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§1. Syllabus

§1.1. Prerequisites. An introductory course in algebraic geometry includ-
ing algebraic curves, projective varieties and divisors (e.g. based on Ful-
ton’s "Algebraic Curves" or Shafarevich’s "Basic Algebraic Geometry").

§1.2. Course description. A moduli space is a space that parametrizes all
geometric objects of some sort. For example, a plane triangle is uniquely
determined by its sides x, y, z, which have to satisfy triangle inequalities.
So the moduli space of all triangles is a subset of R3 given by inequalities

0 < x < y + z, 0 < y < x+ z, 0 < z < x+ y.

A guiding principle is that a nice moduli space should have geometry
similar to geometry of parametrized objects. For example, the moduli space
of convex triangles is itself a convex cone, which is connected and simply-
connected. This implies that every triangle can be continuously deformed
into another and any two such deformations are homotopy equivalent. So
knowing the moduli space is useful! One can also compactify this moduli
space by making all inequalities non-strict – points of the boundary will
correspond to “degenerate” triangles.

We will focus on moduli spaces of algebraic varieties such as elliptic
curves. They are classified by the j-invariant, so the moduli space of elliptic
curves is the line (with coordinate j). More generally, there exists a moduli



4 JENIA TEVELEV

space Mg, which parametrizes all projective algebraic curves of genus g
(equivalently, all compact Riemann surfaces of genus g). Connectedness of
Mg is a deep theorem of Deligne and Mumford, who also introduced its
compactification Mg, the moduli space of stable curves.

An example of a different kind is the Jacobian, which is a moduli space
that classifies complex line bundles of degree 0 on a fixed Riemann surface.
One can consider moduli spaces of vector bundles, coherent sheaves, etc.

The study of moduli spaces is an old branch of algebraic geometry with
an abundance of technical tools: classical algebraic theory, geometric in-
variant theory, period domains and variation of Hodge structures, stacks,
etc. But I believe that a lot can be learned by studying examples using min-
imal machinery, as a motivation to learn more sophisticated tools. We will
start with the GrassmannianG(2, n), the moduli space of projective lines in
the fixed projective space Pn−1, and use it as a template to introduce various
constructions of moduli spaces. We will discuss how to use global geome-
try of the moduli space to extract information about families of geometric
objects. For example, we will see that G(2, 4) is a quadric hypersurface in
P5 and therefore there exist exactly two lines in P3 that intersect four given
general lines - can you prove this without moduli spaces?

§1.3. Course grading and expectations. The course grade will be based
on two components, the homework (5-6 biweekly sets) and the project pre-
sented at the end of the semester.

§1.4. Tentative topics.
(1) Grassmannian.
(2) Representable functors and fine moduli spaces.
(3) Coarse moduli spaces. J-invariant. Elliptic fibrations.
(4) Moduli space of stable rational curves.
(5) Quotients by finite groups. Quotient singularities.
(6) Linear algebraic groups.
(7) Reductive groups. Hilbert’s finite generation theorem.
(8) Geometric and categorical quotient.
(9) Weighted projective space.

(10) GIT quotients and stability.
(11) Hilbert–Mumford criterion. Stability of smooth hypersurfaces.
(12) Hilbert scheme.
(13) Riemann-Roch analysis for families of algebraic curves.
(14) Moduli spaces of algebraic curves.
(15) Jacobians. Moduli spaces of vector bundles.

§1.5. Textbooks. There is no required textbook and I will provide lecture
notes. We will draw heavily from the following sources, which are recom-
mended for further study. Many of them are freely available on-line.

REFERENCES

[D] I. Dolgachev, Lectures on Invariant Theory
[GH] P. Griffiths, J. Harris, Principles of Algebraic Geometry
[HM] J. Harris, I. Morrison, Moduli of Curves
[Ha] R. Hartshorne, Algebraic Geometry
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[Mu] S. Mukai, An introduction to Invariants and Moduli
[M1] D. Mumford, Curves and their Jacobians
[M2] D. Mumford, Geometric Invariant Theory
[MS] D. Mumford, K. Suominen, Introduction to the theory of moduli
[PV] V. Popov, E. Vinberg, Invariant Theory
[R1] M. Reid, Surface cyclic quotient singularities and Hirzebruch–Jung resolutions
[R2] M. Reid, Graded rings and varieties in weighted projective space
[St] B. Sturmfels, Algorithms in Invariant Theory

§2. Geometry of lines

Let’s start with a familiar example. Recall that the Grassmannian G(r, n)
parametrizes r-dimensional linear subspaces of Cn. For example,

G(1, n) = Pn−1

is the projective space. Its point, a 1-dimensional subspace L ⊂ Cn, can
be represented by any non-zero vector (x1, . . . , xn) ∈ L, which is defined
uniquely up to rescaling (multiplying by a non-zero constant). Thus every
point of Pn−1 has homogeneous coordinates [x1 : . . . : xn] which are not all
equal to zero and defined uniquely up to rescaling:

[x1 : . . . : xn] = [λx1 : . . . : λxn].

It is also easy to understandG(n−1, n), the set of hyperplanes in Cn. Indeed,
every hyperplane is given by a linear equation

a1x1 + . . .+ anxn = 0.

The corresponding covector (a1, . . . , an) is defined uniquely up to rescaling.
Thus G(n− 1, n) is also a projective space, the dual projective space (Pn−1)∗.

The first non-trivial example is G(2, 4). What is it? Almost by definition,
projectivization gives a bijection between r-dimensional linear subspaces
of Cn and (r − 1)-dimensional projective subspaces of Pn−1. Thus

2.0.1. PROPOSITION. G(r, n) is the set of all (r − 1)-dimensional projective sub-
spaces of the projective space Pn−1.

For example, G(1, n) is the set of points in Pn−1 and G(2, n) is the set of
lines in Pn−1. In particular, G(2, 4) is the set of lines in P3.

§2.1. Grassmannian as a complex manifold. Thinking about G(k, n) as
a set is not very useful, we need to introduce geometric structures on it.
A distinguished feature of algebraic geometry (and difficulty for beginners)
is abundance of these structures. Paraphrasing Claire Voisin, algebraic ge-
ometry involves studying the variety of perspectives from which one can
see the same object, and using the “constant moving back and forth several ge-
ometries and several types of tools to prove results in one field or another.” We
will embrace and try to understand this diversity of approaches such as
complex analytic geometry, geometry of algebraic varieties, etc.

A basic object of complex analytic geometry is a complex manifold:
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2.1.1. DEFINITION. A complex manifold is a topological space1 X with a
covering by open setsXi called charts homeomorphic to open subsets of Cn:

φi : Xi ↪→ Cn.
Coordinate functions on Cn restricted to φi(Xi) are called local coordinates
in the chart. On the overlaps Xi ∩Xj we thus have two competing systems
of coordinates, and the main requirement is that the transition functions

φj ◦ φ−1
i : φi(Xi ∩Xj)→ φj(Xi ∩Xj)

between these coordinate systems are holomorphic functions.

2.1.2. EXAMPLE. The projective space Pn−1 is covered by n charts

Xi = {[x1 : . . . : xn], xi 6= 0} ⊂ Pn−1.

The coordinate maps φi : Xi ↪→ Cn−1 are given by

φi([x1 : . . . : xn]) = (x1/xi, . . . , x̂i/xi, . . . , xn/xi)

(here and thereafter theˆsign indicates omission of something). In fact φi is
a bijection, Xi ' Cn−1, with the inverse map φ−1

i given by

(z1, . . . , zn−1) 7→ [z1, . . . , zi−1, 1, zi, . . . , zn].

The transition functions φj ◦ φ−1
i : φi(Xi ∩Xj)→ φj(Xi ∩Xj) for i < j are

as follows

(z1, . . . , zn−1)→ [z1, . . . , zi−1, 1, zi, . . . , zn]→

→ (z1/zj , . . . zi−1/zj , 1/zj , zi/zj , . . . , ẑj/zj , . . . , zn/zj)

Components of this functions are holomorphic functions, which means by
definition that transition functions themselves are holomorphic.

In this example (and in general) the structure of a topological space onX
can be introduced simultaneously with constructing charts: a subsetU ⊂ X
is declared open if its intersection with every chart U ∩Xi is open. We will
leave it as an exercise to check that Pn−1 is indeed a second countable Haus-
dorff topological space.

Let’s generalize homogeneous coordinates [x1 : . . . : xn] and charts Xi

for the Grassmannian G(r, n). Every r-dimensional subspace U ⊂ Cn is a
row space of a r × n matrix A of rank r. This matrix is not unique but we
know from linear algebra that matrices A and A′ of rank r have the same
row space if and only if there exists an invertible r × r matrix Λ such that

A′ = ΛA.

Let [n] denote the set {1, . . . , n}. For every subset I ⊂ [n] of cardinality r,
let AI denote the r × r submatrix of A with columns indexed by I and let

pI = detAI

be the corresponding minor. These numbers pI are called Plücker coordinates
of U . When r = 1 we recover homogenous coordinates on Pn−1.

Since rankA = r, we can find some subset I such that pI 6= 0. Then
A′ = A−1

I A has a special form: A′I is the identity matrix E.

1Technically speaking, it has to be second countable, i.e. admit a countable basis of open
sets, and Hausdorff, i.e. any two distinct points have disjoint neighborhoods.
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2.1.3. LEMMA–DEFINITION. G(r, n) is a complex manifold covered by
(
n
r

)
charts

XI indexed by subsets I ⊂ [n] of cardinality r:

XI = {U ∈ G(r, n) | U = row space(A), AI = E.}
Each subspace in XI is a row space of a unique matrix with AI = E, in particular
we have bijections φI : XI → Cr(n−r). Local coordinates on XI are just entries of
the matrix A such that AI = E.

Proof. We have to check that transition functions between chartsXI andXI′

are holomorphic. Let U ∈ XI ∩XI′ . In the chart XI , U is represented by a
matrix A with AI = E. The matrix representing U in XI′ will be (AI′)

−1A.
Its matrix entries depend holomorphically (in fact rationally) on the matrix
entries of A. �

§2.2. Moduli space or a parameter space? One can argue that G(2, n) is
not truly a moduli space because all lines in Pn−1 are isomorphic. So maybe
it’s better to call it a parameter space: it doesn’t classify geometric objects up
to isomorphism but rather it classifies sub-objects (lines) in a fixed ambient
space (projective space). This distinction is of course purely philosophical.
A natural generalization of the Grassmannian is given by a Hilbert scheme,
which parametrizes all algebraic subvarieties (more precisely subschemes)
of the projective space. As a rule, parameter spaces are easier to construct
than moduli spaces. But then to construct a moduli spaceM, one can

• embed our objects in some ambient space;
• construct a “parameter space”H for embedded objects;
• Then M will be the set of equivalence classes for the following

equivalence relation on H: two embedded objects are equivalent
if they are abstractly isomorphic.

In many cases there will be a group G acting on H and equivalence
classes will be just orbits for the group action. So we will have to learn
how to construct an orbit spaceM = H/G and a quotient map H → M that
sends each point to its orbit. These techniques are provided by the invariant
theory – the second component from the title of this course.

For example, suppose we want to construct M3, the moduli space of
curves of genus 3. These curves come in two flavors, they are either hyper-
elliptic or not. The following theorem is well-known:

2.2.1. THEOREM.
• A hyperelliptic curve of genus 3 is a double cover of P1 ramified at 8 points.

These points are determined uniquely upto the action of PGL2 y P1.
• A non-hyperelliptic curve of genus 3 is isomorphic to a smooth quartic

curve in P2. Two smooth quartic curves are isomorphic as algebraic vari-
eties if and only if they belong to the same PGL3-orbit.

