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Abstract. We study the derived category of the moduli space SUC(2) of rank 2 vector bundles on a smooth

projective curve C of genus g ≥ 2 with trivial determinant. This generalizes the recent work by Tevelev

and Torres on the case with fixed odd determinant. Since SUC(2) is singular, we work with its resolution

of singularities, specifically with the noncommutative resolution constructed by Pădurariu and Špenko–Van

den Bergh (in the more general setting of symmetric stacks). We show that this noncommutative resolution

admits a semiorthogonal decomposition into derived categories of symmetric powers Sym2kC for 2k ≤ g−1.

In the case of even genus, each block appears four times. This is also true in the case of odd genus, except
that the top symmetric power Symg−1C appears twice. In the case of even genus, the noncommutative

resolution is strongly crepant in the sense of Kuznetsov and categorifies the intersection cohomology of
SUC(2). Since all of its components are “geometric,” our semiorthogonal decomposition provides evidence

for the expectation, which dates back to the work of Newstead and Tyurin, that SUC(2) is a rational variety.

1. Introduction

Let C be a smooth complex projective curve of genus g ≥ 2 and let SUC(2) be the coarse moduli space of
semistable rank 2 vector bundles on C with fixed determinant Λ of even degree. By tensoring with a fixed
line bundle, it is easy to see that SUC(2) is independent (up to isomorphism) of the choice of Λ. Common
choices are OC or ωC , but it will be more convenient for us to choose an arbitrary Λ such that deg Λ = 2g.
It is well-known that SUC(2) is a Gorenstein Fano variety of dimension 3g − 3 with rational singularities
[DN89]. Various resolutions of singularitities of SUC(2) have been studied in [Ses77, NR78, Kir86], and
the relationships between these desingularizations have been worked out in [KL04, CCK05]. On the other
hand, Kuznetsov [Kuz08] defines a noncommutative resolution of singularities of a variety X as a smooth
triangulated category D with an adjoint pair of functors f∗ : D → Db(X) and f∗ : Perf(X)→ D such that
f∗ ◦ f∗ ∼= Id. As our varieties are all projective, we also require D to be proper. In [KL15, Theorem 1.4], it
is shown that every variety X admits such a noncommutative resolution, which is proper if X is.

The main result of this paper is the following theorem, which provides an even-degree counterpart of the
main result in [TT21,Tev23] (the proof of the BGMN conjecture).

Theorem 1.1. There exists a noncommutative resolution of singularities D of SUC(2) with a semiorthogonal

decomposition into blocks equivalent to Db(Sym2kC) for 2k ≤ g − 1. There are four copies of each block
except when g is odd, in which case the block Db(Symg−1C) appears twice. The category D is an example
of the noncommutative resolution of singularities constructed in [Păd21, ŠVdB23] for symmetric stacks.
In particular, it is an admissible subcategory of the derived category of the Kirwan resolution of SUC(2).
If g is even, D is a strongly crepant noncommutative resolution of SUC(2) in the sense of [Kuz08].

We refer to Theorem 3.8 for a more concise and detailed statement of the main theorem. As in [TT21,
Tev23], we construct D as an admissible subcategory in Db(M), where M is the Thaddeus moduli space of
stable pairs (F, s) with F a rank 2 vector bundle on C with determinant Λ and s a non-zero global section

(see [Tha94]). Furthermore, derived categories Db(Sym2kC) are embedded in Db(M) by means of explicit
Fourier–Mukai functors with kernels given by “tensor” vector bundles twisted by various line bundles.

An easy application of the main result in [Păd21] (see Remark 3.9) shows that D categorifies the in-
tersection cohomology of SUC(2) in the even genus case. Indeed, our decomposition is compatible with
its computation in [DB02]. By the Bondal–Orlov conjecture [BO02], we expect D to be an admissible
subcategory of every resolution of SUC(2) in even genus.

In the odd degree case (deg Λ = 2g − 1) studied in [TT21, Tev23], the moduli spaces of stable bundles
and stable pairs are birational. In contrast, when deg Λ = 2g, the morphism M → SUC(2) has generic
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fibers P1. While M is a rational variety, the rationality of the moduli space SUC(2) remains a well-known
open problem, dating back to the early works of Tyurin [Tyu64,Tyu65] and Newstead [New75,New80]. Unlike
the case of coprime rank and degree—where rationality has been completely settled in [KS99]—rationality
for SUC(2) is only known in genus 2, where the theta-morphism [Ray82] SUC(2) → P2g−1 happens to be
an isomorphism [NR69]. In light of the “Kuznetsov rationality proposal” [Kuz16], our main result suggests
that any weak factorization of a hypothetical birational map SUC(2) 99K P3g−3 should involve blow-ups and

blow-downs of even symmetric powers Sym2kC for 2k ≤ g − 1.
In the even genus case, Theorem 1.1 proves a conjecture of Belmans [Bel21] (though in odd genus it

differs from that prediction). There is actually a large body of conjectures on explicit semiorthogonal
decompositions of Fano manifolds, which are typically obtained by analyzing their Hodge diamonds and using
the additivity of Hochschild homology in semiorthogonal decompositions [Kel99, Theorem 1.5]; see [BBF+24]
for another recent example related to our paper. Of course, these predictions are not easily turned into proofs.
Existing proofs of such semiorthogonal decompositions follow several approaches. One general framework is
to analyze a “two-ray game” given by two extremal contractions of Fano varieties Y L99 X 99K Z. In our
paper, Y = P3g−2, X = M , and Z = SUC(2). We start with a known semiorthogonal decomposition of
Db(Y ), extend it to a semiorthogonal decomposition of Db(X), and use the geometry of X to mutate it into a
semiorthogonal decomposition of Db(Z). Various blocks appear and disappear in the process as X undergoes
small birational transformations linking the contractions to Y and Z. Our approach uses weaving patterns,
allowing for tight control of the Fourier–Mukai kernels for the various functors Db(SymkC) → Db(M)
embedding the blocks. From another perspective, mirror symmetry suggests that such mutations should
exist in general, and even leads to a description of the hypothetical braid:

Conjecture 1.2 (Two-Ray Game Conjecture). Given extremal contractions Y L99 X 99K Z of smooth Fano
varieties, there exist semiorthogonal decompositions

Db(Y ) = 〈A1, . . . ,As〉, Db(X) = 〈A1, . . . ,As,P1, . . . ,Pr〉 = 〈Q1, . . . ,Qu,B1, . . . ,Bt〉, Db(Z) = 〈B1, . . . , Bt〉
compatible with pullbacks along maps Y L99 X 99K Z. The two semiorthogonal decompositions of Db(X) are
related by a braid. If the contractions can be linked by a sequence of smooth small modifications X1, . . . , Xn

of X in the stable base locus decomposition of the moving cone of X, the braid can be computed as the
monodromy braid of eigenvalues of c1(X) acting on quantum cohomology QH∗(Xi,C) as the base τ of small
quantum cohomology varies along the path in the moving cone (with a small B-field perturbation iB added to
the path τ to avoid collisions of eigenvalues). When the path crosses walls, various eigenvalues fly to or from
infinity, corresponding to new blocks being added to or subtracted from the semiorthogonal decomposition.

At the moment, the only way to verify this conjecture is to compute and compare the two braids; see [Iri20,
Figure 16] for a worked-out example of extremal contractions P4 ← BlP1P4 → P2 or [Tev24] for contractions
P3 ← BlCP3 = BlP1Q4 → Q4, where C ↪→ P3 is a quintic curve of genus 2 and B4 is the intersection of
two quadrics in P5 (this is the genus 2 case of [Tev23].) It seems plausible that smoothness assumptions can
be weakened by considering noncommutative resolutions of singularities as in our paper: the moduli space
SUC(2) is singular, but most of the blocks in the semiorthogonal decomposition of Db(M) “fly away” to
leave only a noncommutative resolution of SUC(2) (see Figure 3). It would be interesting to gather more
evidence supporting this conjecture by connecting other Fano varieties Y and Z through a Fano variety X.
One could consider toric Fano varieties, maximal flag varieties, Fano 3-folds, and various Fano moduli spaces.

The paper is organized as follows: In Section 2, we obtain several explicit semiorthogonal decompositions
of the “maximal” (see Remark 2.4) Thaddeus space Mid(d) for various d (see, e.g., Theorem 2.2 for a precise
statement), including the case d = 2g we need (Theorem 2.10). This is done by generalizing the weaving
techniques developed in [Tev23] for d = 2g − 1. This in turn requires the careful verification of a number
of technical results from [Tev23] for other degrees; these checks are carried out in Section 4. The precise
statement and proof of the main result are given in Section 3.

A few words regarding notation: Following [Tha94,Tev23], we often denote tensor product by juxtaposition
for compactness. As in [Huy06], we usually omit R’s and L’s on derived functors except for emphasis (e.g.,
when applying derived pushfoward to a sheaf). We frequently use the same symbol to denote canonical
objects on related moduli spaces when no confusion will arise, omitting explicit pullbacks (see Notation 2.1).
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2. Semiorthogonal decompositions of moduli spaces of stable pairs

We begin by recalling some notation from [Tev23,TT21].

Notation 2.1. For a line bundle Λ on C of degree d and 0 ≤ i ≤
⌊
d−1

2

⌋
, we denote by Mi(Λ) (or simply

Mi(d) or Mi when no confusion will arise) the moduli space of rank 2 stable pairs with determinant Λ, where
i indexes the stability condition. We write O(m,n) = O((m+ n)H − nE) on any of the Mi, i ≥ 1, where E
is the exceptional divisor of the contraction M1 →M0 and H is the pullback of the hyperplane divisor from
M0
∼= Pd+g−2. (By abuse of notation, O(m, 0) = O(m) on M0.) F denotes the universal vector bundle on

Mi × C (for any i), Fx its restriction to Mi × {x} ∼= Mi for x ∈ C, and Λ the line bundle ∧2Fx, which is
independent of x (and not to be confused with Λ).

For any varietyX and vector bundle G onX×C, we have tensor vector bundles G�k and G�k onX×SymkC
defined by the Sk-equivariant pushforwards τSk∗ (π∗1G⊗· · ·⊗π∗kG) and τSk∗ (π∗1G⊗· · ·⊗π∗kG⊗sgn), respectively,

where τ : Ck → SymkC is the quotient by Sk, πi : Ck → C are the projections, sgn is the sign character of Sk,
and the Sk-action on π∗1G ⊗ · · · ⊗ π∗kG permutes the tensor factors (see [TT21, Section 2]). For D ∈ SymkC,

we denote by G�kD and G�kD the restrictions to X ×{D} ∼= X of G�k and G�kD , respectively. 〈K〉 denotes the
essential image of a fully faithful Fourier–Mukai functor with kernel K.

The principal goal of this section is to prove the following generalization of [Tev23, Theorem 3.1]:

Theorem 2.2. Let d ≤ 2g with id ≤
⌊
d−1

2

⌋
, where id =

⌈
d+g−1

3

⌉
− 1. Let m = d + g − 1 − 3id ∈ {1, 2, 3},

and let mn = 1 if m ≤ n or 0 otherwise. Then

(2.1) Db(Mid(d)) =

〈〈
Λ−kF∨�j

〉
j+k≤id−m2

j,k≥0

,
〈
T1Λ

−kF∨�j
〉
j+k≤id−m1

j,k≥0

,
〈
T2Λ

−kF∨�j
〉
j+k≤id
j,k≥0

〉
where the blocks within each “megablock” are ordered first by decreasing k, then by decreasing j. Here,
T1 = O(1, id −m2), and T2 = O(2, 2id −m2 −m1).

