.2.2) for all t ∈ (i, i + 1)

by performing the mutations encoded in the crossings of trajectories xk,s(t). When blocks meet at

nonintegral x, they only change order, meaning we must show that they are mutually orthogonal.

Since the intersecting blocks are already ordered by xs,k(t− ϵ), or equivalently by k, we need only

check that ⟨Dk,s
t ⟩ ⊂ ⊥⟨Dk′,s′

t ⟩ for k < k′, xk,s(t) = xk′,s′(t). This follows from Lemma 3.2.14 below.

Crossings at x ∈ Z have the form

⟨Dk,s
t ,Dk+1,s−x

t ,    ,D⌊t⌋,s−⌊t⌋x
t ⟩ → ⟨D⌊t⌋,s−⌊t⌋x

t+ϵ ,    ,Dk+1,s−x
t+ϵ ,Dk,s

t+ϵ⟩

Note that for 0 ≤ j < ⌊t⌋,

Lk+j,s−jx
t = O(x, s− x(k − 1))

is indepedent of j, while

Lk+j,s−jx
t+ϵ = Lk+j,s−jx

t (−1, 1− j)

Moreover, L
⌊t⌋,s−⌊t⌋x
t = L

⌊t⌋,s−⌊t⌋x
t+ϵ = O(s−⌊t⌋ x, (s−⌊t⌋x) ⌊t⌋) and O(x, s−x(k− 1)) both restrict
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to O(s) on the bers of the projective bundle D
⌊t⌋
⌊t⌋, so ⟨D⌊t⌋,s−⌊t⌋x

t ⟩ = ⟨D⌊t⌋
⌊t⌋(x, s−x(k− 1))⟩. Hence

it suces to give a mutation

⟨Dk
i ,    ,Di−1

i ,Di
i⟩ → ⟨Di

i,Di−1
i (−1, 2− i),    ,Dk

i (−1, 1− k)⟩,

as in Lemma 3.2.15.

It remains to explain how to get from t = i − ϵ to i + ϵ. By Lemma 3.2.13 below, we have

ι⟨Dk,s
i−ϵ⟩ = ⟨Dk,s

i ⟩. Hence, to go from the semiorthogonal decomposition of Proposition 3.2.7 to

(3.2.2) with t = i + ϵ, we need only move the block ⟨Di,0
i ⟩ into position, i-th from the left (we

imagine this block coming horizontally from the right along t = i, stopping at x = iϵ). It moves

past blocks with xk,s(i) ̸∈ Z without changing them by Lemma 3.2.14, while the others undergo

the mutation of Lemma 3.2.15.

It turns out that Lemma 3.2.6 is not quite the decomposition we need to proceed.

Lmm 3.2.9. L m = d+g−3id−1 ∈ 1, 2, 3,   mn = 1  m ≤ n  0 . T

Db(Mid) =


Λ−jDk


j+k≤id−m2

j,k≥0

,

T1Λ

−jDk

j+k≤id−m1

j,k≥0

,

T2Λ

−jDk

j+k≤id
j,k≥0


(3.2.3)

           j+ k,    j. H,

Dk = Dk
id
, T1 = O(1, id −m2),  T2 = O(2, 2id −m2 −m1).

P. For m = 1, 2, we begin with (3.2.2) with t = id− ϵ. We embed with ι to obtain the following

semiorthogonal decomposition:

Db(Mid) = ⟨I, II, III, IV,Did,0
id

,    ,Did,m−1
id

⟩ (3.2.4)

where I, II, III, IV are the subcategories generated by ⟨Dk,s
id

⟩ for xk,s(id) ∈ [0, 1), [1, 2), [2, 3), and

[3,∞), respectively.

If m = 1, the blocks are arranged as in [Tev23]. The blocks in I are the same as in the rst

megablock of (3.2.3) (with j = s), but they are ordered dierently. We reorder them by moving

⟨Dk,s
id

⟩ from x = xk,s(id) to x = s+k
id

. The moves are done in order of decreasing s + k, then

by decreasing s. As blocks in I with the same s + k are already ordered by increasing s, the
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orthogonality we need to ensure no mutations occur is ⟨Dk,s
id

⟩ ⊂ ⊥⟨Dk′,s′
id

⟩ for s′ + k′ < s+ k. This

is checked in Lemma 3.2.16.

Similarly, the blocks in II and III are respectively the same as the second and third (with

j + k ≤ id − 1) megablocks of (3.2.3). (Explicitly, we have j = s −


s
id−k


(id − k).) The same

reordering procedure works, so we are left to produce the blocks in (3.2.3) in with j + k = id.

These are exactly the blocks in ⟨IV,Did,0
id

⟩ = ⟨D0,3id
id

,D1,3(id−1)
id

,    ,Did,0
id

⟩ after the mutation of

Lemma 3.2.15 (note that we have Did = Did(2, 2(id − 1)) by [TT21, Remark 3.7]). This proves the

lemma for m = 1.

For m = 2, the only new blocks in (3.2.4) compared to m = 1 lie in IV. We reorder the blocks

in I and II = IIa just as before; this gives the rst and second (with j + k ≤ id − 1) megablocks

in (3.2.3). We write III = ⟨b, IIIa⟩, where b contains those blocks ⟨Dk,s
id

⟩ with xk,s(id) = 2 and

IIIa those with xk,s(id) ∈ (2, 3). Similar to the proof of Lemma 3.2.6, we move the block Did,0
id

past

IV, IIIa, and b. By Lemmas 3.2.14 and 3.2.15, IIIa is unchanged, while IV and b undergo some

mutations. This yields

Db(Mid) = ⟨I, IIa, IIb, IIIa, IV′,Did,1
id

⟩

where ⟨b,Did,0
id

⟩ → IIb via Lemma 3.2.15, and IV′ = ⟨Ds,k
id+ϵ⟩xk,s(id)≥3 ordered by xk,s(id+ ϵ). Now

IIb = ⟨Dk(1, 2id − k − 1)⟩0≤k≤id ordered by decreasing k, so ⟨IIa, IIb⟩ forms the second megablock

of (3.2.3).