Let H3 ⊂ M3 be the set of isomorphism classes of hyperelliptic curves
and let M3 \ H3 be the complement. We can construct both of them as
quotient spaces:

H3 =
[
P(Sym8 C2) \ D

]
/PGL2

and
M3 \ H3 =

[
P(Sym4 C3) \ D

]
/PGL3 .
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Here D is the discriminant locus. In the first case it parametrizes degree
8 polynomials in 2 variables without a multiple root (and hence such that
its zero locus is 8 distinct points in P1) and in the second case degree 4
polynomials in 3 variables such that its zero locus is a smooth curve in P2.

An easy dimension count shows that

dimH3 = dimP(Sym8 C2)− dim PGL2 = 7− 3 = 5

and

dimM3 \ H3 = dimP(Sym4 C3)− dim PGL3 = 14− 8 = 6.

It is quite remarkable that there exists an irreducible moduli space M3

which containsH3 as a hypersurface. We will return to this example later.

§2.3. Stiefel coordinates. It’s interesting that one can construct the Grass-
mannian as a quotient by the group action. The motivating idea is that
G(1, n) is a quotient:

Pn−1 = [Cn \ {0}]/C∗.
Coordinates in Cn are the homogeneous coordinates on Pn−1 defined uniquely
up to a common scalar factor λ ∈ C∗. As we have already seen above, there
are two ways to generalize them to r > 1, Stiefel coordinates and Plücker
coordinates. Let

Mat0
r,n ⊂ Matr,n

be an open subset (in Zariski or complex topology) of matrices of rank r.
We have a map

Ψ : Mat0
r,n → G(r, n) (2.3.1)

which sends a matrix to its row space. Ψ can be interpreted as the quotient
map for the action of GLr on Mat0

r,n by left multiplication. Indeed, two
rank r matrices A and A′ have the same row space if and only if A′ = ΛA
for some matrix Λ ∈ GLr. Matrix coordinates on Mat0

r,n are sometimes
known as Stiefel coordinates on the Grassmannian. The are determined up
to a left multiplication with an invertible r × r matrix Λ.

§2.4. Complete system of (semi-)invariants. Let me use (2.3.1) as an ex-
ample to explain how to use invariants to construct quotient maps.

2.4.1. DEFINITION. We start with a very general situation: let G be a group
acting on a set X . A function f : X → C is called an invariant function if it
is constant along G-orbits, i.e. if

f(gx) = f(x) for every x ∈ X, g ∈ G.
We say that invariant functions f1, . . . , fr form a complete system of invariants
if they separate orbits. This means that for any two orbits O1 and O2, there
exists at least one function fi for i = 1, . . . , r such that fi|O1 6= fi|O2 .

2.4.2. LEMMA. If f1, . . . , fr is a complete system of invariants then the map

F : X → Cr, F (x) = (f1(x), . . . , fr(x))

is a quotient map (onto its image) in the sense that its fibers are exactly the orbits.

Proof. Indeed, if x1, x2 ∈ X belong to different orbits then fi(x1) 6= fi(x2)
for some i = 1, . . . , r and so x1 and x2 belong to different fibers of F . �
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Often we want to have a quotient map with target Pr rather than Cr.
Thus we need the following generalization:

2.4.3. DEFINITION. Fix a homomorphism (called character or weight)

χ : G→ C∗.

A function f : X → C is called a semi-invariant of weight χ if

f(gx) = χ(g)f(x) for every x ∈ X, g ∈ G.
(An invariant function is a semi-invariant function of weight χ = 1). Sup-
pose f0, . . . , fr are semi-invariants of the same weight χ. We will call them a
complete system of semi-invariants of weight χ if

• for any x ∈ X , there exists a function fi such that fi(x) 6= 0;
• for any two points x, x′ ∈ X not in the same orbit, we have

[f0(x) : . . . : fr(x)] 6= [f0(x′) : . . . : fr(x
′)].

The first condition means that we have a map

F : X → Pr, F (x) = [f0(x) : . . . : fr(x)],

which is clearly constant along G-orbits:

[f0(gx) : . . . : fr(gx)] = [χ(g)f0(x) : . . . : χ(g)fr(x)] = [f0(x) : . . . : fr(x)].

The second condition means that F is a quotient map onto its image in the
sense that its fibers are precisely the orbits.

§2.5. Plücker coordinates. LetG = GLr act by left multiplication on Mat0
r,n.

Consider the r × r minors pI as functions on Mat0
r,n.

2.5.1. PROPOSITION. The minors pI form a complete system of semi-invariants
on Mat0

r,n of weight
det : GLr → C∗.

Proof. For any A ∈ Mat0
r,n, at least one of the minors pI ’s does not vanish.

So we have a map

F : Mat0
r,n → P(nr)−1

given by
(
n
r

)
minors pI . We have

pI(gA) = det(g)pI(A) for any g ∈ GLr, A ∈ Mat0
r,n .

It follows that pI ’s are semi-invariants of weight det and therefore the map
F is GLr-equivariant, i.e. constant on orbits.

It remains to show that fibers are precisely the orbits. TakeA,A′ ∈ Mat0
r,n

such that F (A) = F (A′). We have to show thatA andA′ have the same row
space, i.e. are in the same GLr-orbit. Fix a subset I such that pI(A) 6= 0, then
of course pI(A′) 6= 0. By acting on A and A′ by A−1

I (resp. (A′I)
−1), we can

assume that both AI and A′I are identity matrices. To show that A = A′, it
suffices to prove the following claim:

2.5.2. CLAIM. Suppose AI is the identity matrix. Then every matrix entry aij of
A is equal to the minor AJ for some subset J of cardinality r. In particular, if
F (A) = F (A′) and AI = A′I is the identity matrix then A = A′.
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Without loss of generality, we can take I = {1, . . . , r}. In particular,

pI(A) = pI(A
′) = 1.

Since F (A) = F (A′), we now have

pJ(A) = pJ(A′) for every subset J.

It remains to notice that if

J = {1, . . . , r} \ {i} ∪ {j}

then aij = ±AJ . �

2.5.3. DEFINITION. The inclusion

i : G(r, n) = Mat0
r,n /GLr ↪→ P(nr)−1

is called the Plücker embedding.

2.5.4. PROPOSITION. This embedding is an immersion of complex manifolds.

Proof. We have already proved that i is an inclusion of sets. Let xI be ho-
mogeneous coordinates on P(nr)−1 for all subsets I ⊂ [n] of cardinality r.
Each chart pI 6= 0 of the Grassmannian is mapped to the corresponding
affine chart xI 6= 0 of the projective space. The map i in this chart is given
by the remaining r × r minors of a matrix A such that AI is the identity
matrix. These minors are of course holomorphic functions. By definition,
this means that i is a holomorphic map of complex manifolds.

To show that i is an immersion of complex manifolds, we have to verify
more, namely that the Jacobian matrix of this map has maximal rank (equal
to the dimension of G(r, n)) at every point. Without loss of generality we
can work in the chart p1,...,r 6= 0 of the Grassmannian. Local coordinates
are given by r × (n− r) matrix entries aij for j > r of a matrix A such that
A1,...,r is the identity matrix. Local coordinates in the chart x1,...,r 6= 0 of the
projective space are

(
n
r

)
− 1 coordinates xJ for J 6= {1, . . . , r}.

By the Claim 2.5.2, every matrix entry aij is equal to a minor pJ(A) for
some J . Therefore all local coordinates of the chart p1,...,r 6= 0 are some
of the components of the map i and so its Jacobian matrix contains the
identity submatrix of rank r(n − r). So the Jacobian matrix has maximal
rank r(n− r). �

§2.6. First Fundamental Theorem. Why the minors pI are a natural choice
for a complete system of semi-invariants? Let’s consider all possible semi-
invariants on Mat0

r,n which are polynomials in matrix entries. By continu-
ity, this is the same as polynomial semi-invariants on Matr,n. Let

O(Matr,n) = C[aij ]1≤i≤r, 1≤j≤n

be the algebra of polynomial functions on Matr,n. It is well-known that
the only holomorphic homomorphisms GLr(C) → C∗ are powers of the
determinant.

Let
Ri = O(Matr,n)GLr

deti
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be a subset of polynomial semi-invariants of weight deti. Notice that the
scalar matrix t Idr acts on Ri by multiplying it by deti(t Idr) = tri. On the
other hand, if f ∈ O(Matr,n) is a polynomial of degree d then

f(t Idr ·A) = f(tA) = tdf(A).

It follows that all polynomials in Ri have degree d = ri, in particular

Ri = 0 for i < 0, R0 = C.

We assemble all semi-invariants in one package (algebra of semi-invariants):

R =
⊕
i≥0

Ri ⊂ O(Matr,n).

Since the product of semi-invariants of weights χ and χ′ is a semi-invariant
of weight χ · χ′, R is a graded subalgebra of O(Matr,n).

2.6.1. THEOREM (First Fundamental Theorem of invariant theory). The alge-
bra R is generated by the minors pI .

Thus considering only minors pI ’s makes sense: all semi-invariants can’t
separate orbits any more effectively than the generators. We will skip the
proof of this theorem. But it raises some general questions:

• is the algebra of polynomial invariants (or semi-invariants) always
finitely generated?
• do these basic invariants separate orbits?
• how to compute these basic invariants?

We will see that the answer to the first question is positive under very gen-
eral assumptions (Hilbert-Mumford finite generation theorem). The answer to
the second question is typically negative but a detailed analysis of which
orbits are separated is available (Hilbert–Mumford’s stability and the nu-
merical criterion for it). As far as the last question is concerned, the situation
is worse: the generators can be computed effectively and explicitly only in
a handful of cases.

§2.7. Equations of the Grassmannian. How to describe the image of the
Grassmannian in the Plücker embedding? We will show that it is a projec-
tive algebraic variety and describe its defining equations.

We are going to focus on G(2, n), the Grassmannian of lines in Pn−1.

2.7.1. DEFINITION. Let f1, . . . , fr ∈ C[x0, . . . , xn] be homogeneous polyno-
mials (possibly of various degrees). The vanishing set

X = V (f1, . . . , fr) = {x ∈ Pn | f1(x) = . . . = fr(x) = 0}
is called a projective algebraic variety.

2.7.2. REMARK. We will frequently do calculations in charts: for each chart

Ui = {xi 6= 0} ⊂ Pn, Ui ' An,

X ∩ Ui ⊂ An is an affine algebraic variety given by vanishing of polynomials

f̃j = fj(x0, . . . , xi−1, 1, xi+1, . . . , xn), j = 1, . . . , r.

These polynomials are called dehomogenizations of f1, . . . , fr.
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2.7.3. THEOREM. i(G(2, n)) is a projective algebraic variety in P(n2)−1 given by
vanishing of the following polynomials called Plücker quadrics:

xijxkl − xikxjl + xilxjk, i < j < k < l.

Here we use homogeneous coordinates xij for 1 ≤ i < j ≤ n.

Proof. Let U be a row space of a matrix

A =

[
a11 . . . a1n

a21 . . . a2n

]
.

In order to show that the Plücker quadrics vanish along the image of the
Grassmannian, it suffices to show that minors of the matrix A satisfy the
relation

pij(A)pkl(A)− pik(A)pjl(A) + pil(A)pjk(A) = 0,

which can be verified directly. A more conceptual approach is to consider
a bivector

b = (a11e1 + . . .+ a1nen)∧ (a21e1 + . . .+ a2nen) =
∑
i<j

pij(A)ei ∧ ej ∈ Λ2Cn.