Remark 2.3. The assumptions of the theorem are equivalent to d = 2g − α for α ∈ {0, 1, 2, 3, 5}, where
id = g −

⌈
α+2

3

⌉
. The restriction d ≤ 2g could be removed by verifying Conjecture 4.6 below, in which case

the theorem would hold in all but finitely many degrees.

Remark 2.4. It can be seen from [TT21, Proposition 3.18] that Db(Mi(d)) is “largest” when i = id.
Moreover, it follows from [Tha94, 5.3, 6.1] that Mid is Fano when m = 1, 2. When m = 3, Db(Mid) and
Db(Mid+1) are equivalent, and the anticanonical bundles on Mid and Mid+1 are big and nef but not ample.

2.1. Generalized weaving. We begin with some notation. Fix d ≤ 2g and write Mi(d) = Mi for i ≤
⌊
d−1

2

⌋
.

Notation 2.5. For 0 ≤ k ≤ i, we denote by Dki the structure sheaf of the reduced subscheme

Dk
i = {(D,F, s) ∈ SymkC ×Mi : s|D = 0},

whose fiber over D ∈ SymkC is Mi−k(Λ(−2D)) [TT21, Remark 3.7]. For t ∈ [0, id+1), let Dk,st = Dkbtc⊗L
k,s
t

where

Lk,st =

{
O(s, sk) k = btc
O
(⌊

s
t−k

⌋
, s+

⌊
s
t−k

⌋
(k − 1)

)
k < btc .

Our first step is to prove the following:

Lemma 2.6 (cf. [Tev23, Corollary 2.10]). For t ∈ (0, id + 1) r Z, we have a semiorthogonal decomposition

(2.2) Db(Mbtc) =
〈
Dk,st

〉
0≤k≤btc

0≤s≤d+g−3k−2

where the blocks are ordered first by increasing xk,s(t) = s
t−k , then by increasing k.
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We interpret t as time, with the block 〈Dk,st 〉 “moving” in the x-t plane with trajectory x = xk,s(t) (or
x = kε for s = 0, where ε � 1). When the blocks cross paths, they change order and undergo mutations

dictated by the line bundle Lk,st . When t crosses an integer level i, we embed Db(Mi−1) into Db(Mi),
introducing several new blocks as its orthogonal complement, and proceed with the process. We refer to
this “weave” as the Farey Twill; see [Tev23, Section 2] for detailed illustrations in the case d = 2g− 1. This
program is facilitated by several technical lemmas, whose statements and proofs are deferred to Section 4.

To pass from Mi−1 to Mi, we need the following “windows” embeddings, in the sense of [HL15]:

Proposition 2.7 ([TT21, Proposition 3.18]). For d > 0 and 1 ≤ i ≤ id ≤
⌊
d−1

2

⌋
, there is an admissible

embedding ι : Db(Mi−1(d)) ↪→ Db(Mi(d)) giving rise to a semiorthogonal decomposition

Db(Mi(d)) = 〈ι(Db(Mi−1(d))),Di,0i ,Di,1i , . . . ,Di,d+g−3i−2
i 〉

When i > 1, the embedding corresponds to the inclusion of objects with weights [0, i) ⊆ [0, d + g − 1 − 2i)
with respect to the wall crossing Mi−1 99KMi.

Remark 2.8. Note that Di
i is isomorphic to the projective bundle PW+

i ⊂ Mi via the second projection

(see [TT21, Section 6]), and that Li,si = O(s, si) restricts to O(s) on the fibers M0(d − 2i) ∼= Pd+g−2i−2 of
this bundle [TT21, Remark 3.7].

Proof of Lemma 2.6. When 0 < t < 1, (2.2) is the Bĕılinson collection 〈O,O(1), . . . ,O(d+g−2)〉 on Pd+g−2.
Given (2.2) for t = i+ ε with i ∈ Z, ε� 1, we achieve (2.2) for all t ∈ (i, i+ 1) by performing the mutations
encoded in the crossings of trajectories xk,s(t). When blocks meet at nonintegral x, they only change order,
meaning we must show that they are mutually orthogonal. Since the intersecting blocks are already ordered

by xs,k(t− ε), or equivalently by k, we need only check that 〈Dk,st 〉 ⊂ ⊥〈D
k′,s′

t 〉 for k < k′, xk,s(t) = xk′,s′(t).
This follows from Lemma 4.16 below.

Crossings at x ∈ Z have the form 〈Dk,st ,Dk+1,s−x
t , . . . ,Dbtc,s−btcxt 〉 → 〈Dbtc,s−btcxt+ε , . . . ,Dk+1,s−x

t+ε ,Dk,st+ε〉.
Note that for 0 ≤ j < btc,

Lk+j,s−jx
t = O(x, s− x(k − 1))

is indepedent of j, while

Lk+j,s−jx
t+ε = Lk+j,s−jx

t (−1, 1− j).
Moreover, L

btc,s−btcx
t = L

btc,s−btcx
t+ε = O(s−btcx, (s−btcx) btc) and O(x, s−x(k− 1)) both restrict to O(s)

on the fibers of the projective bundle D
btc
btc, so 〈Dbtc,s−btcxt 〉 = 〈Dbtcbtc(x, s − x(k − 1))〉. Hence it suffices to

give a mutation
〈Dki , . . . ,Di−1

i ,Dii〉 → 〈Dii,Di−1
i (−1, 2− i), . . . ,Dki (−1, 1− k)〉,

as in Lemma 4.17.
It remains to explain how to get from t = i− ε to i+ ε. By Lemma 4.15 below, we have ι〈Dk,si−ε〉 = 〈Dk,si 〉.

Hence, to go from the semiorthogonal decomposition of Proposition 2.7 to (2.2) with t = i+ ε, we need only

move the block 〈Di,0i 〉 into position, i-th from the left (we imagine this block coming horizontally from the
right along t = i, stopping at x = iε). It moves past blocks with xk,s(i) 6∈ Z without changing them by
Lemma 4.16, while the others undergo the mutation of Lemma 4.17. �

It turns out that Lemma 2.6 is not quite the decomposition we need to proceed.

Lemma 2.9. Let m = d+ g − 3id − 1 ∈ {1, 2, 3}, and let mn = 1 if m ≤ n and 0 otherwise. Then

(2.3) Db(Mid) =

〈〈
Λ−jDk

〉
j+k≤id−m2

j,k≥0
,
〈
T1Λ

−jDk
〉
j+k≤id−m1

j,k≥0
,
〈
T2Λ

−jDk
〉
j+k≤id
j,k≥0

〉
where the blocks in each megablock are ordered first by increasing j+k, then by increasing j. Here, Dk = Dkid ,
T1 = O(1, id −m2), and T2 = O(2, 2id −m2 −m1).

Proof. For m = 1, 2, we begin with (2.2) with t = id − ε. We embed with ι to obtain the following
semiorthogonal decomposition:

(2.4) Db(Mid) = 〈I, II, III, IV,Did,0id
, . . . ,Did,m−1

id
〉

where I, II, III, IV are the subcategories generated by 〈Dk,sid 〉 for xk,s(id) ∈ [0, 1), [1, 2), [2, 3), and [3,∞),
respectively.
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If m = 1, the blocks are arranged as in [Tev23]. The blocks in I are the same as in the first megablock of

(2.3) (with j = s), but they are ordered differently. We reorder them by moving 〈Dk,sid 〉 from x = xk,s(id) to

x = s+k
id

. The moves are done in order of decreasing s + k, then by decreasing s. As blocks in I with the
same s + k are already ordered by increasing s, the orthogonality we need to ensure no mutations occur is

〈Dk,sid 〉 ⊂
⊥〈Dk

′,s′

id
〉 for s′ + k′ < s+ k. This is checked in Lemma 4.18.

Similarly, the blocks in II and III are respectively the same as the second and third (with j+ k ≤ id− 1)

megablocks of (2.3). (Explicitly, we have j = s−
⌊

s
id−k

⌋
(id− k).) The same reordering procedure works, so

we are left to produce the blocks in (2.3) in with j + k = id. These are exactly the blocks in 〈IV,Did,0id
〉 =

〈D0,3id
id

,D1,3(id−1)
id

, . . . ,Did,0id
〉 after the mutation of Lemma 4.17 (note that we have Did = Did(2, 2(id − 1))

by [TT21, Remark 3.7]). This proves the lemma for m = 1.
For m = 2, the only new blocks in (2.4) compared to m = 1 lie in IV. We reorder the blocks in I and

II = IIa just as before; this gives the first and second (with j + k ≤ id − 1) megablocks in (2.3). We write

III = 〈iib, IIIa〉, where iib contains those blocks 〈Dk,sid 〉 with xk,s(id) = 2 and IIIa those with xk,s(id) ∈ (2, 3).

Similar to the proof of Lemma 2.6, we move the block Did,0id
past IV, IIIa, and iib. By Lemmas 4.16 and 4.17,

IIIa is unchanged, while IV and iib undergo some mutations. This yields

Db(Mid) = 〈I, IIa, IIb, IIIa, IV′,Did,1id
〉

where 〈iib,Did,0id
〉 → IIb via Lemma 4.17, and IV′ = 〈Ds,kid+ε〉xk,s(id)≥3 ordered by xk,s(id + ε). Now IIb =

〈Dk(1, 2id − k − 1)〉0≤k≤id ordered by decreasing k, so 〈IIa, IIb〉 forms the second megablock of (2.3).
At this point, IIIa contains the blocks from the third megablock of (2.3) with j+k ≤ id−2; we apply the

same algorithm to put them in the correct order. We write IV′ = 〈IIIb, iiic〉 with IIIb and iiic containing
the blocks with xk,s(id) = 3 and xk,s(id) > 3. We have IIIb = 〈Dk(2, 3id − k − 2)〉0≤k≤id−1 ordered by

decreasing k. The Farey Twill trajectories of blocks in iiic meet with Did,1id
at (t, x) =

(
id + 1

3 , 3
)
, where

they undergo a final mutation 〈iiic,Did,1id
〉 → IIIc = 〈Dk(2, 3id − k − 1)〉0≤k≤id ordered by decreasing k. To

sum up, we have
Db(Mid) = 〈I, 〈IIa, IIb〉, 〈IIIa, IIIb, IIIc〉〉 ,

which is exactly (2.3) with m = 2.
Finally, m = 3 is the easiest case. We begin with (2.2) with t = id + 1− ε. We have xk,s(t) ∈ [0, 3), where

the blocks in [0, 1), [1, 2), and [2, 3) correspond exactly to the respective megablocks in (2.3) with j = s,
j = s− (id+1−k), and j = s−2(id+1−k); they are in the wrong order, but this is rectified by Lemma 4.18
and the same reordering algorithm as above. �

From here, Theorem 2.2 follows exactly as in the proof of [Tev23, Theorem 3.1].

Proof of Theorem 2.2. Each megablock in (2.3) will mutate into the corresponding one in (2.1). As the
megablocks differ only in size and overall line bundle twists (i.e., the shapes are the same), it will suffice
to describe this mutation for the first one. We rely on the Cross Warp mutation depicted in Figure 1 and
proved as Theorem 4.1(d) below. Notice that the top left portion of the mutation with top center block Dk
is precisely the bottom right portion of the mutation with top center Dk−1; similarly, the bottom left is the
top right of the mutation with top center Dk−1, tensored with Λ−1. Hence we can stack these mutations
with top centers as in Figure 2. In the end, all D’s are replaced by F ’s, resulting in (2.1). �

F∨�k−1 · · · O Dk Dk−1Λ−1 · · · Λ−k

Dk−1Λ−1 · · · Λ−k F∨�k F∨�k−1 · · · O

Figure 1. The basic Cross Warp mutation, cf. [Tev23, Figure 7].
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O

D1

Λ−1 D2

Λ−1D1 · · · Did

Λ1−id · · · Λ2−idD2

Λ1−idD1

Λ−id

Figure 2. Stacking the crosswarp mutation (with m1 = 0). See also [Tev23, Figure 8].