At this point, IIIa contains the blocks from the third megablock of (3.2.3) with j + k ≤

id − 2; we apply the same algorithm to put them in the correct order. We write IV′ = ⟨IIIb, c⟩

with IIIb and c containing the blocks with xk,s(id) = 3 and xk,s(id) > 3. We have IIIb =

⟨Dk(2, 3id − k − 2)⟩0≤k≤id−1 ordered by decreasing k. The Farey Twill trajectories of blocks in c

meet with Did,1
id

at (t, x) =

id +

1
3 , 3

, where they undergo a nal mutation ⟨c,Did,1

id
⟩ → IIIc =

⟨Dk(2, 3id − k − 1)⟩0≤k≤id ordered by decreasing k. To sum up, we have

Db(Mid) = ⟨I, ⟨IIa, IIb⟩, ⟨IIIa, IIIb, IIIc⟩⟩ ,

which is exactly (3.2.3) with m = 2.

Finally, m = 3 is the easiest case. We begin with (3.2.2) with t = id + 1 − ϵ. We have
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F∨⊠k−1 · · · O Dk Dk−1Λ−1 · · · Λ−k

Dk−1Λ−1 · · · Λ−k F∨⊠k F∨⊠k−1 · · · O

Figure 3.1: The basic Cross Warp mutation, cf. [Tev23, Figure 7].

xk,s(t) ∈ [0, 3), where the blocks in [0, 1), [1, 2), and [2, 3) correspond exactly to the respective

megablocks in (3.2.3) with j = s, j = s − (id + 1 − k), and j = s − 2(id + 1 − k); they are in the

wrong order, but this is rectied by Lemma 3.2.16 and the same reordering algorithm as above.

From here, Theorem 3.2.2 follows exactly as in the proof of [Tev23, Theorem 3.1].

P  T 3.2.2. Each megablock in (3.2.3) will mutate into the corresponding one in

(3.2.1). As the megablocks dier only in size and overall line bundle twists (i.e., the shapes are the

same), it will suce to describe this mutation for the rst one. We rely on the Cross Warp mutation

depicted in Figure 3.1 and proved as Theorem 3.2.12(d) below. Notice that the top left portion of

the mutation with top center block Dk is precisely the bottom right portion of the mutation with

top center Dk−1; similarly, the bottom left is the top right of the mutation with top center Dk−1,

tensored with Λ−1. Hence we can stack these mutations with top centers as in Figure 3.2. In the

end, all D’s are replaced by F ’s, resulting in (3.2.1).

3.2.2 Broken Loom for d = 2g

To nish this section, we specialize to d = 2g. We wish to modify the semiorthogonal decomposition

of Theorem 3.2.2 for d = 2g to create as many blocks as possible of the form θjΛkF∨⊠2k, where

θ = O(1, g− 1) is the pullback of the ample generator of PicSUC(2) under the forgetful morphism

Mg−1(2g) → SUC(2), (F, s) → s (see [Tha94, 5.8]). We will see in Section 3.3 that such blocks

form the claimed noncommutative resolution of SUC(2).
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O

D1

Λ−1 D2

Λ−1D1 · · · Did

Λ1−id · · · Λ2−idD2

Λ1−idD1

Λ−id

Figure 3.2: Stacking the crosswarp mutation (with m1 = 0). See also [Tev23, Figure 8].

Torm 3.2.10 (cf. [Tev23, Theorem 5.8]). L M = Mg−1(2g). W   

   Db(M):


θ−1Λ⌊ g−2

2 ⌋−kF∨⊠λ−2k

0≤λ≤g−2

0≤k≤⌊λ
2
⌋
,

Λ⌊ g−2

2 ⌋−kF∨⊠λ−2k


0≤λ≤2(g−2)

0≤k≤⌊λ
2
⌋,λ−k≤g−2

,


θΛ⌊ g

2⌋−kF∨⊠λ−2k


0≤λ≤2(g−1)

0≤k≤⌊λ
2
⌋,λ−k≤g−1

,

θ2Λ⌊ g

2⌋−kF∨⊠λ−2k

g−1≤λ≤2(g−1)

λ−g+1≤k≤⌊λ
2
⌋




H,           λ,    k.

We proceed by analogy with [Tev23, Section 5], beginning with the reordering trick. This works

for any d ≤ 2g with id ≤

d−1
2


.

Lmm 3.2.11 (cf. [Tev23, Theorem 5.3]). W    T 3.2.2,   

 -   Db(Mid(d)):


Λ−kF∨⊠λ−2k


λ−k≤id−m2
λ−2k,k≥0

,

T1Λ

−kF∨⊠λ−2k

λ−k≤id−m1
λ−2k,k≥0

,

T2Λ

−kF∨⊠λ−2k


λ−k≤id
λ−2k,k≥0


 (3.2.5)

T          λ,    k.
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P. The blocks in each megablock are the same as those in (3.2.1) with λ = j + 2k. As they

are already ordered by decreasing k, it suces to show that we can move blocks with smaller λ to

the right of blocks with larger λ, i.e., ⟨Λ−kF∨⊠λ−2k⟩ ⊂ ⊥⟨Λ−k′F∨⊠λ′−2k′⟩ for λ < λ′. This follows

from Lemma 3.2.17 below.

P  T 3.2.10. When d = 2g, we have id = g − 1, m = 2, T1 = θΛ, and T2 = θ2Λ, so

(3.2.5) becomes


Λ−kF∨⊠λ−2k


λ−k≤g−2
λ−2k,k≥0

,

(θΛ)Λ−kF∨⊠λ−2k


λ−k≤g−1
λ−2k,k≥0

,

(θ2Λ)Λ−kF∨⊠λ−2k


λ−k≤g−1
λ−2k,k≥0




We take the part of the third megablock with λ ≤ g−2 and tensor by ωMg−1(2g) = θ−3Λ−1, moving

it to the far left. Tensoring everything by Λ⌊ g−2
2 ⌋ proves the theorem.

3.2.3 Technical lemmas

In this subsection, we collect the various technical results used above. Their proofs (which are

minor modications of their analogs in [Tev23]) will appear in [ST24]. Recall that PK denotes the

Fourier–Mukai functor with kernel K.