If we identify P(n2)−1 with the projectivization of Λ2Cn, the Plücker embed-
ding sends a subspace U ∈ G(2, n) (spanned by vectors u, v ∈ Cn) to the
line Λ2U ⊂ Λ2Cn (spanned by u ∧ v). Bivectors of this form are called
decomposable. We see that the image of the Plücker embedding is the projec-
tivization of the subset of decomposable bivectors. Notice that we have

b ∧ b = (u ∧ v) ∧ (u ∧ v) = −u ∧ u ∧ v ∧ v = 0.

On the other hand,

b ∧ b = 2
∑

i<j<k<l

(pijpkl − pikpjl + pilpjk)ei ∧ ej ∧ ek ∧ el.

Thus Plücker quadrics indeed vanish along i(G(2, n)).
Next we have to show that the vanishing set

X = V (xijxkl − xikxjl + xilxjk) ⊂ P(n2)−1

does not contain any other points. We can do this in affine charts of P(n2)−1.
Without loss of generality it suffices to consider the chart U12 = {x12 = 1}.

What are the equations ofX∩U12? Taking Plücker quadrics with ij = 12
and dehomogenizing gives equations

xkl = x1kx2l − x1lx2k, 2 < k < l ≤ n. (2.7.4)

It follows that homogeneous coordinates of any point x ∈ X ∩ U12 are
minors of the matrix

A =

[
1 0 −x23 −x24 . . . −x2n

0 1 x13 x14 . . . x1n

]
.

It follows that x corresponds to the row space of A. �

2.7.5. COROLLARY. i(G(2, n)) is a compact complex submanifold of P(n2)−1.
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Proof. Every projective algebraic variety is closed and hence compact in the
Euclidean topology. Since we already know that the Plücker embedding i is
an immersion, i(G(2, n)) is a compact complex submanifold of P(n2)−1. �

2.7.6. REMARK. In general, not every complex algebraic variety X is a com-
plex manifold simply because it can have singularities. But if X is a non-
singular complex algebraic variety then it admits a structure of a complex
manifold of the same dimension denoted by Xan. A remarkable fact is
a Chow’s theorem: every compact complex submanifold of the projective
space is a projective algebraic varierty.

§2.8. Homogeneous ideal. By Th. 2.7.3, the Grassmannian G(2, n) is the
vanishing set of Plücker quadrics. We would like to describe all homoge-
nous polynomials in

(
n
2

)
variables xij that vanish along G(2, n), in other

words the homogeneous ideal I ⊂ C[xij ] of G(2, n). The following theorem
was classically known as the second fundamental theorem of invariant theory.

2.8.1. THEOREM. The ideal I of the polynomial ring is generated by Plücker quadrics

xijxkl − xikxjl + xilxjk, i < j < k < l.

Proof. The proof consists of several steps.
Step 1. One can think about elements of I as relations between 2 × 2

minors of a general 2 × n matrix A. Indeed, by (2.3.1), G(2, n) is the image
of the map

Ψ : Mat0
2,n → G(2, n).

Thus I is the kernel of the homomorphism of polynomial algebras

ψ : C[xij ]1≤i<j≤n → C[a1i, a2i]1≤i≤n, xij 7→ pij(A).

We proved in Prop. 2.7.3 that Plücker quadrics are in I . Let I ′ ⊂ I be the
ideal generated by the Plücker relations. The goal is to show that I = I ′.

Step 2 is called the straightening law. It was introduced by Alfred Young
(who has Young diagrams named after him). We encode each monomial
xi1j1 . . . xikjk ∈ C[xij ] as a Young tableaux[

i1 i2 . . . ik
j1 j2 . . . jk

]
(2.8.2)

Note that entries in the columns of this matrix are increasing, ir < jr for
every r. The Young tableaux is called standard if the entries in each row are
non-decreasing:

i1 ≤ i2 ≤ . . . ≤ ik and j1 ≤ j2 ≤ . . . ≤ jk.
In this case the corresponding monomial xi1j1 . . . xikjk is called a standard
monomial. We claim that every monomial is equivalent modulo I ′ (i.e. mod-
ulo Plücker quadrics) to a linear combination of standard monomials.

Suppose x = xi1j1 . . . xikjk is a non-standard monomial. Then it contains
a pair of variables xab, xcd such that a < c but b > d. Then we have

a < c < d < b.

We have
xabxcd = xacxdb − xadxcb mod I ′. (2.8.3)
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We can plug-in the right-hand-side into x instead of xabxcdand rewrite it as
a sum of two monomials. We can continue this procedure every time one
of the remaining monomials in the sum is still not standard. However, we
need show that this straightening algorithm terminates.

To every monomial x = xi1j1 . . . xikjk , we associate a sequence of positive
integers

j1 − i1, . . . , jk − ik,
reordered in non-increasing order. We order all monomials by ordering
these sequences of integers lexicographically (and if monomials have the
same sequences, for example monomials x12 and x34, order them randomly).
We argue by induction on lexicographical order that every non-standard
monomial is equivalent modulo Plücker quadrics to a linear combination
of standard monomials. Suppose this is verified for all monomials smaller
than x = xi1j1 . . . xikjk . Do the substitution (2.8.3) and notice that c − a,
b − d, d − a, and b − c are all strictly less than b − a. Therefore both of
these monomials are smaller than x in lexicographic order and so can be
re-written as linear combinations of standard monomials modulo I ′ by the
inductive assumption.

Step 3. Finally, we claim that standard monomials are linearly indepen-
dent modulo I , and in particular I = I ′. Concretely, we claim that

{ψ(x) |x is a standard monomial}

is a linearly independent subset of C[a1i, a2i]1≤i≤n. A cool idea is to order
the variables as follows:

a11 < a12 < . . . < a1n < a21 < a22 < . . . < a2n

and to consider the corresponding lexicographic ordering of monomials in
C[a1i, a2i]1≤i≤n. For any polynomial f , let in(f) be the initial monomial of f
(i.e. the smallest monomial for lexicographic ordering). Notice that in(f) is
multiplicative:

in(fg) = in(f) in(g) (2.8.4)
for any two (non-zero) polynomials. We have

in pij = a1ia2j ,

and therefore

in(ψ(x)) = in(pi1j1 . . . pikjk) = a1i1a1i2 . . . a1ika2j1a2j2 . . . a2jk .

Notice that a standard monomial x is completely determined by in(ψ(x)).
Now we argue by contradiction that the set of polynomials {ψ(x)}, for all
standard monomials x, is linearly independent. Indeed, consider a trivial
linear combination

λ1ψ(x1) + . . .+ λrψ(xr) = 0

where all λi 6= 0. Then the minimum of initial terms in(ψ(xi)), i = 1, . . . , r
should be attained at least twice, a contradiction with the fact they are all
different. �

Many calculations in commutative algebra can be reduced to similar ma-
nipulations with polynomials by considering different types of orderings of
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monomials. Computer algebra packages like Macaulay 2 run on Groebner
bases algorithms based on these ideas.

§2.9. Hilbert polynomial. Equations of a projective variety are usually not
known so explicitly as in Theorem 2.8.1 for the Grassmannian. But some
numerical information about them is often available and sufficient.

We start with a general situation: let X ⊂ Pn be a projective variety
and let I ⊂ C[x0, . . . , xn] be a homogeneous ideal of polynomials that van-
ish along X . The algebra R = C[x0, . . . , xn]/I is known as a homogeneous
coordinate algebra of X . Note that R is graded by degree of polynomials

R =
⊕
j≥0

Rj , R0 = C,

and R is generated by R1 as an algebra. The function

h(k) = dimRk

is called the the Hilbert function ofX . Notice that knowing h(k) is equivalent
to knowing dim Ik for every k:

h(k) + dim Ik =

(
n+ k

k

)
.

Recall the following fundamental theorem:

2.9.1. THEOREM. There exists a unique polynomial H(t) such that

h(k) = H(k) for k � 0.

It is called the Hilbert polynomial. It has the following form:

d

r!
tr + (lower terms),

where r is the dimension and d is the degree of X , i.e. the number of points in the
intersection of X with a general projective subspace of codimension r.

The word “general” here is used in the standard sense of algebraic ge-
ometry: there exists a dense Zariski open subset W ⊂ G(n + 1 − r, n + 1)
(the Grassmannian of all projective subspaces of codimension r) such that
X ∩ L is a finite set of d points for every projective subspace L ∈W .

2.9.2. EXAMPLE. Let Pl ⊂ Pn be a projective subspace, for example given
by xl+1 = . . . = xn = 0. Restricting polynomials in n + 1 variable to this
subspace gives an exact sequence

0→ I → C[x0, . . . , xn]→ C[x0, . . . , xl]→ 0,

where I = 〈xl+1, . . . xn〉 is the homogeneous ideal of Pl andR = C[x0, . . . , xl]
is its homogeneous coordinate algebra. The Hilbert function is

h(k) = dimC[x0, . . . , xl]k =

(
l + k

k

)
=

=
k(k − 1) . . . (k − l + 1)

l!
=

1

l!
kl + . . .

This agrees with the fact Pl has degree 1 and dimension l.
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It is not difficult to show that projective subspaces are the only projective
varieties of degree 1. In particular,G(l+1, n+1) parametrizes all projective
subvarieties of Pn with Hilbert polynomial H(k) =

(
l+k
k

)
. More generally,

fix a polynomial H(t). There exists a projective scheme

HilbH(t) Pn

called the Hilbert scheme that parametrizes all projective subschemes of Pn
with Hilbert polynomial H(t). Of course one has to define “schemes”, ex-
plain the meaning of “parametrize” and prove existence and projectivity –
all deep accomplishments of Grothendieck.

2.9.3. PROPOSITION. Let n ≥ 3. The Hilbert function of G(2, n) in the Plücker
embedding is

h(k) =

(
n+ k − 1

k

)2

−
(
n+ k

k + 1

)(
n+ k − 2

k − 1

)
. (2.9.4)

The degree of G(2, n) in the Plücker embedding is the Catalan number

1

n− 1

(
2n− 4

n− 2

)
= 1, 2, 5, 14, 42, 132, . . .

Proof. While proving Theorem 2.8.1 we have already established that h(k)
is equal to the number of standard monomials of degree k, i.e. to the num-
ber of standard Young tableaux with k columns. Let Nl be the number of
non-decreasing sequences 1 ≤ i1 ≤ . . . ≤ il ≤ n. Then

Nl =

(
n+ l − 1

l

)
.

Indeed, this is just the number of ways to choose l objects from {1, . . . , n}
with repetitions (so it is for example equal to the dimension of the space of
polynomials in n variables of degree l). The number of all tableaux[

i1 i2 . . . ik
j1 j2 . . . jk

]
, 1 ≤ i1 ≤ . . . ≤ ik ≤ n, 1 ≤ j1 ≤ . . . ≤ jk ≤ n

is then

N2
k =

(
n+ k − 1

k

)2

.

To prove (2.9.4), it suffices to prove the following

2.9.5. CLAIM. The number of non-standard tableaux is(
n+ k

k + 1

)(
n+ k − 2

k − 1

)
.

More precisely, there is a bijection between the set of nonstandard tableaux and the
set of pairs (A,B), where A is a non-decreasing sequence of length k+ 1 and B is
a non-decreasing sequence of length k − 1.

Proof of the Claim. Suppose that l is the number of the first column where
il ≥ jl. Then we can produce two sequences:

j1 ≤ . . . ≤ jl ≤ il ≤ . . . ≤ ik
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of length k + 1 and

i1 ≤ . . . ≤ il−1 ≤ jl+1 ≤ . . . ≤ jk
of length k − 1. In the opposite direction, suppose we are given sequences

i1 ≤ . . . ≤ ik+1 and j1 ≤ . . . ≤ jk−1.