2.2. Broken Loom for d = 2g. To finish this section, we specialize to d = 2g. We wish to modify the
semiorthogonal decomposition of Theorem 2.2 for d = 2g to create as many blocks as possible of the form
θjΛkF∨�2k, where θ = O(1, g − 1) is the pullback of the ample generator of PicSUC(2) under the forgetful
morphism Mg−1(2g) → SUC(2), (F, s) 7→ s (see [Tha94, 5.8]). We will see in Section 3 that such blocks
form the claimed noncommutative resolution of SUC(2).

Theorem 2.10 (cf. [Tev23, Theorem 5.8]). Let M = Mg−1(2g). We have the following semiorthogonal
decomposition of Db(M):〈〈

θ−1Λb
g−2
2 c−kF∨�λ−2k

〉
0≤λ≤g−2
0≤k≤bλ2 c

,
〈
Λb

g−2
2 c−kF∨�λ−2k

〉
0≤λ≤2(g−2)

0≤k≤bλ2 c,λ−k≤g−2

,

〈
θΛb

g
2 c−kF∨�λ−2k

〉
0≤λ≤2(g−1)

0≤k≤bλ2 c,λ−k≤g−1

,
〈
θ2Λb

g
2 c−kF∨�λ−2k

〉
g−1≤λ≤2(g−1)

λ−g+1≤k≤bλ2 c

〉
.

Here, the blocks within each megablock are ordered first by decreasing λ, then by decreasing k.

We proceed by analogy with [Tev23, Section 5], beginning with the reordering trick. This works for any
d ≤ 2g with id ≤

⌊
d−1

2

⌋
.

Lemma 2.11 (cf. [Tev23, Theorem 5.3]). With notation as in Theorem 2.2, we have the following semi-
orthogonal decomposition of Db(Mid(d)):

(2.5)

〈〈
Λ−kF∨�λ−2k

〉
λ−k≤id−m2
λ−2k,k≥0

,
〈
T1Λ

−kF∨�λ−2k
〉
λ−k≤id−m1
λ−2k,k≥0

,
〈
T2Λ

−kF∨�λ−2k
〉
λ−k≤id
λ−2k,k≥0

〉
.

The blocks within each megablock are ordered first by decreasing λ, then by decreasing k.

Proof. The blocks in each megablock are the same as those in (2.1) with λ = j + 2k. As they are already
ordered by decreasing k, it suffices to show that we can move blocks with smaller λ to the right of blocks with
larger λ, i.e., 〈Λ−kF∨�λ−2k〉 ⊂ ⊥〈Λ−k′F∨�λ′−2k′〉 for λ < λ′. This follows from Lemma 4.19 below. �

Proof of Theorem 2.10. When d = 2g, we have id = g− 1, m = 2, T1 = θΛ, and T2 = θ2Λ, so (2.5) becomes〈〈
Λ−kF∨�λ−2k

〉
λ−k≤g−2
λ−2k,k≥0

,
〈

(θΛ)Λ−kF∨�λ−2k
〉
λ−k≤g−1
λ−2k,k≥0

,
〈

(θ2Λ)Λ−kF∨�λ−2k
〉
λ−k≤g−1
λ−2k,k≥0

〉
.
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We take the part of the third megablock with λ ≤ g − 2 and tensor by ωMg−1(2g) = θ−3Λ−1, moving it to

the far left. Tensoring everything by Λb
g−2
2 c proves the theorem. �

3. Modified Plain Weave

3.1. Main result. We proceed with the Plain Weave, cf. [Tev23, Section 6]. While the spirit of the argument
is the same, there are some technical complications in even degree. Notably, not every pair (F, s) with F a
semistable bundle is stable, so M parameterizes only an open substack of all such pairs.

Notation 3.1. We denote by N the stack of rank 2 semistable bundles on C with determinant Λ (and with
Gm as a generic inertia group) and by N its rigidification (with trivial generic stabilizers). Concretely, we
work with the quotient stacks N = [Q/GL(V)] and N = [Q/PGL(V)] where V is a vector space of dimension
2+2m for some large m and Q is an appropriate locally closed subscheme of the Quot scheme parameterizing
quotients of V ⊗ OC(−mp) for some fixed point p ∈ C (see [KT21, Section 4] for details). Here N and N
are smooth algebraic stacks and Q is a smooth quasi-projective variety. The generic inertia group of N is
identified with the center Gm ⊂ GL(V). We have morphisms of stacks

M N N SUC(2),
ρ

where M = Mg−1(Λ) is the moduli space of stable pairs, M → N is the forgetful morphism, and SUC(2)
is the coarse moduli space (of both N and N) as well as the GIT quotient of Q by PGL(V). We do not
notationally distinguish between universal bundles F on M×C orN×C, nor those on other spaces that carry
them appearing below; similarly for Λ = detFx and θ, the (pullback of the) ample generator of PicSUC(2)
[DN89]. Unlike in the odd degree case, neither F nor any line bundle twist of F descends to N or any open

substack of it [Ram73, Theorem 2]. However, twisted tensor vector bundles ΛkF∨�2k on N × Sym2kC have

weight 0 with respect to Gm and therefore descend to N× Sym2kC for every k ≥ 0.

Let πN : N × C → N be the projection. We write RπN∗F = [A u→ B] for A and B vector bundles
on N of ranks a and b, respectively, where a − b = 2 and Gm acts with weight 1 on the fibers of both
[KT21, Lemma 4.4]. Let α : A → N , where we use the same notation for vector bundles and their total
spaces. Then u gives a section of the vector bundle α∗B over A. Let Z ⊂ A be the vanishing locus of this
section, let A◦ ⊂ A be the complement of the zero section, and let Z◦ = Z ∩A◦, which is the stack of pairs
{(F, s) : F ∈ N , s ∈ H0(F ) r {0}} (see [KT21, Lemma 4.5(i)]). We have a diagram

(3.1)

Z A N

M Z◦ A◦ N.

α

ρ

j

ζ

Proposition 3.2. In the notation of (3.1):

(a) In Db(A◦), OZ◦ is isomorphic to the Koszul complex[
b∧
α∗B∨|A◦ → . . .→ α∗B∨|A◦ → OA◦

]
.

(b) We have Rζ∗OZ◦ = ON.
(c) The relative dualizing sheaf for ζ is θΛ−1.

Proof. We abuse notation and denote the morphism A◦ → N by ζ. It is a (twisted) projective bundle
with fiber Pa−1. By [KT21, Lemma 4.5(i)], the stack Z◦ is smooth of dimension 3g − 2. In particular, its
codimension in A◦ is equal to b. The first claim follows. Since Rζ∗OA◦ = ON and RΓ(Pa−1,O(−k)) = 0
for k = 1, . . . , a − 1, the second claim follows from the first. Indeed, since the claim is local on N, we can
trivialize B, and subsequently replace α∗B∨|A◦ with a direct sum of b copies of OA◦(−1). Finally, since A◦
has Gm-weight 1, the dualizing sheaf for A◦ → N is isomorphic to α∗ detA∨. Therefore, by adjunction and
ignoring pullback by α,

ωζ ∼= detA∨ ⊗ detB ∼= (detπN !F)∨,

which is isomorphic to θΛ−1 by [Nar17, Proposition 2.1]. �
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In the diagram (3.1), j is the inclusion of the GIT-semistable locus with respect to a certain line bundle
L` ⊗ χε0 on Z◦ [KT21, Section 4]. This gives rise to windows embeddings Db(M) ∼= Gw ⊂ Db(Z◦) [HL15].
In the following proposition, we calculate the relevant weights (cf. [TT21, Lemma 3.17 and Theorem 3.21]).

Proposition 3.3. With respect to the semistable locus M ↪→ Z◦:
(a) There is a unique Kempf–Ness stratum with associated window width η = g.
(b) Objects in the subcategory 〈θxΛyF∨�z〉 ⊂ Db(Z◦) have weights in the range [−y, z − y].

Proof. As in [TT21, Section 3], we identify A◦ with the quotient stack [X/PGL(V)], where X ⊂ Q × P(V)
is a closed subvariety parameterizing quotients φ : V ⊗ OC(−mp) → F together with a global section
s(mp) ∈ P(V). The complement U = A◦ rM is a closed substack of pairs (F, s) such that F contains a
degree g line subbundle L and s ∈ H0(C,L) r {0}. By semistability of F , L = OC(D) is unique, where
D ∈ SymgC is the vanishing locus of s. We have a short exact sequence 0 → OC(D) → F → Λ(−D) → 0.
The unstable locus S ⊂ X is the preimage of U . For points in S, the quotient φ is given by a block upper-
triangular matrix corresponding to a splitting V = V1 ⊕ V2, where V1 ⊗ OC(−mp) = φ−1(OC(D)) and
dimV1 = dimV2 = r. Furthermore, we have s(mp) ∈ P(V1). The destabilizing one-parameter subgroup
λ : Gm → PGL(V) is given by sending λ(t) = diag(u, . . . , u, u−1, . . . , u−1), where ur = t (see the proof of
[TT21, Lemma 3.17]). It follows that there is only one Kempf–Ness stratum (λ, Z, S), where Z = Xλ is the
locus of split quotients V1 ⊗OC(mp)⊕ V2 ⊗OC(mp)→ OC(D)⊕ Λ(−D) with s(mp) ∈ P(V1).

Arguing as in the proof of [TT21, Lemma 3.17], the window width η = weightN ∗S/X |Z is equal to the

codimension of S in X. Since dimA◦ = 3g−2, to finish the proof of (a), it suffices to show that dimU = 2g−2.
This follows from the description of U above. Indeed, SymgC has dimension g and the space of extensions
Ext1(Λ(−D),OC(D)) has dimension g − 1 when 2D 6∼ Λ (and g otherwise). Furthermore, points in U have
generic stabilizers Gm acting trivially on V1 and non-trivially on V2. This gives dimU = g+(g−1)+(−1) =
2g − 2 and proves (a). The proof of part (b) is entirely analogous to the proof of [TT21, Theorem 3.21] �

Corollary 3.4. The blocks in Theorem 2.10, with the kernels now regarded as objects on Db(Z◦ × Sym`C),
give a semiorthogonal decomposition of the windows subcategory G = G−bg/2c ⊂ Db(Z◦).

Proof. Using Proposition 3.3(b), one checks that objects in those blocks have weights in [−
⌊
g
2

⌋
, g −

⌊
g
2

⌋
),

so they are contained in G. For example, the (λ, k) block in the first megablock has weights in the range[
k −

⌊
g − 2

2

⌋
, λ− k −

⌊
g − 2

2

⌋]
⊆
[
−
⌊
g − 2

2

⌋
, g − 2−

⌊
g − 2

2

⌋]
=

[
−
⌊
g − 2

2

⌋
, g −

⌊g
2

⌋)
.

The windows embedding Db(M) ∼= G ⊂ Db(Z◦) is right inverse to the restriction j∗ : Db(Z◦) → Db(M),
so j∗ gives an equivalence G ∼= Db(M) taking each block in G ⊂ Db(Z◦) to the corresponding block
in Db(M). The result follows. �

Notation 3.5. We introduce full subcategories K = {X ∈ Db(Z◦) : ζ∗X = 0} and K∨ = {X∨ : X ∈ K}.
Remark 3.6. Note that θ ⊗K = K by the projection formula and K∨ = Λ ⊗K by coherent duality and
Proposition 3.2(c).