Torm 3.2.12 (Basic Cross Warp, cf. [Tev23, Theorem 3.2]). F 0 ≤ k ≤ i ≤ v,  :

(a) PF∨⊠k : Db(SymkC) → Db(Mi)   .

(b) PDk
i
: Db(SymkC) → Db(Mi)   .

(c) I k ≤ i − 1,  ι⟨Dk
i−1⟩ = ⟨Dk

i ⟩  ι      P 3.2.7.

M,   ⟨Dk
i−1⟩         [0, k]   

.

(d) T      Db(Mi)   

⟨F∨⊠k−1,    ,O,Dk
i ,Dk−1

i Λ−1,    ,Λ−k⟩



⟨Dk−1
i Λ−1,    ,Λ−k,F∨⊠k,F∨⊠k−1,    ,O⟩
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     F 3.1.

Lmm 3.2.13 (cf. [Tev23, Lemma 2.7]). F k ≤ i− 1  ϵ ≪ 0,   ι⟨Dk,s
i−ϵ⟩ = ⟨Dk,s

i ⟩.

Lmm 3.2.14 (cf. [Tev23, Lemma 2.8]). L x = s
t−k ̸∈ Z. I k < k′   x = s′

t−k′ 

s′ = t− k′ = 0, 

RHom(PDk,s
t

(X),PDk′,s′
t

(Y )) = 0 (3.2.6)

  X ∈ Db(SymkC), Y ∈ Db(Symk′C).

Lmm 3.2.15 (cf. [Tev23, Lemma 2.9]). F  k ≤ i,    

⟨Dk
i ,    ,Di−1

i ,Di
i⟩ → ⟨Di

i,Di−1
i (−1, 2− i),    ,Dk

i (−1, 1− k)⟩

Lmm 3.2.16. F k, k′, j, j′ ≥ 0  j′ + k′ < j + k ≤ i,  

RHom(PDk
i Λ

−j (X),PDk′
i Λ−j′ (Y )) = 0

  X ∈ Db(SymkC), Y ∈ Db(Symk′C).

Lmm 3.2.17 ([Tev23, Lemma 5.4, Remark 5.7]). S 2 < d′ ≤ 2g + 1  1 ≤ j ≤

d−1
2


.

L D ∈ SymaC, D′ ∈ SymbC  a, b ≤ j ([Tev23]  a, b ≤ min(j, d′ + g − 2j − 1), 

j ≤ d′ + g − 2j − 1 ),   t     a − j − 1 < t < d′ + g − 2j − 1 − b 

2t < a− b. T

RΓ

Mj(d

′),

F⊠a

D

∨ ⊗ F⊠b
D′ ⊗Λt


= 0 (3.2.7)

Lmm 3.2.18. L λ,λ′, k, k′    k, k′,λ− 2k,λ′ − 2k′ ≥ 0  λ− k,λ′ − k′ ≤ id. I

λ < λ′, 

RHom

Λ−kF∨⊠λ−2k

D ,Λ−k′F∨⊠λ′−2k′
D′


= 0

  D ∈ Symλ−2kC, D′ ∈ Symλ′−2k′C.
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3.3 Modied Plain Weave

3.3.1 Main result

We proceed with the Plain Weave, cf. [Tev23, Section 6]. While the spirit of the argument is the

same, there are some technical complications in even degree. Notably, not every pair (F, s) with F

a semistable bundle is stable, so M parameterizes only an open substack of all such pairs.

Notton 3.3.1. We denote by N the stack of rank 2 semistable bundles on C with determinant Λ

(and with Gm as a generic inertia group) and by N its rigidication (with trivial generic stabilizers).

Concretely, we work with the quotient stacks N = [QGL(V)] and N = [QPGL(V)] where V is

a vector space of dimension 2 + 2m for some large m and Q is an appropriate locally closed

subscheme of the Quot scheme parameterizing quotients of V ⊗ OC(−mp) for some xed point

p ∈ C (see [KT21, Section 4] for details). Here N and N are smooth algebraic stacks and Q is

a smooth quasi-projective variety. The generic inertia group of N is identied with the center

Gm ⊂ GL(V). We have morphisms of stacks

M N N SUC(2),
ρ

where M = Mg−1(Λ) is the moduli space of stable pairs, M → N is the forgetful morphism, and

SUC(2) is the coarse moduli space (of both N and N) as well as the GIT quotient of Q by PGL(V).

We do not notationally distinguish between universal bundles F on M × C or N × C, nor those

on other spaces that carry them appearing below; similarly for Λ = detFx and θ, the (pullback of

the) ample generator of PicSUC(2) [DN89]. Unlike in the odd degree case, neither F nor any line

bundle twist of F descends to N or any open substack of it [Ram73, Theorem 2]. However, twisted

tensor vector bundles ΛkF∨⊠2k on N × Sym2kC have weight 0 with respect to Gm and therefore

descend to N× Sym2kC for every k ≥ 0.

Let πN : N×C → N be the projection. We write RπN∗F = [A u→ B] for A and B vector bundles

on N of ranks a and b, respectively, where a−b = 2 and Gm acts with weight 1 on the bers of both

[KT21, Lemma 4.4]. Let α : A → N , where we use the same notation for vector bundles and their

total spaces. Then u gives a section of the vector bundle α∗B over A. Let Z ⊂ A be the vanishing

locus of this section, let A◦ ⊂ A be the complement of the zero section, and let Z◦ = Z ∩ A◦,
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which is the stack of pairs (F, s) : F ∈ N , s ∈ H0(F )∖ 0 (see [KT21, Lemma 4.5(i)]). We have

a diagram

Z A N

M Z◦ A◦ N

α

ρ

j

ζ

(3.3.1)

Proposton 3.3.2. I    (3.3.1):

(a) I Db(A◦), OZ◦     K 


b
α∗B∨A◦ →    → α∗B∨A◦ → OA◦




(b) W  Rζ∗OZ◦ = ON.

(c) T     ζ  θΛ−1.