Let l be the minimal index such that il ≤ jl and take a tableaux[
j1 . . . jl−1 il+1 il+2 . . . ik
i1 . . . il−1 il jl . . . jk−1

]
If il > jl for any l ≤ k − 1, then take the tableaux[

j1 . . . jk−1 ik
i1 . . . ik−1 ik+1

]
.

This proves the Claim. �

After some manipulations, (2.9.4) can be rewritten as(
n+ k − 1

n− 1

)2

−
(
n+ k

n− 1

)(
n+ k − 2

n− 1

)
=

(n+ k − 1)2 . . . (k + 1)2

(n− 1)!2
− (n+ k) . . . (k + 2)

(n− 1)!

(n+ k − 2) . . . k

(n− 1)!
=

(k + n− 1)(k + n− 2)2 . . . (k + 2)2(k + 1)

(n− 1)!2
[(n+ k − 1)(k + 1)− (n+ k)k] .

1

(n− 1)!(n− 2)!
(k + n− 1)(k + n− 2)2 . . . (k + 2)2(k + 1).

This is a polynomial in k of degree 2n−4 with leading coefficient 1
(n−1)!(n−2)! .

Thus the degree of G(2, n) is equal to (2n − 4)! multiplied by the leading
coefficient of h(k), which is indeed the Catalan number. �

§2.10. Enumerative geometry. Why study moduli spaces? To extract in-
teresting information. For example, let’s relate the degree of the Grassman-
nian (i.e. the Catalan number) to geometry of lines.

2.10.1. THEOREM. The number of lines in Pn−1 that intersect 2n − 4 general2

codimension 2 subspaces is equal to the Catalan number

1

n− 1

(
2n− 4

n− 2

)
,

the degree of the Grassmannian in the Plücker embedding.

2The precise meaning of the word “general”, as before, is the following. There exists a
dense Zariski open subset

U ⊂ G(n− 2, n)× . . .×G(n− 2, n) (2n− 4 copies)

such that for every (2n− 4)-tuple of codimension two subspaces

(W1, . . . ,W2n−4) ∈ U,

the number of lines that intersect W1, . . . ,W2n−4 is the Catalan number.
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For example, there is only one line in P2 passing through 2 general points,
2 lines in P3 intersecting 4 general lines, 5 lines in P4 intersecting 6 general
planes, and so on. This is a typical problem from enumerative geometry,
which was described by H. Schubert around 1870s as a branch of algebraic
geometry concerned with questions like: How many geometric figures of
some type satisfy certain given conditions? The enumerative geometry of
lines, or more generally projective subspaces, can be reduced to questions
about the Grassmannian known as Schubert calculus, which is nowdays
more or less understood. Enumerative geometry of curves of higher de-
gree is encapsulated in theory of Gromov–Witten invariants which had many
recent advances in moduli theory and physics.

In order to show that the degree of the Grassmannian solves an enumer-
ative problem, we need some preparation.

2.10.2. DEFINITION. LetX ⊂ Pn−1 be a subvariety of codimension l. A Chow
form (or an associated hypersurface)

DX ⊂ G(l, n)

is the locus of all projective subspaces Pl−1 ⊂ Pn−1 that intersect X . For
example, if X is a hypersurface (l = 1) then DX = X . An amazing fact is
that DX is always a hypersurface in the Grassmannian and X is uniquely
determined byDX . An equation ofDX in Plücker coordinates of the Grass-
mannian is a convenient way of presenting X .

The simplest example is the following: let W ⊂ Pn−1 be a projective
subspace of codimension 2, then

DW ⊂ G(2, n)

is the locus of all lines that intersect W . Incidentally, DW is also the most
basic example of a Schubert variety. We claim that DW can be described as
the intersection with a hyperplane:

DW = G(2, n) ∩HW , HW ⊂ P(n2)−1.

Indeed, without loss of generality we can take

W = {x1 = x2 = 0} = P〈e3, . . . en〉.
Lines intersecting W are projectivizations of 2-dimensional subspaces U
that intersect a linear subspace 〈e3, . . . en〉 nontrivially. Let π : Cn → 〈e1, e2〉
be a linear projection with kernel 〈e3, . . . en〉. Then U ∈ DW iff Kerπ|U 6= 0
iff dim Imπ|U < 2 iff the Plücker minor p12(U) = 0. So DW is precisely the
intersection of G(2, n) with the hyperplane

HW = {x12 = 0}.
We will show that if

W1, . . . ,W2n−4 ⊂ Pn−1

are sufficiently general codimension 2 subspaces then the intersection

DW1 ∩ . . . ∩DW2n−4 = G(2, n) ∩
(
HW1 ∩ . . . ∩HW2n−4

)
is a finite union of the Catalan number of points. We are going to see that
HW1 ∩ . . .∩HW2n−4 is a codimension 2n− 4 projective subspace and would
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like to invoke the definition of the degree. The problem, however, is that
this subspace is not going to be “general”. So we need a refined notion of
the degree that can be verified for a specific subspace.

§2.11. Transversality. Recall that any algebraic varietyX carries a structure
sheaf OX : for every Zariski open subset U ⊂ X , OX(U) is the ring of all
regular functions on U . If x ∈ X , then we also have

• The local ring OX,x of functions regular at x.
• mX,x ⊂ OX,x is the maximal ideal of functions vanishing at x.
• T ∗X,x = mX,x/m

2
X,x is the Zariski cotangent space of x. For every func-

tion f ∈ mX,x, its coset f + m2
X,x ∈ T ∗X,x is called the differential df .

This is a usual differential if X = An.
• TX,x = (mX,x/m

2
X,x)∗ is the Zariski tangent space of x.

We say that X is smooth (or non-singular) at x if

dimC TX,x = dimX

(and otherwise dimC TX,x > dimX). The locus of all smooth points is called
the smooth locus of X . It is Zariski open and dense. Its complement is called
the singular locus.

Let Y ⊂ X be an algebraic subvariety defined by a sheaf of radical ideals

IY ⊂ OX .

Namely, IY (U) ⊂ OX(U) is the ideal of functions that vanish along Y ∩ U .
For every y ∈ Y , we have the following.

• OY,y = OX,y/IY,y.
• TY,y ⊂ TX,y is a vector subspace defined by vanishing of differen-

tials df ∈ T ∗X,y of all functions f ∈ IY,y.
• If X is smooth at y and codimX Y = r then Y is smooth at y if

and only if one can find r functions f1, . . . , fr ∈ IY,y with linearly
independent differentials df1, . . . , dfr ∈ T ∗X,y (the Jacobian criterion).

For example, let’s consider DW = G(2, n)∩HW , where HW = {x12 = 0}.
Let’s describe this intersection in charts of the Grassmannian. DW is exactly
the complement of the chart U12 ⊂ G(2, n). In charts U1i and U2i for i ≥ 3,
the minor p12 reduces to a linear equation, so intersection of DW with any
of these charts is non-singular. In the remaining charts, DW is given by a
quadric a11a22 − a12a21 = 0. Its singular locus is

{a11 = a22 = a12 = a21 = 0},

a codimension 4 linear subspace. We see that DW is irreducible and its
singular locus has codimension 4.

2.11.1. DEFINITION. LetX be an algebraic variety with subvarieties Y andZ.
We say that Y and Z intersect properly if Y ∩ Z is either empty or

codimX(Y ∩ Z) = codimX Y + codimX Z.

These subvarieties intersect transversally at x ∈ Y ∩Z if X and Y and Z are
smooth at x and

TX,x = TY,x + TZ,x.
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One can prove that in this case Y ∩ Z is smooth at x and

TY ∩Z,x = TY,x ∩ TZ,x.
2.11.2. LEMMA. The Grassmannian G(2, n) intersects the hyperplane HW prop-
erly. The intersection is transversal away from the singular locus of DW .

Proof. This is essentially the same argument as above. The intersection is
not transversal at some point x if and the only if the tangent space toG(2, n)
at x is contained in the tangent space to HW at x. One can work in the
affine charts xij 6= 0 of P(n2)−1 and the corresponding charts pij 6= 0 of the
Grassmannian. The tangent space to HW is a hyperplane H = {x12 = 0}.
The tangent space to G(2, n) is contained in this hyperplane if and only
if the differential of the restriction of x12 to the Grassmannian vanishes.
But this restriction is the Plücker minor p12 and its differential vanishes
precisely along the singular locus of DW . �

We are going to invoke a powerful

2.11.3. THEOREM (Kleiman–Bertini). LetG be a complex algebraic group acting
regularly and transitively on an algebraic varietyX3. Let Y,Z ⊂ X be irreducible
subvarieties. Then, for a sufficiently general4 g ∈ G, subvarieties Y and gZ inter-
sect properly. Moreover, if x ∈ Y ∩ gZ is a smooth point of both Y and gZ then
these subvarieties will intersect transversally at x.

2.11.4. COROLLARY (Bertini’s Theorem). An irreducible subvariety Y ⊂ Pn
intersects a general hyperplane H ⊂ Pn (or a general projective subspace of fixed
dimension) properly and transversally at all smooth points of Y .

Proof. Apply Kleiman–Bertini to X = Pn, G = GLn+1, and Z = H . �

2.11.5. REMARK. In the set-up of Bertini Theorem one can prove more: Y ∩
H is non-empty (unless Y is a point) and irreducible (unless Y is a curve).

Applying Bertini’s theorem repeatedly, we see that ifX ⊂ Pn be a projec-
tive variety of dimension r then a general projective subspace of codimen-
sion r intersects X transversally in all intersection points. The following
refined definition of degree is a special case of a general principle called
“conservation of number”.

2.11.6. THEOREM. Let X ⊂ Pn be a projective variety of dimension r. If L is a
projective subspace of codimension r that intersects X transversally in all inter-
section points then X ∩ L is a finite union d points, where d = degX .

Proof of Theorem 2.10.1. We need to show that for sufficiently general codi-
mension 2 subspaces

W1, . . . ,W2n−4 ⊂ Pn−1,

the subspace
L = HW1 ∩ . . . ∩HW2n−4 ⊂ P(n2)−1

has codimension 2n− 4 and the intersection G(2, n)∩L is transversal at all
intersection points. Arguing by induction, it suffices to show

3We are going to discuss algebraic groups and their actions later. The only relevant case
for now is the transitive action of G = GLn(C) on X = G(k, n), for example on Pn−1.

4There exists a dense Zariski open subset U ⊂ G such that this is true for every g ∈ U .
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2.11.7. CLAIM. Let

Xi = G(2, n) ∩HW1 ∩ . . . ∩HWi ,

then Xi and HWi+1 intersect properly and transversally in P(n2)−1 at all points of
an open Zariski dense subset of Xi+1.

Equivalently, we need to show that Xi and DWi+1 intersect properly and
transversally inG(2, n) at all points of an open Zariski dense subset ofXi+1.
We note that GLn acts transitively on G(2, n) and

gDWi+1 = DgWi+1

for every g ∈ GLn. By the Kleiman–Bertini theorem, not only Xi ∩ DWi+1

but also the intersectionsXi∩SingDWi+1 and SingXi∩DWi+1 will be proper
for a sufficiently general subset Wi+1. In particular, they will have higher
codimension than Xi ∩ DWi+1 , and therefore Xi and DWi+1 will in fact be
smooth (and hence intersect transversally) at all points of an open Zariski
dense subset of Xi ∩DWi+1 . �

§2.12. Homework 1.

Problem 1. (2 points) Show that G(k, n) (as defined in the lecture notes)
is a second countable Hausdorff topological space.

Problem 2. (2 points) Let L1, L2, L3 ⊂ P3 be general lines. (a) Show
that there exists a unique smooth quadric surface S ⊂ P3 which contains
L1, L2, L3. (b) Use the previous part to give an alternative proof of the fact
that 4 general lines in P3 intersect exactly two lines.