Theorem 3.7 (Plain Weave). There is a semiorthogonal decomposition

(3.2) G = 〈L, i, ii, iii, iv,R〉
where L ⊂ K, R ⊂ K∨, and

i =
〈
θ−1ΛmF∨�2m

〉
0≤m≤b g−2

2 c
, ii =

〈
ΛmF∨�2m

〉
0≤m≤b g−2

2 c
,

iii =
〈
θΛmF∨�2m

〉
0≤m≤b g−1

2 c
, iv =

〈
θ2ΛmF∨�2m

〉
0≤m≤b g−1

2 c
,

with each megablock is ordered by increasing m.

We postpone the proof of Theorem 3.7 to the next subsection. We can now precisely state and prove our
main result.

Theorem 3.8. The admissible subcategory D = 〈i, ii, iii, iv〉 ⊂ G is a noncommutative resolution of sin-
gularities of SUC(2). Furthermore, this resolution agrees with the resolution of [Păd21, Theorem 1.1] (defined
there in a more general context of symmetric stacks). This resolution is strongly crepant [Kuz08] if g is even.
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Proof. The blocks in i, ii, iii, iv are exactly those from Theorem 2.10 which are pulled back from N. Indeed,
the bundle θiΛjF∨�k on N has weight 2j − k with respect to the Gm action, so it descends to N exactly
when k = 2j. By Proposition 3.2(b), it follows that D is isomorphic (via Rζ∗) to an admissible subcategory

D′ ⊂ Db(N) given by the same Fourier–Mukai kernels as D (regarded as objects in Db(N× SymkC)).
By the Luna slice theorem, analytic-locally near a complex point p ∈ SUC(2), the stack N is isomorphic

to an analytic neighborhood of the origin in the stack [N/G], where G is the stabilizer of a split bundle
F = OC(D) ⊕ Λ(−D) from the S-equivalence class of p and N is its normal bundle in N. According to
[Kir86], there are two cases. In the first case, Λ ∼= OC(2D), G = PGL2, and N = sl2 ⊗ Cg. In the second
case, Λ 6∼= OC(2D), G ∼= Gm is the maximal torus of PGL2, and N = Cg−1 ⊕ Cg−1 ⊕ Cg. A primitive one-
parameter subgroup λ : Gm → G, given by sending λ(t) = diag(u, u−1) where u2 = t, has weights 1,−1, 0
on N , each with multiplicity g in the first case, and with multiplicities g − 1, g − 1, g in the second case. It
follows that N is a symmetric stack satisfying assumptions A, B, C of [Păd21], so all of its results apply.
The window width η = weightλ detL>0 = weightλN

>0 − weightλg
>0 is equal to g − 1 in both cases. By

[Păd21, Theorem 1.1], it follows that the full subcategory D′′ = {X ∈ Db(N) : − g−1
2 ≤ weightλX ≤

g−1
2 } is

admissible and provides a noncommutative resolution of singularities of SUC(2).
Next, we will show that D′ = D′′. Let X ∈ D′. The computation of weightλX is the same as the com-

putation of weightλζ
∗X in Proposition 3.3. By Lemma 3.10 below, the weights of objects in subcategories

i, ii, iii, iv are in the interval [− g−1
2 , g−1

2 ]. It follows that D′ ⊂ D′′. On the other hand, let X ∈ D′′.
Since weightλX = weightλζ

∗X as above, we have ζ∗X ∈ G. With respect to the semiorthogonal decom-
position (3.2) of Theorem 3.7, we have Hom(ζ∗X,L) = 0 by projection formula and Hom(R, ζ∗X) = 0 by
coherent duality. It follows that ζ∗X ∈ D, and therefore X ∈ D′. We conclude that D′ = D′′.

It remains to show that D is a strongly crepant noncommutative resolution of SUC(2) if g is even. By
the discussion above, we can view D as an admissible subcategory of Db(M), Db(Z0), or Db(N), where in
every case the pullback functor Perf(SUC(2)) → D is the usual pullback. Furthermore, it endows D with
the structure of an SUC(2)-linear category via the usual tensor product. We will view D as a subcategory
of Db(M). Let f : M → SUC(2) be the forgetful morphism. For every B ∈ D, the functor Perf(SUC(2))→
D, A 7→ f∗A⊗B has a right adjoint functor D → Db(SUC(2)) given by C 7→ Rf∗◦RHomM (B,C). According
to [Kuz08], in order to show that D is strongly crepant, we need to show that the identity functor on D is a
relative Serre functor for D over SUC(2). That is, we must give a functorial isomorphism

RHomSUC(2)(Rf∗ ◦RHomM (B,C),OSUC(2)) ∼= Rf∗ ◦RHomM (C,B)

for B,C ∈ D. By coherent duality for f , it is in fact sufficient to establish a functorial isomorphism

Rf∗ ◦RHomM (C,B ⊗ ωf [1]) ∼= Rf∗ ◦RHomM (C,B),

where ωf is the dualizing line bundle for f .
By Lemma 3.14, there exists a morphism γ : O → θ ⊗ Λ−1[1] in Db(Z◦) whose image under ζ∗ is an

isomorphism O → O. We pull back γ via the open immersion j : M → Z◦ to a morphism j∗γ : O → ωf [1]

on M . Indeed, ωf ∼= ωM ⊗ ω−1
SUC(2)

∼= j∗(θ ⊗Λ−1) by [Tha94, Section 5]. We will show that j∗γ induces a

stronger isomorphism

(3.3) R(ζ ◦ j)∗ ◦RHomM (C,B) ∼= R(ζ ◦ j)∗ ◦RHomM (C,B ⊗ ωf [1]).

By Corollary 3.4 and Lemma 3.10, the weights of objects B, C, and B ⊗ ωf [1] belong to the interval

[−b g−1
2 c, b

g−1
2 c+1], which, if g is even, has width smaller than the window width η = g for the immersion j.

The GIT construction of M is local over N, so the quantization theorem [HL15, Theorem 3.29] gives vertical
isomorphisms in the following commutative diagram:

R(ζ ◦ j)∗ ◦RHomM (C,B) R(ζ ◦ j)∗ ◦RHomM (C,B ⊗ ωf [1])

Rζ∗ ◦RHomZ◦(C,B) Rζ∗ ◦RHomZ◦(C,B ⊗ θ ⊗Λ−1[1])

∼= ∼=

The bottom horizontal morphism of this diagram is an isomorphism by the projection formula for the
morphism Z◦ → N and the fact that the morphism γ : O → θ⊗Λ−1[1] pushes forward to an isomorphism ζ∗γ.
It follows that the top horizontal morphism is also an isomorphism, proving (3.3). �
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Remark 3.9. For symmetric stacks X satisfying various assumptions, a noncommutative motive Dnc(X ) is
constructed in [Păd21, Section 5]. It categorifies the intersection cohomology of the coarse moduli space of X .
When g is even, Dnc(N) is the motive of D by its construction in [Păd21], since then g−1

2 is a half-integer.

Lemma 3.10. In the setup of Corollary 3.4, objects in subcategories i, ii, iii, iv have weights in [− g−1
2 , g−1

2 ].

Proof. The same calculation as the proof of Corollary 3.4 using Proposition 3.3. �

3.2. Proof of the Plain Weave. We require several lemmas, to be proved at the end of this section. All
mutations take place in Db(M) ∼= G ⊂ Db(Z◦).

Lemma 3.11. For 0 ≤ λ ≤ 2(g − 1), there is a mutation

(3.4)
〈
Λ−kF∨�λ−2k

〉
0≤k≤bλ2 c,λ−k≤g−1

−→
〈
Λ−kF∨�λ−2k

〉
0≤k≤bλ2 c,λ−k≤g−1

where the blocks are ordered by decreasing k on the left, and by increasing k on the right.

Lemma 3.12. For 0 ≤ 2k + 1 ≤ g − 1, we have 〈ΛkF∨�2k+1〉 ⊂ K and 〈Λk+1F∨�2k+1〉 ⊂ K∨.

Lemma 3.13 (cf. [Tev23, Theorem 6.3]). For ` = 0, 1 and ` ≤ k ≤ g−1
2 , let D` = D`g−1 ⊂ Db(M×Sym`C) as

in Notation 2.5. Let Φ : Db(Z◦)→ ⊥〈ΛkF∨�2k〉 be the semiorthogonal projector. Then Φ(〈Λ`−kD`〉) ⊂ K∨.

Lemma 3.14. In Db(Z◦), there exists a morphism O → θΛ−1[1] whose image under ζ∗ is an isomorphism
O → O. If T ⊂ ζ∗Db(N) is a full triangulated subcategory such that θΛ−1 ⊗T ⊂ ⊥T, there is a mutation

T θΛ−1 ⊗T

X T

where X ⊂ K.

i

IIaI IIb IIIa

iii

IIIb IV

I
iia'

II ''
iiia'

iia ii iiia

IIIa'
i ii iii

iiib iv

iv
IIIb' IV '

Figure 3. Modified Plain Weave in genus 5, cf. [Tev23, Figure 13].

Proof of Theorem 3.7. Denote by I, II, III, IV the megablocks in Theorem 2.10, regarded as subcategories
of G ⊂ Db(Z◦) as in Corollary 3.4. We proceed as illustrated in Figure 3: we take the blocks in i, ii, iii, iv,
and move them towards the center, making sure that all blocks in the way mutate into either K on the left
or K∨ on the right.

We begin with

IV =
〈
θ2Λb

g
2 c−kF∨�λ−2k

〉
g−1≤λ≤2(g−1)

λ−g+1≤k≤bλ2 c
.
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The blocks with λ = 2
⌊
g
2

⌋
form megablock iv from the statement (with m =

⌊
g
2

⌋
− k). If g is odd,

2
⌊
g
2

⌋
= g − 1, so these are the rightmost blocks in IV as in Figure 3; if g is even, the blocks with λ = g − 1

to the right of iv already lie in K∨ by Lemma 3.12.

Claim 3.15. For 2
⌊
g
2

⌋
< λ ≤ 2(g − 1) and λ− g + 1 ≤ k ≤

⌊
λ
2

⌋
, there is a mutation

θ2Λb
g
2 c−kF∨�λ−2k iv

iv X

where X ⊂ K∨.

Proof. Write A = 〈θ2Λb
g
2 c−kF∨�λ−2k〉. Suppose first that λ = 2k, so A = 〈θ2Λb

g
2 c−k〉. Take the block

B = 〈θ2ΛmF∨�2m〉 from iv with m = k −
⌊
g
2

⌋
and write 〈iv〉 = 〈B,B′〉. (Note that 0 ≤ m ≤

⌊
g−1

2

⌋
since

⌊
g
2

⌋
< k ≤ g − 1.) By Lemma 3.13, we mutate 〈A,B,B′〉 → 〈B,A′,B′〉 where A′ ⊂ K∨. Since

B′ ⊂ ζ∗Db(N), we see that A′ and B′ are fully orthogonal, so we move 〈B,A′,B′〉 → 〈B,B′,A′〉 = 〈iv,A′〉
without any further mutation.