S  . Part (a) follows from [KT21, Lemma 4.5(i)]. For part (b), use the fact that A◦ is

a (twisted) projective bundle over N of rank a − 1 = b + 1, and B can be replaced O(1)⊕b locally

over N. For part (c), use adjunction and [Nar17, Proposition 2.1].

In the diagram (3.3.1), j is the inclusion of the GIT-semistable locus with respect to a certain

line bundle Lℓ⊗ϵ
0 on Z◦ [KT21, Section 4]. This gives rise to windows embeddingsDb(M) ∼= Gw ⊂

Db(Z◦) [HL15]. The relevant weights are given by the following proposition (cf. [TT21, Lemma

3.17 and Theorem 3.21]).

Proposton 3.3.3. W      M → Z◦:

(a) T    K–N      η = g.

(b) O    ⟨θxΛyF∨⊠z⟩ ⊂ Db(Z◦)      [−y, z − y].

P. See [ST24].

Corollry 3.3.4. T   T 3.2.10,        

Db(Z◦ × SymℓC),         G = G−⌊g/2⌋ ⊂

Db(Z◦).
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P. Using Proposition 3.3.3(b), one checks that objects in those blocks have weights in the

interval [−
 g
2


, g −

 g
2


), so they are contained in G. For example, the (λ, k) block in the rst

megablock has weights in the range


k −


g − 2

2


,λ− k −


g − 2

2


⊆

−

g − 2

2


, g − 2−


g − 2

2


=


−

g − 2

2


, g −

g
2




The windows embedding Db(M) ∼= G ⊂ Db(Z◦) is right inverse to the restriction j∗ : Db(Z◦) →

Db(M), so j∗ gives an equivalence G ∼= Db(M) taking each block in G ⊂ Db(Z◦) to the corre-

sponding block in Db(M). The result follows.

Notton 3.3.5. We introduce full subcategories K = X ∈ Db(Z◦) : ζ∗X = 0 and K∨ = X∨ :

X ∈ K.

Rmrk 3.3.6. Note that θ ⊗ K = K by the projection formula and K∨ = Λ ⊗ K by coherent

duality and Proposition 3.3.2(c).

Torm 3.3.7 (Plain Weave). T    

G = ⟨L, , , , v,R⟩ (3.3.2)

 L ⊂ K, R ⊂ K∨, 

 =

θ−1ΛmF∨⊠2m


0≤m≤⌊ g−2

2 ⌋ ,  =

ΛmF∨⊠2m


0≤m≤⌊ g−2

2 ⌋ ,

 =

θΛmF∨⊠2m


0≤m≤⌊ g−1

2 ⌋ , v =

θ2ΛmF∨⊠2m


0≤m≤⌊ g−1

2 ⌋ ,

       m.

We postpone the proof of Theorem 3.3.7 to the next subsection. We can now precisely state

and prove our main result.

Torm 3.3.8. T   D = ⟨, , , v⟩ ⊂ G    

 -  SUC(2). F,        [Păd21,

Theorem 1.1] (         ). T  

  [Kuz08]  g  .
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P . The blocks in , , , v are exactly those from Theorem 3.2.10 which are pulled

back from N. Indeed, the bundle θiΛjF∨⊠k on N has weight 2j− k with respect to the Gm action,

so it descends to N exactly when k = 2j. By Proposition 3.3.2(b), it follows that D is isomorphic

(via Rζ∗) to an admissible subcategory D′ ⊂ Db(N) given by the same Fourier–Mukai kernels as D

(regarded as objects in Db(N× SymkC)).

It can be shown [ST24] that N is a symmetric stack satisfying assumptions A–C in [Păd21], and

that the window width is η = g − 1. By [Păd21, Theorem 1.1], it follows that the full subcategory

D′′ = X ∈ Db(N) : − g−1
2 ≤ weightλX ≤ g−1

2  is admissible and provides a noncommutative

resolution of singularities of SUC(2).

Next, we will show that D′ = D′′. Let X ∈ D′. The computation of weightλX is the same

as the computation of weightλζ
∗X in Proposition 3.3.3. By Lemma 3.3.9 below, the weights of

objects in subcategories , , , v are in the interval [− g−1
2 , g−1

2 ]. It follows that D′ ⊂ D′′. On

the other hand, let X ∈ D′′. Since weightλX = weightλζ
∗X as above, we have ζ∗X ∈ G. With

respect to the semiorthogonal decomposition (3.3.2) of Theorem 3.3.7, we have Hom(ζ∗X,L) = 0

by projection formula and Hom(R, ζ∗X) = 0 by coherent duality. It follows that ζ∗X ∈ D, and

therefore X ∈ D′. We conclude that D′ = D′′.

It remains to show that D is a strongly crepant noncommutative resolution of SUC(2) if g is

even. By the discussion above, we can view D as an admissible subcategory of Db(M), Db(Z0),

or Db(N), where in every case the pullback functor Perf(SUC(2)) → D is the usual pullback.

Furthermore, it endows D with the structure of an SUC(2)-linear category via the usual tensor

product. We will view D as a subcategory of Db(M). Let f : M → SUC(2) be the forgetful

morphism. For every B ∈ D, the functor Perf(SUC(2)) → D, A → f∗A ⊗ B has a right adjoint

functor D → Db(SUC(2)) given by C → Rf∗ ◦ RHomM (B,C). According to [Kuz08], in order to

show that D is strongly crepant, we need to show that the identity functor on D is a relative Serre

functor for D over SUC(2). That is, we must give a functorial isomorphism

RHomSUC(2)(Rf∗ ◦RHomM (B,C),OSUC(2)) ∼= Rf∗ ◦RHomM (C,B)
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for B,C ∈ D. By coherent duality for f , it is in fact sucient to establish a functorial isomorphism

Rf∗ ◦RHomM (C,B ⊗ ωf [1]) ∼= Rf∗ ◦RHomM (C,B),

where ωf is the dualizing line bundle for f .