Problem 3. (1 point) Identify C(n2) with the space of skew-symmetric n×n
matrices in such a way that G(2, n) becomes the projectivization of the set
of skew-symmetric matrices of rank 2 and Plücker quadrics become 4 × 4
sub-Pfaffians of an n× n skew-symmetric matrix.

Problem 4. (2 point) For any line L ⊂ P3, let [L] ∈ C6 be its Plücker
vector. The Grassmannian G(2, 4) ⊂ P5 is a quadric, and therefore can be
described as the vanishing set of a quadratic form Q, which has an associ-
ated inner product such that Q(v) = v · v. Describe this inner product in
coordinates and show that [L1] · [L2] = 0 if and only if L1 and L2 intersect.

Problem 5. (3 points) In the notation of the previous problem, show that
five given lines L1, . . . , L5 all intersect some line if and only if

det


0 [L1] · [L2] [L1] · [L3] [L1] · [L4] [L1] · [L5]

[L2] · [L1] 0 [L2] · [L3] [L2] · [L4] [L2] · [L5]
[L3] · [L1] [L3] · [L2] 0 [L3] · [L4] [L3] · [L5]
[L4] · [L1] [L4] · [L2] [L4] · [L3] 0 [L4] · [L5]
[L5] · [L1] [L5] · [L2] [L5] · [L3] [L5] · [L4] 0

 = 0

Problem 6. (2 points) Find a point ofG(3, 6) with exactly 14 non-vanishing
Plücker minors.

Problem 7. (2 points) Prove multiplicativity of initial terms

in(fg) = in(f) in(g)

of polynomials in lexicographic ordering.
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Problem 8. (1 point) Let C ⊂ P2 be an irreducible curve of degree d.
Compute its Hilbert function and Hilbert polynomial.

Problem 9. (1 point) Let p1, p2, p3 ∈ P2 be different points which (a) don’t
lie on a line or (b) lie on line. Compute the Hilbert function and the Hilbert
polynomial of the union X = {p1, p2, p3}.

Problem 10. (2 points) Let L1, L2 ⊂ P3 be skew lines. Compute the
Hilbert function and the Hilbert polynomial of the union X = L1 ∪ L2.

Problem 11. (3 points) Let X ⊂ Pn be a hypersurface and let FX ⊂
G(2, n) be the subset of all lines contained in X . Show that FX is a pro-
jective algebraic variety.

Problem 12. (3 points) For any point p ∈ P3 (resp. any plane H ⊂ P3)
let Lp ⊂ G(2, 4) (resp. LH ⊂ G(2, 4)) be a subset of lines containing p
(resp. contained in H). (a) Show that every Lp and LH is isomorphic to
P2 in the Plücker embedding ofG(2, 4). (b) Show that any P2 contained in
G(2, 4) ⊂ P5 has a form Lp or LH for some p or H .

Problem 13. (4 points) Consider the Segre map

ψ : Pn−1 × Pn−1 → Pn
2−1 = P(Matn,n),

ψ([x1 : . . . : xn], [y1 : . . . : yn]) = [x1y1 : . . . : xiyj : . . . : xnyn]

Its image is called the Segre variety. (a) Show that this map is an embedding
of complex manifolds. (b) Show that the homogeneous ideal of the Segre
variety in P(Matn,n) is generated by 2×2 minors aijakl−ailakj . (c) Compute
the Hilbert polynomial and the degree of the Segre variety.

Problem 14. (1 point) Let the symmetric group Sn act on Cn by permut-
ing coordinates. Show that the elementary symmetric functions

σ1 = x1 + . . .+ xn, . . . , σn = x1 . . . xn

form a complete set of invariants for this action.
Problem 15. (2 points) An alternative way of thinking about a matrix

X =

[
x11 . . . x1n

x21 . . . x2n

]
is that it gives n points p1, . . . , pn in P1 (with homogeneous coordinates
[x11 : x21], . . ., [x1n : x2n]) as long as X has no zero columns. Suppose n = 4
and consider the rational normal curve f : P1 ↪→ P3.

(a) Show that points f(p1), . . . , f(p4) lie on a plane if and only

F (X) = det


x3

11 x2
11x21 x11x

2
21 x3

21

x3
12 x2

12x22 x12x
2
22 x3

22

x3
13 x2

13x23 x13x
2
23 x3

23

x3
14 x2

14x24 x14x
2
24 x3

24

 = 0.

(b) Express F (X) as a polynomial in 2× 2 minors of the matrix X .

Problem 16. (3 points) Let Vi = 〈e1, . . . , ei〉 ⊂ Cn for i = 0, . . . , n,

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn = Cn.
Fix integers n− 2 ≥ a ≥ b ≥ 0 and define the Schubert variety

Wa,b ⊂ G(2, n) consists of all subspaces U such that
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dim(U ∩ Vk) =


0 if k < n− 1− a
1 if n− 1− a ≤ k < n− b
2 if n− b ≤ k.

(a) Show that W 1,0 is D〈e1,...,en−2〉 from the lecture notes.
(b) Show that Wa,b is isomorphic to C2(n−2)−a−b.
(c) Use part (b) to compute the topological Euler characteristic ofG(2, n).

§3. Fine moduli spaces

In this section we introduce a functorial (or categorical) language for
dealing with moduli problems. First we remind basic definitions.

§3.1. Categories. Most mathematical theories deal with situations when
there are some maps between objects. The set of objects is usually some-
what static (and so boring), and considering maps makes the theory more
dynamic (and so more fun). Usually there are some natural restrictions on
what kind of maps should be considered: for example, it is rarely interest-
ing to consider any map from one group to another: usually we require this
map to be a homomorphism. The notion of a category was introduced by
Samuel Eilenberg and Saunders MacLane to capture tsituations when we
have both objects and morphisms between objects. This notion is a bit ab-
stract (hence the moniker abstract nonsense), but extremely useful in moduli
theory. Before we give a rigorous definition, here are some examples of
categories. For each category we describe objects and morphisms:

3.1.1. EXAMPLE.
• Sets: objects are sets, morphisms are functions between sets.
• Groups: groups, homomorphisms of groups.
• Ab: abelian groups, homomorphisms of abelian groups
• Rings: rings, homomorphisms of rings.
• Vectk: k-vector spaces, linear maps.
• ModR: R-modules, homomorphisms of R-modules.
• Top: topological spaces, continuous functions.
• Mflds: smooth manifolds, differentiable maps
• CpxMflds: complex manifolds, holomorphic maps
• Vark: algebraic varieties over a field k, regular maps

In all these examples composition of morphisms is well-defined and as-
sociative (because in these examples morphisms are functions and compo-
sition of functions is associative). Associativity of composition is a sacred
cow of mathematics, and essentially the only axiom of a category:

3.1.2. DEFINITION. A category C consists of the following data:
• The set of objects Ob(C). Instead of writing “X is an object in C”,

we can write X ∈ Ob(C), or even X ∈ C.
• The set of morphisms Mor(C). Every morphism f is a morphism

from an object X to an object Y . It is common to denote a morphism

by an arrow X
f−→Y . Formally, Mor(C) is a disjoint union of sub-

sets MorC(X,Y ) over all X,Y ∈ C.
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• Composition law for morphisms, i.e. a function

MorC(X,Y )×MorC(Y,Z)→ MorC(X,Z), (f, g) 7→ g ◦ f

which takesX
f−→Y and Y

g−→Z to the morphism denotedX
g◦f−→Z

even though it doesn’t have to be composition of functions.

• For each object X ∈ C, we have an identity morphism X
IdX−→X .

These data should satisfy the following axioms:
• Composition is associative.

• Composition of any morphism X
f−→Y with X

IdX−→X (resp. with

Y
IdY−→Y ) is equal to f .

Beginners typically focus on objects, but morphisms are more important.
In fact, one can define very interesting categories with just one object:

3.1.3. EXAMPLE. Let G be a group. Then we can define a category C with
just one object (let’s denote it by ·) and with

Mor(C) = Mor(·, ·) = G.

The composition law is just the composition law in the group and the iden-
tity element IdO is just the identity element of G.

3.1.4. DEFINITION. A morphism X
f−→Y is called an isomorphism if there

exists a morphism Y
g−→X (called an inverse of f ) such that

f ◦ g = IdY and g ◦ f = IdX .

In the example above, every morphism is an isomorphism. Namely, an
inverse of any element of Mor(C) = G is its inverse in G. A category
where every morphism is an isomorphism is called a groupoid, because ev-
ery groupoid with one object corresponds to some groupG. Indeed, axioms
of the group (associativity, existence of a unit, existence of an inverse) trans-
late into axioms of the groupoid (associativity of the composition, existence
of an identity morphism, existence of an inverse morphism).

Of course not every category with one object is a groupoid and not every
groupoid has only one object.

3.1.5. EXAMPLE. Fix a field k and a positive integer n. We can define a
category C with just one object (let’s denote it by ·) and with

Mor(C) = Matn,n .

The composition law is given by the multiplication of matrices. The iden-
tity element IdO is just the identity matrix. In this category, a morphism is
an isomorphism if and only if the corresponding matrix is invertible.

Here is an interesting example of a category with a different flavor:

3.1.6. EXAMPLE. Recall that a partially ordered set, or a poset, is a set I with
an order relation �which is

• reflexive: i � i for any i ∈ I ,
• transitive: i � j and j � k implies i � k, and
• anti-symmetric: i � j and j � i implies i = j.
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For example, we can take the usual order relation ≤ on real numbers, or
divisibility relation a|b on natural numbers (a|b if a divides b). Note that in
this last example not any pair of elements can be compared.

Interestingly, we can view any poset as a categoryC. Namely, Ob(C) = I
and for any i, j ∈ I , Mor(i, j) is an empty set if i 6� j and Mor(i, j) is a set
with one element if i � j. The composition of morphisms is defined using
transitivity of �: if Mor(i, j) and Mor(j, k) is non-empty then i � j and
j � k, in which case i � k by transitivity, and therefore Mor(i, k) is non-
empty. In this case Mor(i, j), Mor(j, k), and Mor(i, k) consist of one element
each, and the composition law Mor(i, j)×Mor(j, k)→ Mor(i, k) is defined
in a unique way. Notice also that, by reflexivity, i � i for any i, hence
Mor(i, i) contains a unique morphism: this will be our identity morphism.

3.1.7. EXAMPLE. Let X be a topological space. Let I be the set of open sub-
sets of X ordered by inclusion of open sets U ⊂ V . This is a poset. The
corresponding category is denoted by Top(X).

§3.2. Functors.

3.2.1. DEFINITION. A covariant functor F from a category C to a category D
is a rule that, for each object X ∈ C, associates an object F (X) ∈ D, and

for each morphism X
f−→Y , associates a morphism F (X)

F (f)−→F (Y ). Two
axioms have to be satisfied:

• F (IdX) = IdF (X) for any X ∈ C.

• F preserves composition: for any X
g−→Y and Y

f−→Z, we have
F (f ◦ g) = F (f) ◦ F (g).

3.2.2. DEFINITION. A contravariant) functor F from a category C to a cate-
gory D is a rule that, for each object X ∈ C, associates an object F (X) ∈ D,

and for each morphism X
f−→Y , associates a morphism F (Y )

F (f)−→F (X).
Two axioms have to be satisfied:

• F (IdX) = IdF (X) for any X ∈ C.

• F preserves composition: for any X
g−→Y and Y

f−→Z, we have
F (f ◦ g) = F (g) ◦ F (f).

3.2.3. REMARK. One can avoid discussion of contravariant functors by defin-
ing an opposite category Dop which has the same objects as D and all arrows
are reversed: MorDop(X,Y ) := MorD(Y,X). A contravariant functor from
C to D is the same thing as a covariant functor from C to Dop. However,
the most important functor we are going to be interested in (the functor of
points) is contravariant so we prefer to use this terminology.