Now suppose 2k < λ. Let B = 〈θ2Λm−1F∨�2m−2, θ2ΛmF∨�2m〉 ⊂ 〈iv〉, where m = λ−k−
⌊
g
2

⌋
. (We have

m > λ
2 −

⌊
g
2

⌋
≥ 0, so m− 1 ≥ 0, and m ≤ g − 1−

⌊
g
2

⌋
≤
⌊
g−1

2

⌋
.) Denote by F•�`tr = [F∨�` → Ker1−`F•�`]

the two-step smart truncation of the complex F•�` (see Notation 4.9 below). By [Tev23, Lemma 4.9,
Corollary 4.10], for every X ∈ A we have exact triangles K → Y → X → and H → Y → H ′ → where

Y ∈ 〈θ2Λb
g
2 c−kF•�λ−2k

tr 〉, K ∈ 〈θ2Λb
g
2 c−k−(λ−2k−1)〉 = 〈θ2Λ1−m〉, H ∈ 〈θ2Λ−m〉, and H ′ ∈ 〈θ2Λ1−mD1〉.

It follows from Lemma 3.13 that the images of K,H and H ′ under the semiorthogonal projector onto ⊥B
lie in K∨, so the same is true for X. Writing 〈iv〉 = 〈B,B′〉 as above, this gives mutations 〈A,B,B′〉 →
〈B,A′,B′〉 → 〈B,B′,A′〉 = 〈iv,A′〉 with A′ ⊂ K∨, as claimed. �

By applying this mutation to each block in IV with g ≤ λ ≤ 2(g − 1) in sequence from right to left, we
obtain 〈IV〉 = 〈iv, IV′〉 where IV′ ⊂ K∨.

The megablock

I =
〈
θ−1Λb

g−2
2 c−kF∨�λ−2k

〉
0≤λ≤g−2

0≤k≤bλ2 c
on the left is treated similarly, but the process is mirrored. Megablock i appears as the blocks with λ =
2
⌊
g−2

2

⌋
. If g is odd, there are additional blocks with λ = g − 2 to the left of the megablock i, but they

already lie in K by Lemma 3.12, so we ignore them as above. We apply the mutation of Lemma 3.11 to
all blocks in I; the blocks are still ordered by decreasing λ, but now by increasing k with F∨�λ−2k in place
of F∨�λ−2k.

Claim 3.16. For 0 ≤ λ < 2
⌊
g−2

2

⌋
and 0 ≤ k ≤

⌊
λ
2

⌋
, there is a mutation

i θ−1Λb
g−2
2 c−kF∨�λ−2k

X i

where X ⊂ K.

Proof. We prove instead the dual mutation. By [Tev23, Lemma 3.4], we have

(3.5) 〈θxΛyF∨�z〉∨ = 〈θ−xΛ−y(F∨�z)∨〉 = 〈θ−xΛz−yF∨�z〉

Hence it suffices to give a mutation 〈A, i∨〉 → 〈i∨,A′〉 where A = 〈θΛλ−k−b g−2
2 cF∨�λ−2k〉, A′ ⊂ K∨, and

i∨ = 〈θΛmF∨�2m〉0≤m≤b g−2
2 c ordered by decreasing m.

From here, the proof is the same as for Claim 3.15. If λ = 2k, we let B = 〈θΛmF∨�2m〉 with m =
⌊
g−2

2

⌋
−k

and proceed as above. We need only check that 0 ≤ m ≤
⌊
g−2

2

⌋
, which is clear. Similarly, if 2k < λ, it

suffices to check that 1 ≤ m ≤
⌊
g−2

2

⌋
where m = (λ − 2k) −

(
λ− k −

⌊
g−2

2

⌋)
=
⌊
g−2

2

⌋
− k, which is again

clear. �
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We thus obtain I = 〈I′, i〉 where I′ ⊂ K. Next, let

IIa =
〈
Λb

g−2
2 c−kF∨�λ−2k

〉
g−1≤λ≤2(g−2)

λ−g+2≤k≤bλ2 c
, IIb =

〈
Λb

g−2
2 c−kF∨�λ−2k

〉
0≤λ≤g−2
0≤k≤bλ2 c

,

so II = 〈IIa, IIb〉. Then IIb = θ ⊗ I and ii = θ ⊗ i, so IIb = 〈II′b, ii〉 where II′b = θ ⊗ I′ ⊂ K. On the other
hand, let

iia =
〈
Λm−1F∨�2m

〉
0≤m≤b g−3

2 c
ordered by increasing m, which are the blocks in IIa with λ = 2

⌊
g
2

⌋
(where m =

⌊
g
2

⌋
−k). If g is even, there

are blocks in IIa with λ = g − 1 to the right of iia, but they are contained in K by Lemma 3.12.

Claim 3.17. For 2
⌊
g
2

⌋
< λ ≤ 2(g − 2) and λ− g + 2 ≤ k ≤

⌊
λ
2

⌋
, there is a mutation

Λb
g−2
2 c−kF∨�λ−2k iia

iia X

where X ⊂ K.

Proof. The proof is the same as Claim 3.15, but with everything tensored with Λ−1⊗θ−2 and with a smaller
range of λ, k, and m. We need only check that 0 ≤ m ≤

⌊
g−3

2

⌋
with m > 0 if 2k < λ, where m = λ−k−

⌊
g
2

⌋
.

Indeed, we have 0 ≤ λ
2 −

⌊
g
2

⌋
≤ m ≤ g − 2−

⌊
g
2

⌋
≤
⌊
g−3

2

⌋
with λ

2 −
⌊
g
2

⌋
< m if 2k < λ. �

Hence we can write IIa = 〈iia, II′a〉 with II′a ⊂ K. Combining with IIb gives II = 〈iia, II′, ii〉 where
II′ = 〈II′a, II

′
b〉 ⊂ K.

Next, we have III = 〈IIIa, iii, IIIb〉, where

IIIa =
〈
θΛb

g
2 c−kF∨�λ−2k

〉
2b g2 c<λ≤2(g−1)

λ−g+1≤k≤bλ2 c

, IIIb =
〈
θΛb

g
2 c−kF∨�λ−2k

〉
0≤λ<2b g2 c
0≤k≤bλ2 c

.

Let iiia =
〈
θΛm+1F∨�2m

〉
0≤m≤b g−3

2 c be the blocks with λ = 2
⌊
g+2

2

⌋
. The blocks in IIIa to the right of

iiia have λ = 2
⌊
g
2

⌋
+ 1 and lie in K already by Lemma 3.12. The blocks to the left of iiia are processed

exactly as with IIa above (make the substitution λ′ = λ − 2, k′ = k − 1 and use Claim 3.17). Hence
IIIa = 〈iiia, III′a〉 with III′a ⊂ K. Similarly, let iiib =

〈
θΛm−1F∨�2m

〉
0≤m≤b g−2

2 c be the blocks from IIIb

with λ = 2
⌊
g−2

2

⌋
. The blocks in IIIb with λ = 2

⌊
g
2

⌋
− 1 lie in K∨; the other blocks are exactly the blocks

in I with λ ≤ 2 bg − 2c 2, tensored by θ2Λ. Then Claim 3.16 allows us to write IIIb = 〈III′b, iiib〉 with
III′b ⊂ K∨.

To summarize, we have a semiorthogonal decomposition

G =
〈
I′, i, iia, II

′, ii, iiia, III
′
a, iii, III

′
b, iiib, iv, IV

′〉
where I′, II′, III′a ⊂ K and III′b, IV

′ ⊂ K∨. It remains to mutate iia, iiia, and iiib. Observe that the blocks
in iia are exactly the blocks from i tensored by θΛ−1. One by one, we mutate each block θΛ−1 ⊗ T from
iia past the corresponding block from T in ii using Lemma 3.14; the resulting block T′ ⊂ K is both left and
right orthogonal to T⊥ ∩ i, so we may move it to the left of i without further mutation. Hence we obtain
〈i, iia〉 = 〈ii′a, i〉 with ii′a ⊂ K. Similarly, iiia = θΛ−1⊗ ii, so 〈ii, iiia〉 = 〈iii′a, ii〉 with iii′a ⊂ K. On the other
side, each block in iiib is a block from iv tensored with θ−1Λ. The dual of Lemma 3.14 allows us to mutate
〈θ−1Λ⊗T,T〉 → 〈T,T′〉 with T′ ⊂ K∨, which gives 〈iiib, iv〉 = 〈iv, iii′b〉 with iii′b ⊂ K∨.

Put together, we have

G =
〈
I′, ii′a, i, II

′, iii′a, ii, III
′
a, iii, III

′
b, iv, iii

′
b, IV

′〉 ,
where all primed subcategories to the left (resp. right) of iii lie in K (resp. K∨). It follows that ii and III′a
are both left and right orthogonal; similarly, i is orthogonal to II′, iii′a, and III′a, while iv is orthogonal to
III′b. Thus we may move i, ii, and iv to the center without any mutations, giving G = 〈L, i, ii, iii, iv,R〉
where L = 〈I′, ii′a, II

′, iii′a, III
′
a〉 ⊂ K and R = 〈III′b, iii

′
b, IV

′〉 ⊂ K∨. This completes the proof. �
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Proof of Lemma 3.11. Since all blocks on either side of (3.4) lie in G, it suffices to perform the mutation in
Db(M). We begin with the semiorthogonal decomposition of Db(M) from Lemma 2.11:

(3.6)

〈〈
Λ−kF∨�λ−2k

〉
λ−k≤g−2
λ−2k,k≥0

,
〈
θΛ1−kF∨�λ−2k

〉
λ−k≤g−1
λ−2k,k≥0

,
〈
θ2Λ1−kF∨�λ−2k

〉
λ−k≤g−1
λ−2k,k≥0

〉
,

ordered by decreasing λ, then decreasing k. Using (3.5), we obtain a dual semiorthogonal decomposition:〈〈
θ−2Λλ−k−1F∨�λ−2k

〉
λ−k≤g−1
λ−2k,k≥0

,
〈
θ−1Λλ−k−1F∨�λ−2k

〉
λ−k≤g−1
λ−2k,k≥0

,
〈
Λλ−kF∨�λ−2k

〉
λ−k≤g−2
λ−2k,k≥0

〉
,

ordered by increasing λ, then increasing k. We tensor the rightmost megablock by ωM = Λ−1θ−3, moving
it to the left, then tensor everything by θ3Λ3−g to obtain:〈〈

Λλ−k−g+2F∨�λ−2k
〉
λ−k≤g−2
λ−2k,k≥0

〈
θΛλ−k−g+2F∨�λ−2k

〉
λ−k≤g−1
λ−2k,k≥0

,
〈
θ2Λλ−k−g+2F∨�λ−2k

〉
λ−k≤g−1
λ−2k,k≥0

〉
,

ordered by decreasing λ, then increasing k. Finally, we make the change of variables λ′ = 2(g − 2) − λ,
k′ = k − λ+ g − 2 in the first megablock and λ′ = 2(g − 1)− λ, k′ = k − λ+ g − 1 in the others to obtain

(3.7)

〈〈
Λ−k

′
F∨�λ

′−2k′
〉
λ′−k′≤g−2
λ′−2k′,k′≥0

,
〈
θΛ1−k′F∨�λ

′−2k′
〉
λ′−k′≤g−1
λ′−2k′,k′≥0

,
〈
θ2Λ1−k′F∨�λ

′−2k′
〉
λ′−k′≤g−1
λ′−2k′,k′≥0

〉
ordered by decreasing λ′, then increasing k′. Denote by A, B, C the megablocks of (3.6), and A, B, C the
megablocks of (3.7).

Claim 3.18. We have B = B.