By Lemma 3.3.13, there exists a morphism γ : O → θ ⊗Λ−1[1] in Db(Z◦) whose image under

ζ∗ is an isomorphism O → O. We pull back γ via the open immersion j : M → Z◦ to a morphism

j∗γ : O → ωf [1] on M . Indeed, ωf
∼= ωM ⊗ ω−1

SUC(2)
∼= j∗(θ ⊗Λ−1) by [Tha94, Section 5]. We will

show that j∗γ induces a stronger isomorphism

R(ζ ◦ j)∗ ◦RHomM (C,B) ∼= R(ζ ◦ j)∗ ◦RHomM (C,B ⊗ ωf [1]) (3.3.3)

By Corollary 3.3.4 and Lemma 3.3.9, the weights of objects B, C, and B ⊗ ωf [1] belong to the

interval [−⌊ g−1
2 ⌋, ⌊ g−1

2 ⌋ + 1], which, if g is even, has width smaller than the window width η = g

for the immersion j. The GIT construction of M is local over N, so the quantization theorem

[HL15, Theorem 3.29] gives vertical isomorphisms in the following commutative diagram:

R(ζ ◦ j)∗ ◦RHomM (C,B) R(ζ ◦ j)∗ ◦RHomM (C,B ⊗ ωf [1])

Rζ∗ ◦RHomZ◦(C,B) Rζ∗ ◦RHomZ◦(C,B ⊗ θ ⊗Λ−1[1])

∼= ∼=

The bottom horizontal morphism of this diagram is an isomorphism by the projection formula for

the morphism Z◦ → N and the fact that the morphism γ : O → θ ⊗ Λ−1[1] pushes forward to

an isomorphism ζ∗γ. It follows that the top horizontal morphism is also an isomorphism, proving

(3.3.3).

Lmm 3.3.9. I    C 3.3.4,    , , , v  

 [− g−1
2 , g−1

2 ].

P. The same calculation as the proof of Corollary 3.3.4 using Proposition 3.3.3.

3.3.2 Proof of the Plain Weave

We require several lemmas. All mutations take place in Db(M) ∼= G ⊂ Db(Z◦).
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Figure 3.3: Modied Plain Weave in genus 5, cf. [Tev23, Figure 13].

Lmm 3.3.10. F 0 ≤ λ ≤ 2(g − 1),    


Λ−kF∨⊠λ−2k


0≤k≤⌊λ

2
⌋,λ−k≤g−1

−→

Λ−kF∨⊠λ−2k


0≤k≤⌊λ

2
⌋,λ−k≤g−1

(3.3.4)

       k   ,    k   .

Lmm 3.3.11. F 0 ≤ 2k + 1 ≤ g − 1,   ⟨ΛkF∨⊠2k+1⟩ ⊂ K  ⟨Λk+1F∨⊠2k+1⟩ ⊂ K∨.

Lmm 3.3.12 (cf. [Tev23, Theorem 6.3]). F ℓ = 0, 1  ℓ ≤ k ≤ g−1
2 ,  Dℓ = Dℓ

g−1 ⊂

Db(M × SymℓC)   N 3.2.5. L Φ : Db(Z◦) → ⊥⟨ΛkF∨⊠2k⟩   

. T Φ(⟨Λℓ−kDℓ⟩) ⊂ K∨.

Lmm 3.3.13. I Db(Z◦),     O → θΛ−1[1]    ζ∗  

 O → O. I T ⊂ ζ∗Db(N)        θΛ−1⊗T ⊂ ⊥T,

    ⟨T, θΛ−1 ⊗T⟩ → ⟨X,T⟩  X ⊂ K.

P  T 3.3.7. Denote by I, II, III, IV the megablocks in Theorem 3.2.10, regarded as

subcategories of G ⊂ Db(Z◦) as in Corollary 3.3.4. We proceed as illustrated in Figure 3.3: we

take the blocks in , , , v, and move them towards the center, making sure that all blocks in the

way mutate into either K on the left or K∨ on the right.

We begin with

IV =

θ2Λ⌊ g

2⌋−kF∨⊠λ−2k

g−1≤λ≤2(g−1)

λ−g+1≤k≤⌊λ
2 ⌋


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The blocks with λ = 2
 g
2


form megablock v from the statement (with m =

 g
2


− k). If g is odd,

2
 g
2


= g− 1, so these are the rightmost blocks in IV as in Figure 3.3; if g is even, the blocks with

λ = g − 1 to the right of v already lie in K∨ by Lemma 3.3.11.

C 3.3.14. For 2
 g
2


< λ ≤ 2(g − 1) and λ− g + 1 ≤ k ≤


λ
2


, there is a mutation

θ2Λ⌊ g
2⌋−kF∨⊠λ−2k v

v X

where X ⊂ K∨.

P. Write A = ⟨θ2Λ⌊ g
2⌋−kF∨⊠λ−2k⟩. Suppose rst that λ = 2k, so A = ⟨θ2Λ⌊ g

2⌋−k⟩. Take

the block B = ⟨θ2ΛmF∨⊠2m⟩ from v with m = k −
 g
2


and write ⟨v⟩ = ⟨B,B′⟩. (Note that

0 ≤ m ≤

g−1
2


since

 g
2


< k ≤ g − 1.) By Lemma 3.3.12, we mutate ⟨A,B,B′⟩ → ⟨B,A′,B′⟩

where A′ ⊂ K∨. Since B′ ⊂ ζ∗Db(N), we see that A′ and B′ are fully orthogonal, so we move

⟨B,A′,B′⟩ → ⟨B,B′,A′⟩ = ⟨v,A′⟩ without any further mutation.

Now suppose 2k < λ. Let B = ⟨θ2Λm−1F∨⊠2m−2, θ2ΛmF∨⊠2m⟩ ⊂ ⟨v⟩, where m = λ−k−
 g
2


.