3.2.4. EXAMPLE. Let’s give some examples of functors.
• Inclusion of a subcategory, for example a functor

Ab→ Groups

sends every Abelian group G to itself (viewed simply as a group)

and every homomorphismG
f−→H of Abelian groups to itself (viewed

as a homomorphism of groups).
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• More generally, we have various forgetful functors C → D. This is
not a rigorous notion, it simply means that objects (and morphisms)
of C are objects (and morphisms) of D with some extra data and
some restrictions on this data. The forgetful functor simply ‘forgets’
extra data. For example, a forgetful functor Vectk → Sets sends
every vector space to the set of its vectors and every linear map
to itself (viewed as a function from vectors to vectors). Here we
‘forget’ that we can add vectors and multiply them by scalars, and
that linear maps are linear!
• The duality Vectk → Vectk is a contravariant functor that sends

every vector space V to the vector space V ∗ of linear functions on V .
A linear map L : V → U goes to a linear map L∗ : U∗ → V ∗, which
sends a linear function f ∈ U∗ to a linear function v 7→ f(L(v)).
• A similar contravariant functor is a functor Vark → Rings that

sends an algebraic variety X to its coordinate ring k[X] and a reg-

ular map X
f−→Y to the pull-back homomorphism f∗ : k[Y ] → k[X]

(just compose a function on Y with f to get a function on X).
• Here is an important variation: fix an algebraic variety X and con-

sider a functor Top(X) → Rings that sends every Zariski open
subset U ⊂ X to the ring OX(U) of functions regular on U . For
every inclusion U ⊂ V of open sets, the pull-back homomorphism
OX(V )→ OX(U) is just the restriction of regular functions.
• A contravariant functor Top(X) → Sets (or→ Ab,→ Rings, . . . )

is called a presheaf of sets (of abelian groups, of rings, . . . ) on the
topological space X . For example, OX is a presheaf. In fact it satis-
fies additional gluing axioms of a sheaf.

§3.3. Equivalence of Categories. It is tempting to consider a category of
all categories with functors as morphisms. Indeed, we can define compo-

sition of functors C F−→D and D
G−→E in an obvious way, and we have

identity functors C IdC−→C that do not change objects or morphisms. There
are set-theoretic issues with this super category, but we are going to ignore
them. An interesting question though is when to consider two categories
C and D equivalent? Categories C and D are isomorphic if there exist func-

tors C F−→D and D
G−→C that are inverses of each other. However, this

definition is too restrictive to be useful. Here is a typical example why:

3.3.1. EXAMPLE. Let D be a category of finite-dimensional k-vector spaces
and let C be its subcategory that has only one object in each dimension n,
namely the standard vector space kn of column vectors. Notice that

MorC(kn, km) = Matm,n

in the usual way of linear algebra. The categories C and D are not isomor-
phic, because D contains all sorts of vector spaces in every dimension and
C contains only kn. However, the main point of linear algebra is that C is
sufficient to do any calculation, because any n-dimensional vector space V
is isomorphic to kn “after we choose a basis in V ”. It turns out that this
reflects the fact that C and D are equivalent categories.
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3.3.2. DEFINITION. A covariant functor C F−→D is called an equivalence of
categories if

• F is essentially surjective, i.e. every object in D is isomorphic to an
object of the form F (X) for some X ∈ C.
• F is fully faithful, i.e.

MorC(X,Y ) = MorD(F (X), F (Y ))

for any objects X,Y ∈ C.

3.3.3. EXAMPLE. Consider “linear-algebra” categories above. We claim that
an obvious inclusion functor F : C → D is an equivalence of categories.
To show that F is essentially surjective, take V ∈ D, an n-dimensional
vector space. Then V is isomorphic to kn, indeed any choice of a basis
e1, . . . , en ∈ V gives an isomorphism V → kn which sends v ∈ V to the
column vector of its coordinates in the basis {ei}. Notice that F is also fully
faithful: linear maps from kn to km are the same in categories C and D.
So F is an equivalence of categories.

Our definition is not very intuitive because it is not clear that equivalence
of categories is an equivalence relation! We postpone the general statement
until exercises and just look at our example: is there an equivalence of cat-
egories G : D → C? For every n-dimensional vector space V , there is only
one obvious candidate for G(V ), namely kn. Are we done? No, because
we also have to define G(L) for every linear map L : V → U . This has to
be a matrix, but to write a matrix of L we need to make a choice of a basis
in every vector space V . In other words, let’s choose a linear isomorphism
IV : V → kn for every n-dimensional vector space V . Then we can define
G(L) : kn → km as the composition

kn
I−1
V−→V

G−→U
IU−→ km.

In more down-to-earth terms, G(L) is a matrix of L in coordinates associ-
ated to our choice of bases in V and in U . It is immediate that G is essen-
tially surjective (in fact just surjective) and fully faithful: linear maps from
V to U are identified with linear maps from kn to km. This shows that there
is no “canonical” choice for G: unlike F , G is not unique!

3.3.4. EXAMPLE. A similar example from algebraic geometry is equivalence
of the category of irreducible affine algebraic sets X ⊂ An and the cate-
gory of finitely generated k-algebras without zero-divisors and homomor-
phisms between them. Recall that a morphism from X ⊂ An to Y ⊂ Am
is simply the restriction of a polynomial mapping F : An → Am such that
F (X) ⊂ Y . In one direction, the functor associates to X ⊂ An the coor-
dinate ring k[X] = k[x1, . . . , xn]/I(X) and to morphism f : X → Y the
pullback homomorphism f∗ : k[Y ] → k[X]. It is straightforward to see
that this functor is essentially surjective and fully faithful, and therefore
an equivalence of categories. To construct an equivalence in the opposite
direction, one needs to make a choice of generators in every finitely gen-
erated k-algebra R without zero-divisors. This choice allows to present R
as the quotient of the polynomial algebra k[x1, . . . , xn] by some ideal I , the
algebraic set X will be V (I), the vanishing set of that ideal.
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§3.4. Representable Functors. Now we got to the core of applications of
categories to moduli problems and to algebraic geometry in general: a bril-
liant idea of Grothendieck to study any object X ∈ C by poking it with
other objects of C. As a motivation, if X is an algebraic variety then we can
easily recover the set of points of X as

MorVar(pt,X).

But of course we will lose all geometric information about X . As it turns
out, one can recover all of it by considering morphisms from all algebraic
varieties Y to X , not just the point. A morphism from Y to X is called a
Grothendieck’s Y -point of X . This is packaged into the functor of points hX :

3.4.1. DEFINITION. A contravariant functor of points hX is a functor

hX : C → Sets

that sends every Y ∈ C to the set of morphisms MorC(Y,X) and every

morphism Y1
f−→Y2 to the function

Mor(Y2, X)→ Mor(Y1, X), α 7→ α ◦ f.
The main game in town is to start with a contravariant functor and try to
guess, is it a functor of points of some object X?

3.4.2. EXAMPLE. Take a functor Vark → Sets that sends every algebraic

variety X to its coordinate ring k[X] and every regular map X
f−→Y to

the pull-back homomorphism. Is it a functor of points of some algebraic
variety? A regular function f on X is the same data as a regular map f :
X → A1. It follows that the functor is functor of points of A1!

§3.5. Natural Transformations. As Maclane famously said: "I did not in-
vent category theory to talk about functors. I invented it to talk about natu-
ral transformations." So what is a natural transformation? It is a map form
one functor to another! Let’s start with an example that explains why we
might need such a thing.

3.5.1. EXAMPLE. Recall that for every vector space V , we have a “natural”
linear map

αV : V → V ∗∗

(in fact an isomorphism if dimV < ∞) that sends a vector v ∈ V to the
linear functional f 7→ f(v) on V ∗. What’s so “natural” about this map?
One explanation is that αV does not depend on any choices. But this is a
“linguistic” explanation, can we define naturality mathematically?

Let’s study the effect of αV on morphisms. Let U L−→V be a linear map.
We also have our “natural” linear maps αU : U → U∗∗ and αV : V →
V ∗∗. By taking a dual linear map twice, we have a linear map U∗∗ L

∗∗
−→V ∗∗.

To summarize, we have a square of linear maps:

U
αU
> U∗∗

V

L

∨
αV
> V ∗∗

L∗∗

∨
(3.5.2)
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A key observation is that this diagram is commutative. Indeed, pick u ∈ U .
Then we claim that

αV (L(u)) = L∗∗(αU (u)).

Both sides of this equation are elements of V ∗∗, i.e. linear functionals on V ∗.
The functional on the LHS takes f ∈ V ∗ to f(L(u)). The functional on the
RHS takes f ∈ V ∗ to

αU (u)(L∗(f)) = L∗(f)(u) = f(L(u)).

If this calculation looks confusing, just redo it yourself!

Now let’s give a general definition.

3.5.3. DEFINITION. Let F,G : C → D be two covariant functors. A natural
transformation α : F → G between them is a rule that, for each object X ∈
C, assigns a morphism F (X)

αX−→G(X) in D such that for any morphism

X1
f−→X2 in C, the following diagram is commutative:

F (X1)
αX1> G(X1)

F (X2)

F (f)
∨

αX2

> G(X2)

G(f)
∨

(3.5.4)

If αX is an isomorphism for any X then α is called a natural isomorphism.
Natural transformation of contravariant functors is defined similarly.

3.5.5. EXAMPLE. Let Vectk be the category of vector spaces over k. Con-
sider two functors: the identity functor Id : Vectk → Vectk and the “dou-
ble dual” functor D : Vectk → Vectk that sends every vector space V
to V ∗∗ and every linear map L : U → V to a double dual linear map
L∗∗ : U∗∗ → V ∗∗. We claim that there is a natural transformation from Id
to D (and in fact a natural isomorphism if we restrict to a subcategory of
finite-dimensinal vector spaces). All we need is a rule αV for every vector
space V : it should be a morphism, i.e. a linear map, from Id(V ) = V to
D(V ) = V ∗∗ such that (3.5.4) is satisfied for any morphism U → V . This is
exactly the linear map constructed above.

3.5.6. DEFINITION. Let F : C → Sets be a contravariant functor. If F is
naturally isomorphic to a functor of points hX of some object X ∈ C then
we say that F is representable by X .

3.5.7. DEFINITION. A moduli functor is a contravariant functor

M : Vark → Sets.

If this functor is representable by an algebraic variety M , we say that M is
a fine moduli space of the functorM.

§3.6. Yoneda’s Lemma. A powerful general result is that hX determinesX
up to isomorphism. The following is a weak version:

3.6.1. LEMMA. Let X,Y be two objects in a category C. Suppose we have a nat-
ural isomorphism of representable functors α : hX → hY . Then X and Y are
isomorphic, in fact α gives a canonical choice of such an isomorphism.
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Proof. Indeed, α gives, for any object Z in C, a bijection

αZ : Mor(Z,X)→ Mor(Z, Y )

such that for each morphism Z1 → Z2 we have a commutative diagram

Mor(Z1, X)
αZ1> Mor(Z1, Y )

Mor(Z2, X)

∧

αZ2

> Mor(Z2, Y )

∧

where the vertical arrows are obtained by composing with Z1 → Z2. In
particular, we have bijections

Mor(X,X)
αX−→Mor(X,Y ) and Mor(Y,X)

αY−→Mor(Y, Y ).

We define morphisms

f = αX(IdX) ∈ Mor(X,Y ) and g = α−1
Y (IdY ) ∈ Mor(Y,X).