Proof. Since (3.6) and (3.7) are both full semiorthogonal decompostions of Db(M), it suffices to show that

B ⊂ ⊥A ∩C
⊥

and B ⊂ ⊥A ∩B⊥. By [TT21, Lemma 10.2], it suffices to check that

(3.8) RHom
(
θΛ1−k′F∨�λ

′−2k′

D′ ,Λ1−kF∨�λ−2k
D

)
= RHom

(
θΛ1−kF∨�λ−2k

D ,Λ1−k′F∨�λ
′−2k′

D′

)
= 0

for any D ∈ Symλ−2kC, D′ ∈ Symλ′−2k′C, where λ, k (likewise λ′, k′) satisfy k ≥ 0, λ − 2k ≥ 0, and

λ− k ≤ g − 1. Using F∨�λ−2k
D = Λ2k−λF�λ−2k and F∨�λ−2k

D = Λ2k−λF�λ−2k, (3.8) becomes

RΓ
(
θ−1Λλ′−k′−λ+k(F�λ′−2k′

D′ )∨F�λ−2k
D

)
= RΓ

(
θ−1Λλ−k−λ′+k′(F�λ−2k

D )∨F�λ′−2k′

D′

)
= 0.

Recalling that θ = O(1, g − 1), this follows from [TT21, Theorem 4.1, Remark 4.2] once we verify that
λ−2k−g < λ−k−(λ′−k′) < g−λ+2k′. Indeed, −k−g < −(g−1) ≤ −(λ′−k′) and λ−k ≤ g−1 < g+k′. �

Hence θ−1Λ−1B = θ−1Λ−1B. Let for 0 ≤ λ ≤ 2(g − 1), let Bλ =
〈
Λ−kF∨�λ−2k

〉
max(0,λ−g+1)≤k≤bλ/2c

(ordered by decreasing k), so θ−1Λ−1B = 〈B2(g−1), . . . ,B0〉; likewise, θ−1Λ−1B = 〈B2(g−1), . . . ,B0〉.

Claim 3.19. For 0 ≤ λ ≤ 2(g − 1), we have Bλ = Bλ.

Proof. It suffices to show that Bλ ⊂ B
⊥
λ′ for λ < λ′ and Bλ ⊂ ⊥Bλ′ for λ > λ′. For the first, we must check

RΓ
(
Λλ−k−λ′+k′(F�λ−2k

D )∨F�λ′−2k′

D′

)
= 0

for any max(0, λ− g+ 1) ≤ k ≤ bλ/2c, max(0, λ′ − g+ 1) ≤ k′ ≤ bλ′/2c, D ∈ Symλ−2kC, D′ ∈ Symλ′−2k′C.
This follows from [TT21, Lemma 5.4, Remark 5.7]: we have λ−2k, λ′−2k′ ≤ 2g−1 and 2(λ−k−λ′+k′) <
λ− 2k− λ′ + 2k′ immediately, and λ− 2k− g < λ− k− λ′ + k′ < g − λ+ 2k′ + 1 as in the preceding claim.
The second containment is proved analogously. �

It remains to show that the blocks of Bλ and Bλ are related by a mutation. If λ > g − 1, then Bλ =
Λg−1−λB2(g−1)−λ, so we may assume 0 ≤ λ ≤ g− 1. Proceed by induction on λ, with λ = 0, 1 being trivial.

Assume we have the mutation Bλ−2 → Bλ−2. Then Bλ = 〈Λ−1Bλ−2,F∨�λ〉 and Bλ = 〈F∨�λ,Λ−1Bλ−2〉.
Projecting 〈F∨�λ〉 onto (Λ−1Bλ−2)⊥ = (Λ−1Bλ−2)⊥ and mutating Bλ−2 → Bλ−2 completes the proof. �
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Proof of Lemma 3.12. Let X ∈ 〈ΛkF∨�2k+1〉. Then X is a pullback of an object in Db(N ) of weight −1
with respect to Gm. By Proposition 3.2(a), it suffices to show that Rζ∗Y = 0 for every object Y ∈ Db(A◦)
of the form Y =

∧k
α∗B∗ ⊗L α∗Z, where k = 0, . . . , b and Z ∈ Db(N ) is an object of weight −1. Since the

claim is local on N, we can replace Y with OA◦(s), where s = −1, . . . ,−(b+ 1). Since RΓ(Pa−1,O(−s)) = 0
for s = 1, . . . , a− 1 and b+ 1 = a− 1, the first statement follows. The second follows from Remark 3.6. �

Proof of Lemma 3.13. We mimic the proof of [Tev23, Theorem 6.3]. As we will need to work in both Db(M)
and Db(Z◦), we denote the windows embedding by ι : Db(M) → G ⊂ Db(Z◦). As in [Tev23, Lemma 6.7],
it suffices to show that the morphism

ζ∗(Λ
−1 ⊗ ι(Λ`−kOM(−D)))→ ζ∗(Λ

−1 ⊗ ι ◦ P ◦ PL(Λ`−kOM(−D)))

is an isomorphism for any D ∈ Sym`C, where P : Db(SymkC) → Db(M) is the Fourier–Mukai functor
with kernel ΛkF∨�2k, PL is its left adjoint (the Fourier–Mukai functor with kernel (ΛkF∨�2k)∨ ⊗ ω•M
[Huy06, Proposition 5.9]), M(−D) ⊂ M denotes the locus of stable pairs (F, s) with s|D = 0, and the
morphism is induced by the unit of adjunction Id =⇒ P ◦ PL. We compute both sides of this morphism.

Claim 3.20. We have P ◦ PL(Λ`−kOM(−D)) ∼= RπM∗(Λ
kF∨(−D)�2k)[2`], where πM : M × SymkC →M is

the projection.

Proof. Notice first that by [Huy06, Corollary 3.40] and [Tha94, 5.7, 6.1], we have

O∨M(−D) = ωM(−D) ⊗ ω−1
M [−2`] = Λ`OM(−D)[−2`]

in Db(M). We have

PL(Λ`−kOM(−D)) = RπSymkC∗((Λ
2kF∨�2kOM(−D))

∨ω•M )[2`]

∼=
(
RπSymkC∗(F(−D)�2k|M(−D)×SymkC)

)∨
⊗O(−D)�2k[2`]

by coherent duality and the projection formula. Since F(−D)|M(−D)×C is the universal family on M(−D)×
C, we have PL(Λ`−kOM(−D)) ∼= O(−D)�2k[2`] by [TT21, Corollary 7.5]. Applying P proves the claim. �

Hence (after shifting by −2` for convenience) we have a morphism

(3.9) Λ−kO∨M(−D) → RπM∗(Λ
kF∨(−D)�2k),

which is unique up to scalar as in [Tev23, Remark 6.10].
It remains to show that applying the functor ζ∗(Λ

−1 ⊗ ι(−)) to (3.9) yields an isomorphism. Since
RπZ◦∗(Λ

kF∨(−D)�2k) ∈ Db(Z◦) has weights in the range [−k, k] ⊆ [−
⌊
g
2

⌋
, g−

⌊
g
2

⌋
) and restricts via j∗ to

RπM∗(Λ
kF∨(−D)�2k), we have

ι(RπM∗(Λ
kF∨(−D)�2k)) = RπZ◦∗(Λ

kF∨(−D)�2k).

On the other hand, we claim that ι(Λ−kO∨M(−D)) = Λ−kO∨Z◦(−D) for ` = 0, 1, where Z◦(−D) ⊂ Z◦ denotes

the closed substack of pairs (F, s) with s|D = 0. If ` = 0, this is clear, since Λ−k ∈ G. If ` = 1, so D = x ∈ C,
then Z◦(−x) is the codimension-2 vanishing locus of the canonical section of Fx. We have a Koszul resolution
OZ◦(−D)

∼= [Λ−1 → F∨x → O], so OZ◦(−D) has weights in the range [0, 1]. Since [k− 1, k] ⊆ [−
⌊
g
2

⌋
, g−

⌊
g
2

⌋
)

and j∗OZ◦(−p) = OM(−p), the claim holds. Thus applying ι to (3.9) gives

(3.10) Λ−kO∨Z◦(−D) → RπZ◦∗(Λ
kF∨(−D)�2k),

again unique up to scalar. Moreover, this morphism is not zero: if it were, its cone Φ(Λ−kO∨Z◦(−D))[1] would

have RπZ◦∗(Λ
kF∨(−D)�2k) ∈ 〈ΛkF�2k〉 as a direct summand, which is absurd.

By Proposition 3.2(c), applying the functor (θ⊗Rζ∗(Λ−1⊗−))∨ ∼= Rζ∗((−)∨) to (3.10) gives a morphism

(3.11) Rζ∗

(
[RπZ◦∗(Λ

kF∨(−D)�2k)]∨
)
→ Rζ∗(Λ

kOZ◦(−D)),

which we must show is an isomorphism. In fact, it suffices to show that the source and target of (3.11) are
isomorphic. Indeed, write (3.10) as X → Y , where Y ∼= Lζ∗Z (so Rζ∗(Y

∨) ∼= Z∨ by the projection formula).
Then C ∼= Hom(X,Y ) ∼= Hom(Lζ∗Z∨, X∨) ∼= Hom(Rζ∗(Y

∨), Rζ∗(X
∨)), so (3.11) is nonzero and unique up

to scalar.
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Recall that N is isomorphic to the moduli stack of rank 2 vector bundles on C with determinant Λ(−2D),
with universal family F(−D) on N ×C. As in Notation 3.1, we write RπN∗(F(−D)) = [A′ → B′], where A′
and B′ are vector bundles on N with Gm-weight 1 and ranks a′, b′, where a′−b′ = 2−2`. A polystable vector
bundle of the form O(D)⊕O(D), where D is an effective divisor of degree g− l, has at least a 2-dimensional
space of global sections, so a′ ≥ 2. Writing α : Z◦ → N so that ζ = ρ ◦ α, we have

RπZ◦∗(Λ
kF∨(−D)�2k) ∼= Λ−k ⊗RπZ◦∗(α× id)∗(F(−D)�2k)

∼= α∗(Λ−k ⊗RπZ◦∗(F(−D)�2k))

∼= α∗(Λ−kSym2k[A′ → B′]).

(For the last equality, see the proof of [Tev23, Lemma 6.13]). Hence the left hand side of (3.11) is the descent

of ΛkSym2k[A′ → B′]∨ to N (note that this has Gm-weight 0). Analogous to (3.1), we have a diagram

Z(−D) A′ N

Z◦(−D) A′◦ N.

α′

ρ

ζ′

The right hand side of (3.11) is Rζ ′∗(Λ
k). Hence it suffices to prove:

Claim 3.21. We have Rζ ′∗(Λ
k) ∼= ΛkSym2k[A′ → B′]∨.

As in Proposition 3.2(a), we have a Koszul resolution in Db(A′◦):

OZ◦(−D)
∼=

 b′∧
α′∗B′∨|A′◦ → . . .→ α′∗B′∨|A′◦ → OA′◦

 .
As above, ζ ′ : A′◦ → N is a twisted projective bundle with fiber Pa′−1. It follows that

Rζ ′∗(Λ
k) ∼= Rζ∗

 b′∧
α′∗B′∨|A′◦ ⊗Λk → . . .→ α′∗B′∨|A′◦ ⊗Λk → OA′◦ ⊗Λk

 .
We claim that Rsζ ′∗[

∧m
α′∗B′∨|A′◦⊗Λk] = 0 for all s when 2k < m ≤ b′ and for s > 0 when 2k ≥ m. Indeed,

we can work locally on N, so α′∗B′ can be replaced by Oζ′(1)⊕b
′
. Recall that Λ has Gm-weight 2. Note that

RΓ(Pa′−1,O(2k −m)) = 0 for 2k < m ≤ b′, since then −a′ = 2`− b′ − 2 < 2k −m < 0. It follows that

Rζ ′∗(Λ
k) ∼=

[
ζ∗

2k∧
α′∗B′∨|A′◦ ⊗Λk → . . .→ ζ∗α

′∗B′∨|A′◦ ⊗Λk → ζ∗OA′◦ ⊗Λk

]
(underived pushforwards, since higher cohomologies vanish). Since α′∗OA′◦ ∼= Sym•A′∨ (recall that a′ ≥ 2),
computing the zero-weight part gives

Rζ ′∗(Λ
k) ∼=

[
Λk ⊗

2k∧
B′∨ → . . .→ Λk ⊗ B′∨ ⊗ Symk−1A′∨ → Λk ⊗ SymkA′∨

]
,

which is indeed isomorphic to ΛkSym2k[A′ → B′]∨.
�

Proof of Lemma 3.14. By Propositions 3.2(b) and 3.2(c), coherent duality gives

Rζ∗RHom(O, θ ⊗Λ−1[1]) ∼= RHom(O,O) ∼= O.