(We have m > λ
2 −

 g
2


≥ 0, so m − 1 ≥ 0, and m ≤ g − 1 −

 g
2


≤

g−1
2


.) Denote by F•⊠ℓ

tr =

[F∨⊠ℓ → Ker1−ℓF•⊠ℓ] the two-step smart truncation of the complex F•⊠ℓ (see [Tev23, Denitions

4.2 and 4.5]). By [Tev23, Lemma 4.9, Corollary 4.10], for every X ∈ A we have exact triangles K →

Y → X → and H → Y → H ′ → where Y ∈ ⟨θ2Λ⌊ g
2⌋−kF•⊠λ−2k

tr ⟩, K ∈ ⟨θ2Λ⌊ g
2⌋−k−(λ−2k−1)⟩ =

⟨θ2Λ1−m⟩, H ∈ ⟨θ2Λ−m⟩, and H ′ ∈ ⟨θ2Λ1−mD1⟩. It follows from Lemma 3.3.12 that the images

of K,H and H ′ under the semiorthogonal projector onto ⊥B lie in K∨, so the same is true for X.

Writing ⟨v⟩ = ⟨B,B′⟩ as above, this gives mutations ⟨A,B,B′⟩ → ⟨B,A′,B′⟩ → ⟨B,B′,A′⟩ =

⟨v,A′⟩ with A′ ⊂ K∨, as claimed.

By applying this mutation to each block in IV with g ≤ λ ≤ 2(g− 1) in sequence from right to

left, we obtain ⟨IV⟩ = ⟨v, IV′⟩ where IV′ ⊂ K∨.

The megablock

I =

θ−1Λ⌊ g−2

2 ⌋−kF∨⊠λ−2k

0≤λ≤g−2

0≤k≤⌊λ
2 ⌋

on the left is treated similarly, but the process is mirrored. Megablock  appears as the blocks with
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λ = 2

g−2
2


. If g is odd, there are additional blocks with λ = g − 2 to the left of the megablock ,

but they already lie in K by Lemma 3.3.11, so we ignore them as above. We apply the mutation of

Lemma 3.3.10 to all blocks in I; the blocks are still ordered by decreasing λ, but now by increasing

k with F∨⊠λ−2k in place of F∨⊠λ−2k.

C 3.3.15. For 0 ≤ λ < 2

g−2
2


and 0 ≤ k ≤


λ
2


, there is a mutation

 θ−1Λ⌊ g−2
2 ⌋−kF∨⊠λ−2k

X 

where X ⊂ K.

P. We prove instead the dual mutation. By [Tev23, Lemma 3.4], we have

⟨θxΛyF∨⊠z⟩∨ = ⟨θ−xΛ−y(F∨⊠z)∨⟩ = ⟨θ−xΛz−yF∨⊠z⟩ (3.3.5)

Hence it suces to give a mutation ⟨A, ∨⟩ → ⟨∨,A′⟩ where A = ⟨θΛλ−k−⌊ g−2
2 ⌋F∨⊠λ−2k⟩, A′ ⊂

K∨, and ∨ = ⟨θΛmF∨⊠2m⟩0≤m≤⌊ g−2
2 ⌋ ordered by decreasing m.

From here, the proof is the same as for Claim 3.3.14. If λ = 2k, we let B = ⟨θΛmF∨⊠2m⟩

with m =

g−2
2


− k and proceed as above. We need only check that 0 ≤ m ≤


g−2
2


, which

is clear. Similarly, if 2k < λ, it suces to check that 1 ≤ m ≤

g−2
2


where m = (λ − 2k) −


λ− k −


g−2
2


=

g−2
2


− k, which is again clear.

We thus obtain I = ⟨I′, ⟩ where I′ ⊂ K. Next, let

IIa =

Λ⌊ g−2

2 ⌋−kF∨⊠λ−2k

g−1≤λ≤2(g−2)

λ−g+2≤k≤⌊λ
2
⌋
, IIb =


Λ⌊ g−2

2 ⌋−kF∨⊠λ−2k

0≤λ≤g−2

0≤k≤⌊λ
2
⌋
,

so II = ⟨IIa, IIb⟩. Then IIb = θ ⊗ I and  = θ ⊗ , so IIb = ⟨II′b, ⟩ where II′b = θ ⊗ I′ ⊂ K. On

the other hand, let

a =

Λm−1F∨⊠2m


0≤m≤⌊ g−3

2 ⌋

ordered by increasing m, which are the blocks in IIa with λ = 2
 g
2


(where m =

 g
2


− k). If g

is even, there are blocks in IIa with λ = g − 1 to the right of a, but they are contained in K by
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Lemma 3.3.11.

C 3.3.16. For 2
 g
2


< λ ≤ 2(g − 2) and λ− g + 2 ≤ k ≤


λ
2


, there is a mutation

Λ⌊ g−2
2 ⌋−kF∨⊠λ−2k a

a X

where X ⊂ K.

P. The proof is the same as Claim 3.3.14, but with everything tensored with Λ−1 ⊗ θ−2 and

with a smaller range of λ, k, and m. We need only check that 0 ≤ m ≤

g−3
2


with m > 0 if

2k < λ, where m = λ − k −
 g
2


. Indeed, we have 0 ≤ λ

2 −
 g
2


≤ m ≤ g − 2 −

 g
2


≤

g−3
2


with

λ
2 −
 g
2


< m if 2k < λ.

Hence we can write IIa = ⟨a, II′a⟩ with II′a ⊂ K. Combining with IIb gives II = ⟨a, II′, ⟩

where II′ = ⟨II′a, II′b⟩ ⊂ K.

Next, we have III = ⟨IIIa, , IIIb⟩, where

IIIa =

θΛ⌊ g

2⌋−kF∨⊠λ−2k

2⌊ g

2⌋<λ≤2(g−1)

λ−g+1≤k≤⌊λ
2
⌋

, IIIb =

θΛ⌊ g

2⌋−kF∨⊠λ−2k

0≤λ<2⌊ g

2⌋
0≤k≤⌊λ

2
⌋



Let a =

θΛm+1F∨⊠2m


0≤m≤⌊ g−3

2 ⌋ be the blocks with λ = 2

g+2
2


. The blocks in IIIa to

the right of a have λ = 2
 g
2


+ 1 and lie in K already by Lemma 3.3.11. The blocks to the

left of a are processed exactly as with IIa above (make the substitution λ′ = λ − 2, k′ =

k − 1 and use Claim 3.3.16). Hence IIIa = ⟨a, III′a⟩ with III′a ⊂ K. Similarly, let b =

θΛm−1F∨⊠2m


0≤m≤⌊ g−2

2 ⌋ be the blocks from IIIb with λ = 2

g−2
2


. The blocks in IIIb with

λ = 2
 g
2


− 1 lie in K∨; the other blocks are exactly the blocks in I with λ ≤ 2 ⌊g − 2⌋ 2, tensored

by θ2Λ. Then Claim 3.3.15 allows us to write IIIb = ⟨III′b, b⟩ with III′b ⊂ K∨.