We claim that f and g are inverses of each other, and in particular X and
Y are isomorphic via f and g. Indeed, consider the commutative square
above when Z1 = Y , Z2 = X , and the morphism from Y to X is g. It gives

Mor(Y,X)
αY
> Mor(Y, Y )

Mor(X,X)

◦g
∧

αX
> Mor(X,Y )

◦g
∧

Let’s take IdX ∈ Mor(X,X) and compute its image in Mor(Y, Y ) in two dif-
ferent ways. If we go horizontally, we first get αX(IdX) = f ∈ Mor(X,Y ).
Then we take its composition with Y

g−→X to get f ◦ g ∈ Mor(Y, Y ). If
we go vertically first, we get g ∈ Mor(Y,X). Then we get αY (g) = IdY ,
because g = α−1

Y (IdY ). So we see that f ◦ g = IdY . Similarly, one can show
that f ◦ g = IdX , i.e. f and g are inverses of each other. �

3.6.2. COROLLARY. A moduli functor can have only one fine moduli space up to
(canonical) isomorphism.

Even better, one has the following full version of Yoneda’s lemma:

3.6.3. LEMMA. Let C be a category. For every object X of C, consider its functor

of points hX : C → Sets. For every morphism X1
f−→X2, consider a natural

transformation hX1 → hX2 defined as follows: for any object Y of C, the function

αY : hX1(Y ) = Mor(Y,X1)
f◦−→Mor(Y,X2) = hX2(Y )

is just a composition of g ∈ Mor(Y,X1) with X1
f−→X2. This gives a functor

from C to the category of contravariant functors C → Sets (with natural trans-
formations as morphisms). This functor is fully faithful, i.e. the set of morphisms
MorC(X1, X2) is identified with the set of natural transformations hX1 → hX2 .
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Proof. Suppose we are given a natural transformation α : hX1 → hX2 . Ap-
plying αX1 to IdX1 ∈ Mor(X1, X1) gives some morphism f ∈ Mor(X1, X2).
We claim that this establishes a required bijection between Mor(X1, X2) and
natural transformations hX1 → hX2 .

Start with f ∈ Mor(X1, X2). Then αX1 : Mor(X1, X1) → Mor(X1, X2) is
obtained by composing with f . In particular, αX1(IdX1) = f .

Now let us start with a natural transformation α : hX1 → hX2 . Then

f := αX1(IdX1) ∈ Mor(X1, X2).

This morphism in turn defines a natural transformation β : hX1 → hX2 .
We have to show that α = β, i.e. that for any Y ∈ C, the map αY :
Mor(Y,X1) → Mor(Y,X2) is just a composition with f . The argument is
the same as in the previous Lemma. Start with any g ∈ Mor(Y,X1) and
consider a commutative square

Mor(Y,X1)
αY
> Mor(Y,X2)

Mor(X1, X1)

∧

αX1

> Mor(X1, X2)

∧

where the vertical maps are compositions with Y
g−→X1. Take IdX1 and

chase it along the diagram. We get

g
αY
> αY (g) = f ◦ g

IdX1

∧

αX1

> f

∧

So αY (g) is exactly what we want: composition of f with g. �

Constructing morphisms of algebraic varieties X → Y can be tricky.
Yoneda’s Lemma shows that if we have a good grasp of hX and hY , we
can instead construct a natural transformation α : hX → hY . This is espe-
cially useful for constructing morphisms between fine moduli spaces.

§3.7. Grassmannian as a fine moduli space. Let’s re-examine the Grass-
mannian as a fine example of a fine moduli space. What is the correspond-
ing moduli functor? A point of G(k, n), i.e. a morphism

pt→ G(k, n)

is given by a k-dimensional subspace of Cn. Likewise, we would like to
think about a Grothendieck’s point of G(k, n), i.e. a morphism

X → G(k, n)

as a a “family” of k-dimensional subspaces of Cn parametrized by X . To
make this rigorous, let’s recall the definition of a vector bundle.

3.7.1. DEFINITION. A trivial vector bundle over an algebraic variety X with
the fiber Cr is the product X × Cr along with the projection

π : X × Cr → X.
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More generally, an r-dimensional vector bundle over an algebraic variety X
is an algebraic variety E and a surjective morphism

π : E → X

with the following additional data and properties:
• There exists a covering X =

⋃
Uα called an atlas and

• isomorphisms (called trivializations)

ψα : π−1(Uα)→ Uα × Cr, p2 ◦ ψα = π

• Such that transition functions, i.e. functions

(Uα ∩ Uβ)× Cr
ψβ◦ψ−1

α−→ (Uα ∩ Uβ)× Cr

over overlaps Uα ∩ Uβ are OX -linear, i.e. take

(x, v) 7→ (x, φαβ(x)v),

where φαβ(x) is an invertible r×r matrix with entries inO(Uα∩Uβ).
An atlas is of course not unique, for example any covering finer than an
atlas is also an atlas. The number r is called the rank of a vector bundle.
A vector bundle of rank 1 is called a line bundle.

3.7.2. REMARK. Given an atlas X =
⋃
Uα and regular functions

φαβ : Uα ∩ Uβ → GLr,

a vector bundle with transition functions φαβ exist if and only if they satisfy
the cocycle condition

φβγ ◦ φαβ = φαγ

on all triple overlaps Uα ∩ Uβ ∩ Uγ .

3.7.3. DEFINITION. Vector bundles on an algebraic variety X form a cate-
gory with morphisms defined as follows: a map of vector bundles

(E, pE)→ (F, pF )

is a regular map of underlying algebraic varieties L : E → F which com-
mutes with projections

πF ◦ L = πE

and such that L is given by linear transformations in one (and therefore
any) atlas {Uα}which trivializes both E and F .

Concretely, if ψα : π−1
E (Uα)→ Uα × Cr and φα : π−1

F (Uα)→ Uα × Cs are
trivializations of E and F then the map

φα ◦ L ◦ ψ−1
α : Uα × Cr → Uα × Cs

takes
(x, v) 7→ (x, Lα(x)v),

where Lα(x) is an s × r matrix with entries in O(Uα). If E ⊂ F and the
inclusion is the map of vector bundles then E is called a sub-bundle of F .
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3.7.4. EXAMPLE. The universal (or tautological) bundle of rank k on the Grass-
mannian G(k, n) is defined as follows:

U = {([U ], v) | v ∈ U} ⊂ G(k, n)× Cn.

Its fiber at a point that corresponds to a subspace U ⊂ Cn is U itself.
We claim that U is a vector bundle, in fact a subbundle of the trivial bun-
dle with fiber Cn. Indeed, it is trivialized in standard affine charts UI of the
Grassmannian where the Plücker coordinate pI 6= 0. For example, let’s take
k = 2 and consider the chart U = U12 defined by p12 6= 0. At any point of
this chart, rows (v1, v2) of the matrix

A =

[
v1

v2

]
=

[
1 0 a13 a14 . . . a1n

0 1 a23 a24 . . . a2n

]
give a basis of the corresponding subspace in Cn. The trivialization of U is
defined as follows:

φ−1 : U × C2 → π−1(U),

(u, z1, z2) 7→ (u, z1v1 + z2v2) ∈ U × Cn.
In the matrix form,

(z1, z2) 7→ (z1, z2)A = (z1, z2)A−1
I A.

The last formula has an advantage that we don’t have to assume that the
matrix A has a standard form with AI = Id. What are the transition func-
tions? Trivialization in the chart pJ 6= 0 has form

(z′1, z
′
2) 7→ (z′1, z

′
2)A−1

J A.

Therefore, the transition functions are

(z1, z2) 7→ (z′1, z
′
2) = (z1, z2)A−1

I AJ , A−1
I AJ ∈ GL2 .

To the define the Grassman functor, we also need the notion of pull-back
for vector bundles:

3.7.5. DEFINITION. Let π : E → Y be a vector bundle and f : X → Y
a morphism of algebraic varieties. We define the pull-back vector bundle
on X as follows:

f∗E = {(x, v) | f(x) = π(v)} ⊂ X × E.
The projection map f∗π : f∗E → X is induced by the first projection pr1 :
X×E → X . To see that f∗E is indeed a vector bundle, we can first assume
that E is trivial (by trivializing it), in which case f∗E is clearly also a trivial
vector bundle of the same rank. A trivializing atlas for f∗E can be obtained
by taking preimages of open sets in a trivializing atlas of E and transition
functions for f∗E are pullbacks of transition functions for E. If E ⊂ F is a
subbundle then f∗E is also naturally a subbundle of f∗E.

3.7.6. DEFINITION. A contravariant Grassmann functor

G(k, n) : Algebraic V arieties→ Sets

sends every algebraic variety X to the set G(k, n)(X) of all rank k subbun-
dles E of the trivial vector bundle X × Cn. A morphism f : X → Y gives
a function G(k, n)(Y )→ G(k, n)(X), namely the pull-back E 7→ f∗E.
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Notice that as sets
G(k, n) = G(k, n)(point)

because both sides parametrize k-dimensional subspaces of Cn.

3.7.7. PROPOSITION. G(k, n) is represented by G(k, n). Thus the Grassmannian
is a fine moduli space of the Grassmann functor.

Proof. Let E be a rank k subbundle E of the trivial vector bundle X × Cn.
Then we have a map of sets

fE : X → G(k, n), x 7→ π−1(x) ⊂ Cn.
What are the properties of this map? Let U ⊂ X be a trivializing chart with
trivialization ψ : π−1

E (U) → U × Ck. Composing ψ−1 with the embedding
of E into X × Cn gives a map of trivial vector bundles

U × Ck → U × Cn,
which is given by an k × n matrix A with coefficients in OX(U).

In other words, restriction of the map fE : X → G(k, n) to U ⊂ X fac-
tors as the composition of the map U → Mat0(k, n) given by the matrix A
and the map Mat0(k, n) → G(k, n) which sends a matrix to its row space.
In particular, fE |U is a morphism of algebraic varieties, and therefore the
same is true for fE .

It is clear from the definitions that fE completely determines E, specifi-
callyE is the pull-back of the universal bundle of the Grassmannian (inside
the trivial bundle):

E = f∗EU ⊂ X × Cn.
To summarize, given a k-dimensional subbundle (E, π) of a trivial bundle
X × Cn, there exists a unique map fE : X → G(2, n) such that f∗EU = E as
a subbundle of the trivial bundle X × Cn = f∗E [G(2, n)× Cn].

By definition of an isomorphism of functors, we have to associate to ev-
ery algebraic variety X a bijection

ηX : Mor(X,G(k, n))→ G(k, n)(X).

This is exactly what we have done above: ηX(f) := f∗U . This bijection
should be such that, for every morphism g : X → Y , we have

ηY ◦ hG(2,n)(g) = G(2, n)(g) ◦ ηX ,
which translates into (f ◦ g)∗U = g∗f∗U . �

3.7.8. EXAMPLE. Let’s re-examine the projective space Pn = G(1, n+1) from
this point of view. The universal line bundle is denoted by

OPn(−1) = {(L, v) | v ∈ L} ⊂ Pn × Cn+1.

So Pn represents a functor

Algebraic V arieties→ Sets

which sends every algebraic variety X to the set of all line sub-bundles L
of the trivial vector bundle X × Cn+1. Given this subbundle, we have an
obvious map X → Pn which sends x ∈ X to the fiber of L over x (viewed
as a line in Cn+1). And L is then a pull-back of OPn(−1) inside the trivial
line bundle X × Cn+1.
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In algebraic geometry it is more common to use an isomorphic functor.
To define it, we need the following standard definitions.

3.7.9. DEFINITION. Let π : E → X be a vector bundle on an algebraic va-
riety. A morphism s : X → E is called a global section if π ◦ s = IdX . All
global sections form a C-vector space denoted by H0(X,E). Any linear
map of vector bundles L : E → F on X induces a linear map

H0(X,E)→ H0(X,F ), s 7→ L ◦ s.