Applying R0Γ gives a nonzero morphism O → θ ⊗Λ−1[1] whose image under ζ∗ is an isomorphism O → O
by construction. We complete this morphism to an exact triangle O → θ ⊗Λ−1[1] → K →, where K ∈ K.
Tensoring with objects of T gives the required mutation.

�



16 ELIAS SINK AND JENIA TEVELEV

4. Basic weaving patterns

In this section, we prove the various technical lemmas used in Section 2. The main statements and their
proofs are taken from [Tev23] (where they are proved only for d = 2g − 1) with minor modifications and
some additional details. We include them here mainly to verify that the numerical bookkeeping required
to apply Theorem 4.4 below remains valid in any degree d ≤ 2g; we omit those proofs with no dependence
on d. Let v =

⌊
d−1

2

⌋
and Mi = Mi(d). We write PK for the Fourier–Mukai functor with kernel K.

4.1. Cross Warp. Closely following [Tev23, Section 4], we prove the following:

Theorem 4.1 (Basic Cross Warp, cf. [Tev23, Theorem 3.2]). For 0 ≤ k ≤ i ≤ v, we have:

(a) PF∨�k : Db(SymkC)→ Db(Mi) is fully faithful.

(b) PDki : Db(SymkC)→ Db(Mi) is fully faithful.

(c) If k ≤ i − 1, then ι〈Dki−1〉 = 〈Dki 〉 where ι is the windows embedding of Proposition 2.7. Moreover,

objects in 〈Dki−1〉 descend from objects with weights in the range [0, k] for this wall crossing.

(d) There is an admissible subcategory of Db(Mi) with semiorthogonal decompositions

〈F∨�k−1, . . . ,O,Dki ,Dk−1
i Λ−1, . . . ,Λ−k〉

and

〈Dk−1
i Λ−1, . . . ,Λ−k,F∨�k,F∨�k−1, . . . ,O〉

related by the mutation in Figure 1.

Remark 4.2. It follows from [TT21, Section 3] that ι〈F∨�k〉 = 〈F∨�k〉 ⊂ Db(Mi) for k < i, and that
objects in this subcategory have weights in the range [0, k].

Corollary 4.3. 〈Dki 〉 is contained in the subcategory generated by 〈F∨�`Λ−m〉 with 0 ≤ ` ≤ k, 0 ≤ m ≤ k−`.

Proof. Theorem 4.1(d) and induction on k. �

Proof of Theorem 4.1(a). Note that since F∨�k ∼= (Λ−k �Λ−k) ⊗ F�k (see [Tev23, Lemma 3.4]), we may
equivalently prove that PF�k is fully faithful. The case d ≤ 2g − 1 is [TT21, Theorem 9.2], and the proof
for d = 2g is the same. Indeed, since [TT21, Cor. 8.2, Cor. 8.4, Thm. 9.6] are proved for all d ≤ 2g + 1, we
only need to verify that k ≤ 3g− 2i− 2 for k ≤ i. Since k ≤ g− 1, we have 3g− 2i− 2 ≥ g, so this holds. �

The other parts of Theorem 4.1 will be proved shortly. We require the vanishing theorems for tensor
vector bundles proved in [TT21].

Theorem 4.4 ([Tev23, Theorems 3.8, 3.9, 3.10]). Let d′, j, a, b, and t be integers with 2 < d′ ≤ 2g + 1,

1 ≤ j ≤
⌊
d′−1

2

⌋
, and let D ∈ SymaC, D′ ∈ SymbC.

(a) If a, b ≤ d′ + g − 2j − 1, t /∈ [0, a], and a− j − 1 < t < d′ + g − 2j − 1− b, then

RΓ
(
Mj(d

′), (F�a
D )∨ ⊗F�b

D′ ⊗Λt
)

= 0

and, if D =
∑
αixi,

RΓ

(
Mj(d

′),
⊗
i

(F∨xi)
⊗αi ⊗F�b

D′ ⊗Λt

)
= 0.

(b) If a < t < d′ + g − 2j − 1− b, then

RΓ
(
Mj(d

′), (F�a
D )∨ ⊗F�b

D′ ⊗Λt
)

= RΓ
(
Mj(d

′), (F�a
D )∨ ⊗F�b

D′ ⊗Λt
)

= 0.

Moreover, the same vanishing holds with j = 0 for any d′ > 0.

(c) If a ≤ j, b < d′ + g − 2j − 1, and D 6≤ D′ (for example, a > b), then

RΓ
(
Mj(d

′), (F�a
D )∨ ⊗F�b

D′

)
= 0.
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Remark 4.5. Theorem 4.4(c) is not completely proved in [TT21,Tev23] for d′ = 2g, 2g + 1. It comes from
[TT21, Theorem 9.6], which is proved under the inductive assumption PF�k is fully faithful for k < a. This
is true for d′ = 2g by Theorem 4.1(a), and for d′ = 2g + 1 by the same argument (since then a ≤ i ≤ g, so
k ≤ g − 1 = d′ + g − 2g − 2).

Conjecture 4.6. Theorem 4.4 holds for any d′ > 2 and j ≤ v with 3j ≤ d′ + g − 1.

Remark 4.7. We expect this conjecture would follow from a careful analysis of the proofs given in [TT21].
The main purpose of the hypothesis d′ ≤ 2g+1 is to ensure that 3j ≤ d′+g−1 (needed for calculations using
windows) for all j ≤ b(d′ − 1)/2c; one needs to check that it is not needed otherwise (e.g., for inequalities
related to ample cones).

Lemma 4.8 (cf. [Tev23, Lemma 4.1]). For 1 ≤ k ≤ i, Db(Mi) contains admissible subcategories

〈F∨�k−1, . . . ,F∨,O,Λ−k〉 and 〈Λ−k,F∨�k, . . . ,F∨,O〉.

Proof. All blocks are admissible by Theorem 4.1(a). By [TT21, Lemma 10.2], it suffices to check semi-

orthogonality on skycraper sheaves of closed points D ∈ SymaC, D′ ∈ SymbC. For b < a ≤ k, we have
b < v < d+ g − 2i− 1 since v < d+g−1

3 . Thus

RHom(F∨�bD′ ,F∨�aD ) = RHom(F�a
D ,F�b

D′ ) = 0

by [Tev23, Lemma 3.4] and Theorem 4.4(c). Next, for 0 ≤ b ≤ k, we have

0, l ≤ i < d+ g − 2i− 1, −k 6∈ [0, 0], −i− 1 < −k < d+ g − 2i− 1− b,

so

RHom(F∨�bD′ ,Λ−k) = RΓ(Mi,F�b
D′ ⊗Λ−k) = 0

by Theorem 4.4(a). Finally, for 0 ≤ a < k, we have a < k ≤ v < d+ g − 2i− 1, so

RHom(Λ−k,F∨�aD ) = RΓ(Mi, (F�a
D )∨ ⊗Λk) = 0

by Theorem 4.4(b). �

We introduce the following complexes on SymkC × Mi, which will allow us to break the mutation of
Theorem 4.1(d) into two stages (Lemmas 4.13 and 4.14):

Notation 4.9 ([Tev23, Definitions 4.2 and 4.5]). Let F• = [F∨ → O] ∈ Db(C ×Mi), with O in degree 0
and the map given by contraction with the universal section of F . Let

F•�k = τSk∗ (π∗1F•⊗ · · ·⊗π∗kF• ⊗ sgn)

where τ : Ck → SymkC is the quotient, π` : Ck → C are the projections, and sgn is the sign representation
of Sk.

We prove parts (b), (c), and (d) Theorem 4.1 by induction on k. The following lemmas are proved for
each k as part of the same induction.

Lemma 4.10. For 0 ≤ ` ≤ k, 0 ≤ m < k and X, Y skyscraper sheaves at D ∈ Sym`C, D′ ∈ SymmC,
respectively,

(4.1) RHom(PF∨�`(X),PDmi Λm−k(Y )) = 0

and

(4.2) RHom(PD`iΛ`−k(X),PF∨�m(Y )) = 0.

Proof. We have

RΓ

(
Mi−m(Λ(−2D′)),

(
F∨�`D

)∨
Λm−k

)
= RΓ

(
Mi−m(d− 2m),F�`

D Λm−k
)

= 0

by Theorem 4.4(a). Indeed, we have

0, ` ≤ v < d+ g − 2i− 1, m− k 6∈ [0, 0], −i+m− 1 < m− k < d+ g − 2i− 1− `.
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This proves (4.1). For (4.2), we have ωMi |Mi−`(d−2`) = O(−3,−d− g + 4 + 3`) = ωMi−`(d−2`)Λ
−`, so

RHom
(
F∨�mD′ ,OMi−`(d−2`)Λ

`−kωMi

)
= RΓ

(
Mi−`(d− 2`),F�m

D′ Λ−kωMi−`(d−2`)

)
= RΓ

(
Mi−`(d− 2`),

(
F�m
D′

)∨
Λk

)
[. . . ].

by Serre duality (we suppress the shift in degree). This vanishes by Theorem 4.4(b), as m < k < 3g− 2i− 1
(note that either j > 0 and d′ > 2, or j = 0 and d′ > 0). (4.2) then follows from Serre duality. �

Remark 4.11. Since PF∨�` and PDmi Λm−k(Y )) are fully faithful by Theorem 4.1(a) and the inductive

hypothesis, this proves (4.1) for any X ∈ Db(Sym`C), Y ∈ Db(Sym`C) by [TT21, Lemma 10.2]. The same
is true for (4.2) with ` < k.

Lemma 4.12 (cf. [Tev23, Corollary 4.13]). There exist Gk, Hk ∈ Db(SymkC × Mi) such that for all

X ∈ Db(SymkC), we have PGk(X) ∈ 〈F∨�k−1, . . . ,F∨,O〉, PHk(X) ∈ 〈Dk−1
i Λ−1, . . . ,D1

iΛ
1−k,Λ−k〉, and

exact triangles

(4.3) PGk(X)→ PF•�k(X)→ PF∨�k(X)[k]→
and

(4.4) PHk(X)→ PF•�k(X)→ PDki (X(−B/2))→

where B ⊂ SymkC is the diagonal divisor.

Proof. The proofs of Lemma 4.7 through Corollary 4.13 in [Tev23] carry over to any d without change. �

Lemma 4.13 (cf. [Tev23, Lemma 4.14]). PF•�k is fully faithful and there is a mutation

〈F∨�k,F∨�k−1, . . . ,O〉 → 〈F∨�k−1, . . . ,O,F•�k〉.