To summarize, we have a semiorthogonal decomposition

G =

I′, , a, II′, , a, III′a, , III

′
b, b, v, IV

′

where I′, II′, III′a ⊂ K and III′b, IV
′ ⊂ K∨. It remains to mutate a, a, and b. Observe that
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the blocks in a are exactly the blocks from  tensored by θΛ−1. One by one, we mutate each block

θΛ−1 ⊗ T from a past the corresponding block from T in  using Lemma 3.3.13; the resulting

block T′ ⊂ K is both left and right orthogonal to T⊥∩ , so we may move it to the left of  without

further mutation. Hence we obtain ⟨, a⟩ = ⟨′a, ⟩ with ′a ⊂ K. Similarly, a = θΛ−1 ⊗ , so

⟨, a⟩ = ⟨′a, ⟩ with ′a ⊂ K. On the other side, each block in b is a block from v tensored

with θ−1Λ. The dual of Lemma 3.3.13 allows us to mutate ⟨θ−1Λ⊗T,T⟩ → ⟨T,T′⟩ with T′ ⊂ K∨,

which gives ⟨b, v⟩ = ⟨v, ′b⟩ with ′b ⊂ K∨.

Put together, we have

G =

I′, ′a, , II

′, ′a, , III
′
a, , III

′
b, v, 

′
b, IV

′ ,

where all primed subcategories to the left (resp. right) of  lie in K (resp. K∨). It follows that 

and III′a are both left and right orthogonal; similarly,  is orthogonal to II′, ′a, and III′a, while v

is orthogonal to III′b. Thus we may move , , and v to the center without any mutations, giving

G = ⟨L, , , , v,R⟩ where L = ⟨I′, ′a, II′, ′a, III′a⟩ ⊂ K and R = ⟨III′b, ′b, IV′⟩ ⊂ K∨. This

completes the proof.

P   L 3.3.10. Compare the semiorthogonal decomposition of Lemma 3.2.11 with

its dual using vanishing theorems from [TT21]. See [ST24] for details.

P  L 3.3.11. Let X ∈ ⟨ΛkF∨⊠2k+1⟩. Then X is a pullback of an object in Db(N ) of

weight −1 with respect to Gm. By Proposition 3.3.2(a), it suces to show that Rζ∗Y = 0 for

every object Y ∈ Db(A◦) of the form Y =
k α∗B∗ ⊗L α∗Z, where k = 0,    , b and Z ∈ Db(N ) is

an object of weight −1. Since the claim is local on N, we can replace Y with OA◦(s), where s =

−1,    ,−(b + 1). Since RΓ(Pa−1,O(−s)) = 0 for s = 1,    , a − 1 and b + 1 = a − 1, the rst

statement follows. The second follows from Remark 3.3.6.

P  L 3.3.12. We mimic the proof of [Tev23, Theorem 6.3]. As we will need to work in

both Db(M) and Db(Z◦), we denote the windows embedding by ι : Db(M) → G ⊂ Db(Z◦). As in

[Tev23, Lemma 6.7], it suces to show that the morphism

ζ∗(Λ−1 ⊗ ι(Λℓ−kOM(−D))) → ζ∗(Λ−1 ⊗ ι ◦ P ◦ PL(Λℓ−kOM(−D)))
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is an isomorphism for any D ∈ SymℓC, where P : Db(SymkC) → Db(M) is the Fourier–Mukai

functor with kernel given by ΛkF∨⊠2k, PL is its left adjoint (the Fourier–Mukai functor with

kernel (ΛkF∨⊠2k)∨⊗ω•
M [Huy06, Proposition 5.9]), M(−D) ⊂ M denotes the locus of stable pairs

(F, s) with sD = 0, and the morphism is induced by the unit of adjunction Id =⇒ P ◦ PL. We

compute both sides of this morphism.

C 3.3.17. We have P ◦ PL(Λℓ−kOM(−D)) ∼= RπM∗(ΛkF∨(−D)⊠2k)[2ℓ], where πM denotes the

projection M × SymkC → M .

P. Notice rst that by [Huy06, Corollary 3.40] and [Tha94, 5.7, 6.1], we have

O∨
M(−D) = ωM(−D) ⊗ ω−1

M [−2ℓ] = ΛℓOM(−D)[−2ℓ]

in Db(M). We have

PL(Λℓ−kOM(−D)) = RπSymkC∗((Λ
2kF∨⊠2kOM(−D))

∨ω•
M )[2ℓ]

∼=

RπSymkC∗(F(−D)⊠2kM(−D)×SymkC)

∨
⊗O(−D)⊠2k[2ℓ]

by coherent duality and the projection formula. Since F(−D)M(−D)×C is the universal family on

M(−D) × C, we have PL(Λℓ−kOM(−D)) ∼= O(−D)⊠2k[2ℓ] by [TT21, Corollary 7.5]. Applying P

proves the claim.

Hence (after shifting by −2ℓ for convenience) we have a morphism

Λ−kO∨
M(−D) → RπM∗(Λ

kF∨(−D)⊠2k), (3.3.6)

which is unique up to scalar as in [Tev23, Remark 6.10].

It remains to show that applying the functor ζ∗(Λ−1 ⊗ ι(−)) to (3.3.6) yields an isomorphism.

Since RπZ◦∗(ΛkF∨(−D)⊠2k) ∈ Db(Z◦) has weights in the range [−k, k] ⊆ [−
 g
2


, g −

 g
2


) and

restricts via j∗ to RπM∗(ΛkF∨(−D)⊠2k), we have

ι(RπM∗(Λ
kF∨(−D)⊠2k)) = RπZ◦∗(Λ

kF∨(−D)⊠2k)
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On the other hand, we claim that ι(Λ−kO∨
M(−D)) = Λ−kO∨

Z◦(−D) for ℓ = 0, 1, where Z◦(−D) ⊂ Z◦

denotes the closed substack of pairs (F, s) with sD = 0. If ℓ = 0, this is clear, since Λ−k ∈ G. If

ℓ = 1, so D = x ∈ C, then Z◦(−x) is the codimension-2 vanishing locus of the canonical section

of Fx. We have a Koszul resolution OZ◦(−D)
∼= [Λ−1 → F∨

x → O], so OZ◦(−D) has weights in the

range [0, 1]. Since [k − 1, k] ⊆ [−
 g
2


, g −

 g
2


) and j∗OZ◦(−p) = OM(−p), the claim holds.

Thus applying ι to (3.3.6) gives

Λ−kO∨
Z◦(−D) → RπZ◦∗(Λ

kF∨(−D)⊠2k), (3.3.7)

again unique up to scalar. Moreover, this morphism is nonzero: if not, its cone Φ(Λ−kO∨
Z◦(−D))[1]

would have RπZ◦∗(ΛkF∨(−D)⊠2k) ∈ ⟨ΛkF⊠2k⟩ as a direct summand, which is absurd.

By Proposition 3.3.2(c), applying the functor (θ⊗Rζ∗(Λ−1⊗−))∨ ∼= Rζ∗((−)∨) to (3.3.7) gives

a morphism

Rζ∗

[RπZ◦∗(Λ

kF∨(−D)⊠2k)]∨

→ Rζ∗(ΛkOZ◦(−D)), (3.3.8)

which we must show is an isomorphism. In fact, it suces to show that the source and target of

(3.3.8) are isomorphic. Indeed, write (3.3.7) as X → Y , where Y ∼= Lζ∗Z (so Rζ∗(Y ∨) ∼= Z∨ by

the projection formula). Then C ∼= Hom(X,Y ) ∼= Hom(Lζ∗Z∨, X∨) ∼= Hom(Rζ∗(Y ∨), Rζ∗(X∨)),

so (3.3.8) is nonzero and unique up to scalar.

Recall that N is isomorphic to the moduli stack of rank 2 vector bundles on C with determinant

Λ(−2D), with universal family F(−D) on N ×C. As in Notation 3.3.1, we write RπN∗(F(−D)) =

[A′ → B′], where A′ and B′ are vector bundles on N with Gm-weight 1 and ranks a′, b′, where

a′ − b′ = 2 − 2ℓ. A polystable vector bundle of the form O(D) ⊕ O(D), where D is an eective

divisor of degree g − l, has at least a 2-dimensional space of global sections, so a′ ≥ 2. Writing

α : Z◦ → N so that ζ = ρ ◦ α, we have

RπZ◦∗(Λ
kF∨(−D)⊠2k) ∼= Λ−k ⊗RπZ◦∗(α× id)∗(F(−D)⊠2k)

∼= α∗(Λ−k ⊗RπZ◦∗(F(−D)⊠2k))

∼= α∗(Λ−kSym2k[A′ → B′])

(For the last equality, see the proof of [Tev23, Lemma 6.13]). Hence the left hand side of (3.3.8)
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is the descent of ΛkSym2k[A′ → B′]∨ to N (note that this has Gm-weight 0). Analogous to (3.3.1),

we have a diagram

Z(−D) A′ N

Z◦(−D) A′◦ N

α′

ρ

ζ′

The right hand side of (3.3.8) is Rζ ′∗(Λ
k). Hence it suces to prove:

C 3.3.18. We have Rζ ′∗(Λ
k) ∼= ΛkSym2k[A′ → B′]∨.

As in Proposition 3.3.2(a), we have a Koszul resolution in Db(A′◦):

OZ◦(−D)
∼=


b′
α′∗B′∨A′◦ →    → α′∗B′∨A′◦ → OA′◦




As above, ζ ′ : A′◦ → N is a twisted projective bundle with ber Pa′−1. It follows that

Rζ ′∗(Λ
k) ∼= Rζ∗


b′

α′∗B′∨A′◦ ⊗Λk →    → α′∗B′∨A′◦ ⊗Λk → OA′◦ ⊗Λk




We claim that Rsζ ′∗[
m α′∗B′∨A′◦ ⊗ Λk] = 0 for all s when 2k < m ≤ b′ and for s > 0 when

2k ≥ m. Indeed, we can work locally on N, so α′∗B′ can be replaced by Oζ′(1)
⊕b′ . Recall that

Λ has Gm-weight 2. Note that RΓ(Pa′−1,O(2k − m)) = 0 for 2k < m ≤ b′, since then −a′ =

2ℓ− b′ − 2 < 2k −m < 0.

It follows that

Rζ ′∗(Λ
k) ∼=


ζ∗

2k
α′∗B′∨A′◦ ⊗Λk →    → ζ∗α′∗B′∨A′◦ ⊗Λk → ζ∗OA′◦ ⊗Λk



(underived pushforwards, since higher cohomologies vanish). Since α′
∗OA′◦ ∼= Sym•A′∨ (recall that

a′ ≥ 2), computing the zero-weight part gives

Rζ ′∗(Λ
k) ∼=


Λk ⊗

2k
B′∨ →    → Λk ⊗ B′∨ ⊗ Symk−1A′∨ → Λk ⊗ SymkA′∨


,

which is indeed isomorphic to ΛkSym2k[A′ → B′]∨.
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P  L 3.3.13. By Propositions 3.3.2(b) and 3.3.2(c), coherent duality gives

Rζ∗RHom(O, θ ⊗Λ−1[1]) ∼= RHom(O,O) ∼= O

Applying R0Γ gives a nonzero morphism O → θ⊗Λ−1[1] whose image under ζ∗ is an isomorphism

O → O by construction. We complete this morphism to an exact triangle O → θ⊗Λ−1[1] → K →,

where K ∈ K. Tensoring with objects of T gives the required mutation.
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