Proof. Applying RHom(−,PF∨�m(Y )) to (4.4) and using (4.2) gives

(4.5) RHom(PF•�k(X),PF∨�m(Y )) = 0

for m < k and X,Y skyscraper sheaves (note RHom(PHk(X),PF∨�m(Y )) = 0 by Remark 4.11). Then

RHom(PF•�k(X),PF•�k(Y )) = RHom(PF•�k(X),PF∨�k(Y )[k])

= RHom(PF∨�k(X)[k],PF∨�k(Y )[k]) = RHom(X,Y )

by (4.3), (4.5), and Lemma 4.8. By the Bondal–Orlov criterion, this proves full faithfulness. Lemma 4.8 and
(4.5) give semiorthogonality, and (4.3) yields the claimed mutation. �

Lemma 4.14. PDki is fully faithful and there is a mutation

〈Dk−1
i Λ−1, . . . ,Λ−k,F•�k〉 → 〈Dki ,Dk−1

i Λ−1, . . . ,Λ−k〉.

Proof. We show

(4.6) RHom(PF•�k(X),PDmi Λm−k(Y )) = 0

and

(4.7) RHom(PDmi Λm−k(Y ),PDki (X)) = 0

for m < k and X,Y skyscraper sheaves. (4.6) follows from (4.1) and (4.3). By the inductive hypothesis
Theorem 4.1(d) and induction on m, it suffices to prove (4.7) that

0 = RHom
(
F∨�bD′Λ−t,OMi−k(d−2k)

)
= RΓ

(
Mi−k(d− 2k),F�b

D′Λ
t
)

for 0 ≤ b < k, 0 < t ≤ k − b, D ∈ SymkC, D′ ∈ SymbC (cf. Corollary 4.3). Since k ≤ i < d+ g − 2i− 1, we
have 0 < t < d+ g − 2i− 1− b, so the required vanishing follows from Theorem 4.4(b).

To prove full faithfulness, we compute

RHom(PDki (X),PDki (Y )) = RHom(PF•�k(X(B/2)),PDki (Y ))

= RHom(PF•�k(X(B/2)),PF•�k(Y (B/2))) = RHom(X,Y )
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F∨�k−1 . . . O Dki Dk−1
i Λ−1 . . . Λ−k

F•�k

Dk−1
i Λ−1 . . . Λ−k F∨�k F∨�k−1 . . . O

Figure 4. The mutation of Theorem 4.1(d) in two steps, cf. [Tev23, Figure 9].

by (4.4), (4.7), (4.6), and Lemma 4.13. Semiorthonality then follows from (4.6) and (4.7), together with the
inductive hypothesis. Finally, (4.4) gives the required mutation. �

Proof of Theorem 4.1. We proved 4.1(a) above and 4.1(b) in Lemma 4.14. 4.1(d) follows from Lemmas 4.10,
4.13 and 4.14, as depicted in Figure 4. Finally, 4.1(c) follows from 4.1(d) and the inductive hypothesis.
Indeed, we have ι〈F∨�`〉 = 〈F∨�`〉 for 0 ≤ ` ≤ k by Remark 4.2 and ι〈Dmi−1Λ

m−k〉 = 〈Dmi Λm−k〉 by the
inductive hypothesis (recall that Λ has weight −1). Performing the mutation of 4.1(d), embedding via ι, and
undoing the mutation on the other side shows that ι〈Dki−1〉 = 〈Dki 〉. It is clear from the bottom decomposition

that the entire subcategory has weights in the range [0, k], so this holds for 〈Dki−1〉 a fortiori. �

4.2. Farey Twill. We now turn to the orthogonalities and mutations required to implement the Farey Twill.

Recall that for integers k, s with 0 ≤ k ≤ v and t ∈ [k, v + 1), we define Dk,st = Dkbtc ⊗ L
k,s
t where

Lk,st =

{
O(s, sk) k = btc
O
(⌊

s
t−k

⌋
, s+

⌊
s
t−k

⌋
(k − 1)

)
k < btc .

Lemma 4.15 (cf. [Tev23, Lemma 2.7]). For k ≤ i− 1 and ε� 0, we have ι〈Dk,si−ε〉 = 〈Dk,si 〉.

Proof. When i = 1, ι is simply pullback under M1 → M0, so ι〈D0,s
1−ε)〉 = 〈ι(O(s))〉 = 〈D0,s

1 〉. Suppose
i > 1. By [TT21, Remark 3.22], O(m,n) has weight n+m(1− i) for the wall crossing Mi−1 99KMi. Hence

Lk,si−ε = Lk,si has weight s−
⌊

s
i−k

⌋
(i−k) ∈ [0, i−k). Hence the objects in 〈(Dk,si−ε)〉 have weights in the range

[0, i). The lemma then follows from Proposition 2.7 and Theorem 4.1(c). �

Lemma 4.16 (cf. [Tev23, Lemma 2.8]). Let x = s
t−k 6∈ Z. If k < k′ and either x = s′

t−k′ or s′ = t− k′ = 0,
then

(4.8) RHom(PDk,st (X),PDk′,s′t
(Y )) = 0

for any X ∈ Db(SymkC), Y ∈ Db(Symk′C).

Proof. By Corollary 4.3, it suffices to prove

RHom(PF∨�`Λ−mLk,st
(Z),PDk′,s′t

(Y )) = 0

for 0 ≤ ` ≤ k, 0 ≤ m ≤ k − `, and Z ∈ Db(Sym`C). Without loss of generality, we take Y and Z to be
skyscraper sheaves, reducing (4.8) to

(4.9) RHom
(
F∨�`D Λ−mLk,st ,OM0(Λ(−2D′))L

k′,s′

t

)
= 0.

We first consider the case k′ = btc, so Lk
′,s′

t = O(s′, s′k′). By [TT21, Remark 3.7], O(m,n) restricts to

O(n + m(1 − k′)) = Λ−n−m(1−k′) on the fibers M0(d − 2k′) ∼= Pd+g−2−2k′ of Dk′

k′ over Symk′C . Noting

that s − s′ = x(k′ − k), we see that (Lk,st )−1Lk
′,s′

t restricts to Λ{x}(k
′−k) where {x} = x − bxc. The case
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k′ < btc is similar: O(m,n) restricts to O(m,n − mk′) on Mi−k′(d − 2k′), so (Lk,st )−1Lk
′,s′

t restricts to

O(0, {x}(k − k′)) = Λ{x}(k
′−k). Either way, (4.9) becomes

RΓ
(
Mbtc−k′(d− 2k′),F�`

D Λm+{x}(k′−k)
)

= 0.

This follows from Theorem 4.4(b) once we verify

0 < m+ {x}(k′ − k) < d− 2 btc+ g − 1− `.

Since {x} > 0, the first inequality is clear. For the second, we check m+ `+ {x}(k′ − k) + 2 btc < d+ g− 1.
Since

m+ ` ≤ k, {x}(k′ − k) < k′ − k, k′ ≤ btc , and 3 btc ≤ 3v < d+ g − 1,

we’re done. �

Lemma 4.17 (cf. [Tev23, Lemma 2.9]). For all k ≤ i, there is a mutation

〈Dki , . . . ,Di−1
i ,Dii〉 → 〈Dii,Di−1

i (−1, 2− i), . . . ,Dki (−1, 1− k)〉.

Proof. Semiorthogonality on the left-hand side follows from Proposition 2.7 and Theorem 4.1(c). As in
[Tev23, Claim 3.9], we have for every X ∈ SymnC an exact triangle

(4.10) PDni (X)(−1, 1− k)→ PDni (X)→ POEn
i

(X)→

where POEn
i

(X) ∈ 〈Dn+1
i , . . . ,Dii〉. Here, Eni is the divisor {(D,F, s) ∈ Dn

i : degZ(s) ≥ n + 1} where Z(s)

denotes the scheme of zeros. We proceed by downward induction on k, the case i = k being trivial. By
the inductive hypothesis, it suffices to give a mutation 〈Dki ,D

k+1
i , . . . ,Dii〉 → 〈D

k+1
i , . . . ,Dii,Dki (−1, 1− k)〉.

By (4.10), we are left to show that Dki (−1, 1 − k) is contained in ⊥〈Dk+1
i , . . . ,Dii〉. Again by the inductive

hypothesis, this amounts to showing that

RHom(PDki (X)(−1, 1− k),PDni (Y )(−1, 1− n)) = 0

for k < n ≤ i, X ∈ Db(SymkC), Y ∈ SymnC. (Note that O(−1, 1− i) has trivial restriction to M0(d− 2i),
so Dii(−1, 1− i) ∼= Dii.) By Corollary 4.3, the required vanishing is

RΓ(Mi−n(d− 2n),F�`
D Λm+n−k) = 0

for 0 ≤ ` ≤ k, 0 ≤ m ≤ k − `, D ∈ Sym`C. We have 0 < m + n− k < d + g − 2i− 1− `, so we’re done by
Theorem 4.4(b). �

Lemma 4.18. For k, k′, j, j′ ≥ 0 with j′ + k′ < j + k ≤ i, we have

RHom(PDki Λ−j (X),PDk′i Λ−j′ (Y )) = 0

for any X ∈ Db(SymkC), Y ∈ Db(Symk′C).

Proof. As above, it suffices to show that

RHom(OMi−k(d−2k)Λ
−j ,F∨�`

′

D Λ−j
′−m′) = 0

for 0 ≤ `′ ≤ k′, 0 ≤ m′ ≤ k′− `′, D ∈ Sym`′C. By Serre duality applied twice (cf. the proof of Lemma 4.10),
this is equivalent to

RΓ
(
Mi−k(d− 2k), (F�`′

D )∨Λj−j′−m′+k
)

= 0.

This follows from Theorem 4.4(b) once `′ < j − j′ − m′ + k < d + g − 2i − 1. For the first, we have
(j− j′+ k)− (m′+ `′) > k′− k′ = 0; for the second, we have j− j′−m′+ k ≤ j+ k ≤ i < d+ g− 2i− 1. �
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4.3. Broken Loom. Finally, we adapt the reordering trick from [Tev23, Section 5]. We recall the following
lemma:

Lemma 4.19 ([Tev23, Lemma 5.4, Remark 5.7]). Suppose 2 < d′ ≤ 2g + 1 and 1 ≤ j ≤
⌊
d−1

2

⌋
. Let

D ∈ SymaC, D′ ∈ SymbC with a, b ≤ j ([Tev23] has a, b ≤ min(j, d′ + g − 2j − 1), but j ≤ d′ + g − 2j − 1
already), and let t be an integer with a− j − 1 < t < d′ + g − 2j − 1− b and 2t < a− b. Then

(4.11) RΓ

(
Mj(d

′),
(
F�a
D

)∨
⊗F�b

D′ ⊗Λt

)
= 0.

Lemma 4.20. Let λ, λ′, k, k′ be integers with k, k′, λ − 2k, λ′ − 2k′ ≥ 0 and λ − k, λ′ − k′ ≤ id. If λ < λ′,
then

RHom
(
Λ−kF∨�λ−2k

D ,Λ−k
′
F∨�λ

′−2k′

D′

)
= 0

for any D ∈ Symλ−2kC, D′ ∈ Symλ′−2k′C.

Proof. We need

RΓ
(
Mid(d), (F�λ−2k

D )∨F�λ′−2k′

D′ Λk−k′
)

= 0,

which is exactly (4.11). We clearly have λ − 2k, λ′ − 2k′ ≤ id, and 2(k − k′) < λ′ − 2k′ − (λ − 2k′) since
λ′ > λ. It remains to show that

λ′ − 2k′ − id − 1 < k − k′ < d+ g − 2id − 1− λ+ 2k.

We have λ′−k′−id−1 ≤ −1 < k for the first inequality, and d+g−2id−1−(λ−k) ≥ d+g−3id−1 > 0 ≥ −k
for the second. �
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