3.7.10. DEFINITION. A line bundle π : L → X is called globally generated if
for every x ∈ X there exists a global section s ∈ H0(X,E) such that

s(x) 6= 0.

3.7.11. THEOREM. Pn represents a functor

Algebraic V arieties→ Sets

which sends every algebraic variety X to the set of isomorphism classes of data

{L∗; s0, . . . , sn},

where L∗ is a globally generated line bundle on X and

s0, . . . , sn ∈ H0(X,L∗)

have the property that for every x ∈ X , there exists at least one si such that
si(x) 6= 0. The universal family on Pn is given by {OPn(1); z0, . . . , zn}

Given a datum {L∗; s0, . . . , sn} onX , the corresponding morphism to Pn sends
x ∈ X to a point with homogeneous coordinates [s0(x) : . . . : sn(x)], where we
identify the fiber of L∗ over x with C linearly.

Proof. We just have to construct an isomorphism of the new functor with
our old functor of all possible inclusions i : L ↪→ X × Cn+1. First we
dualize the inclusion to obtain the surjection of vector bundles

α : X × (Cn+1)∗ � L∗

(surjection on each fiber!). Given α, we can define n + 1 global sections
s0, . . . , sn of L∗ by taking images of constant global sections of X× (Cn+1)∗

which send every point x ∈ X to z0, . . . , zn ∈ (Cn+1)∗, standard coordinate
functions on Cn+1. And vice versa, suppose we have global sections

s0, . . . , sn ∈ H0(X,L∗)

such that for every x ∈ X we have si(x) 6= 0 for some i. Then we can define
α by sending (x, zi) to (x, si(x)) and extending linearly. �

3.7.12. EXAMPLE. Let’s re-examine the Plücker embedding from the functo-
rial point of view. According to Yoneda’s lemma, constructing a morphism

G(k, n)→ P(nk)−1

is equivalent to describing a natural transformation from the Grassmann
functor to the projective space functor. Thus, for every algebraic variety X ,
we have to construct a function ηX that sends every rank k subbundle E of



36 JENIA TEVELEV

the trivial bundleX×Cn to a line subbundle of the trivial bundleX×C(nk).
This is given by the top exterior power of the vector bundle

ΛkE ⊂ ΛkCn.
Indeed, applying this to the universal bundle of the Grassmannian takes a
point U ∈ G(k, n) given by a k× n matrix A to the top exterior power of its
row space (the fiber of the universal bundle). Concretely, A goes to

(a11e1 + . . .+ a1nen) ∧ . . . ∧ (ak1e1 + . . .+ aknen) =
∑
I

pI(A)ei1 ∧ . . . ∧ eik ,

which is exactly the Plücker embedding.

So far we defined moduli functors as arbitrary contravariant functors

M : Algebraic V arieties→ Sets,

which is the only possible rigorous mathematical definition. In practice,
M(X) is usually the set of isomorphism classes of “families of geometric
objects” parametrized byX , which often (but not always) mean morphisms

π : E → X

such that “fibers” of π are geometric objects of interest. Typically there are
various additional assumptions on π and E. In the case of G(k, n), E has to
be a subbundle of the trivial bundle Cn. For a morphism f : X → Y , the
corresponding function

M(f) : M(Y )→M(X)

is often called the pull-back and denoted by f∗. Specifically, in many cases,

f∗E = X ×Y E = {(x, e) | f(x) = π(e)} ⊂ X × E
is the fiber product, which we will discuss in detail later. We can recover the
set of isomorphism classes of our objects asM(point). If this set-up, the fine
moduli space M (if it exists) should have a “universal” family U ∈ M(M)
such that every family E on X is a pull-back of U with respect to a unique
morphism f : X →M .

3.7.13. EXAMPLE. For a simple example of a moduli functor without a fine
moduli space, consider the functor

P : Algebraic V arieties→ Sets

which sends every algebraic variety X to its Picard group Pic(X) of all
line bundles on X modulo isomorphism. To a morphism f : X → Y we
associate a pull-back of line bundles f∗ : Pic(Y ) → Pic(X), which turns
P into a functor. We claim that it is not representable. Indeed, suppose it
is representable by an algebraic variety P . The set of points of P will be
identified with Pic(point), which is just a one-element set, the trivial line
bundle C on the point. So P = point. But then every line bundle on every
X will be a pull-back of the trivial line bundle on the point, i.e. will be
trivial, which of course is not the case.

3.7.14. REMARK. The same argument will work for every moduli functor of
families with isomorphic fibers, for example for the functor of isomorphism
classes of vector bundles, P1-bundles, etc.
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3.7.15. REMARK. I am not assuming familiarity with schemes, in fact I will
use moduli problems as an excuse to introduce schemes. But if you know
what they are, notice the argument above will be a bit harder if one works
with algebraic schemes instead of algebraic varieties. Indeed, there is only
one algebraic variety with one point, but there are plenty of schemes with
one point, for example SpecC[t]/(tk) for every k > 0.

After the projective line P1, the easiest algebraic curve to understand is
an elliptic curve (a Riemann surface of genus 1). Let

M1 = {isom. classes of elliptic curves}.

We are going to assign to each elliptic curve a number, called its j-invariant
and prove that as a set

M1 = A1
j .

We will define the moduli functor M1 of families of elliptic curves and
show that it has no fine moduli space! We will discuss various ways to fix
this. For example, we will show that A1 is a coarse moduli space ofM1.

More generally, we introduce

Mg = {isom. classes of smooth projective curves of genus g}

and

Mg,n =

{
isom. classes of smooth projective curves C of genus g

with n distinct points p1, . . . , pn ∈ C

}
.

In order to understand these spaces, we need to study GIT. The only excep-
tion is M0,n, which is very easy to describe. Indeed, it is well-known that
every 3 distinct points pn−2, pn−1, pn ∈ P1 can be send to 0, 1,∞ by a unique
automorphism of P1 (fractional linear transformation z 7→ az+b

cz+d ). ThusM0,n

can be identified with an open subset of (P1)n−3 of points (p1, . . . , pn−3)
such that pi 6= 0, 1,∞ for every i and pi 6= pj for every i 6= j.

§4. Algebraic curves and Riemann surfaces

We start with a review of basic facts about projective algebraic curves.
Over complex numbers, the theory is equivalent to the study of compact
Riemann surfaces and we frequently use both approaches.

§4.1. Elliptic and Abelian integrals. The theory of algebraic curves has its
roots in analysis. In 1655 Wallis began to study the arc length of an ellipse

X2

A2
+
Y 2

B2
= 1.

The equation can be solved for Y

Y = (B/A)
√

(A2 −X2),

differentiated

Y ′ =
−BX

A
√
A2 −X2

,
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squared and put into the integral L =
∫ √

1 + (Y ′)2 dX for the arc length.
Now the substitution x = X/A results in

L/A =

∫ X/A

0

√
1− e2x2

1− x2
dx,

where
e =

√
1− (b/a)2

is the eccentricity. We can rewrite this integral as an elliptic integral∫
1− e2x2√

(1− e2x2)(1− x2)
dx =

∫
u(x, y) dx,

where u(x, y) is a rational function and y is a solution of the equation

y2 = (1− e2x2)(1− x2),

which defines an elliptic curve in A2. More generally,

4.1.1. DEFINITION. An algebraic function y = y(x) is a solution of an equation

yn + a1(x)yn−1 + . . .+ an(x) = 0, (4.1.2)

where ai(x) ∈ C(x) are rational functions. Without loss of generality, we
can assume that this polynomial is irreducible over C(x).5

An Abelian integral is an integral of the form∫
u(x, y) dx

where y = y(x) is an algebraic function and u(x, y) is a rational function.

§4.2. Finitely generated fields of transcendence degree 1. All functions of
the form u(x, y), where u is a rational function in 2 variables and y = y(x)
is a solution of (4.1.2), form a field K.

4.2.1. LEMMA. K is finitely generated and has transcendence degree 1 over C.
Every finitely generated field K with tr.deg.CK = 1 can be obtained in this way.

Proof. Since x and y are algebraically dependent and x is transcendental
over C, we have tr.deg.CC(x, y) = 1.

Now let K be any finitely generated field of transcendence degree 1
over C. Choose any x ∈ K transcendental over C. Then K/C(x) is a finitely
generated, algebraic (hence finite), and separable (because we are in charac-
teristic 0) field extension. By a theorem on the primitive element, we indeed
have K = C(x, y), where y is a root of an irreducible polynomial of the
form (4.1.2). �

Notice that of course there are many choices for x and y in K, thus the
equation (4.1.2) is not determined by the field extension K/C. But it turns
out that this choice is not important from the perspective of computing
integrals because we can always do substitutions: any integral of the form

5Let us point out for clarity that after Abel and Galois we know that for n ≥ 5 not every
algebraic function is a nested radical function like y(x) = 3

√
x3 − 7x

√
x.
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f dg for f, g ∈ K is an Abelian integral. On a purely algebraic level we

should study the moduli problem

M = {isom. classes of f.g. field extensions K/C with tr.deg.CK = 1.}
Clearing denominators in (4.1.2) gives an irreducible affine plane curve

C = {f(x, y) = 0} ⊂ A2

and its projective completion, an irreducible plane curve in P2. Recall that
the field of rational functions C(X) on an irreducible affine variety X is the
quotient field of its ring of regular functions C[X]. The field of rational
functions on an arbitrary algebraic variety X is the field of rational func-
tions of any of its affine charts. In our case

C[C] = C[x, y]/(f) and so C(C) = K.

Recall by the way that the word curve means “of dimension 1”, and di-
mension of an irreducible affine or projective variety is by definition the
transcendence degree of its field of rational functions. So we can restate
our moduli problem as

M = {birational equivalence classes of irreducible plane curves.}
Here we use the following definition

4.2.2. DEFINITION. Irreducible algebraic varieties X and Y are called bira-
tional if their fields of rational functions C(X) and C(Y ) are isomorphic.
Equivalently, there exist dense Zariski open subsets U ⊂ X and V ⊂ Y
such that U and V are isomorphic.

More generally, we can consider arbitrary irreducible affine or projective
curves because every curveC is birational to a curve in A2 by Lemma 4.2.1.6

Thus our moduli problem is equivalent to the study of

M = {birational equivalence classes of irreducible algebraic curves.}

4.2.3. THEOREM. For any algebraic curve C, there exists a smooth projective
curve C ′ birational to C.

Sketch. One can assume thatC is projective by taking the projective closure.
There are two ways to proceed. A constructive argument involves finding
a projective plane curve C̃ birational to C and then resolving singularities
of C̃ by consecutively blowing-up P2 in remaining singular points of the
proper transform of C̃. The difficulty is to show that the process terminates:
the proper transform is eventually non-singular. Nevertheless, this is the
only approach known to work in higher dimensions. Hironaka’s celebrated
resolution of singularities theorem states that, for every projective algebraic
varietyX ⊂ Pn in characteristic 0, there exists a sequence of blow-ups of Pn
(but not only in points of course, one has to blow-up smooth subvarieties of
higher dimension) such that eventually the proper transform of X is non-
singular (and birational to X). The proof is quite involved and its existence
in characteristic p is still an open question.

6A constructive approach to find a birational model of C in P2 is to take the image of C
after a general linear projection Pn 99K P2. How is this related to the standard proof of the
primitive element theorem?
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Another approach is to construct the normalization of C. Recall that if
X is an irreducible affine variety then its normalization X̃ has coordinate
algebra given the integral closure of C[X] in its field of fractions C(X) (the
fact the integral closure is finitely generated is non-trivial). If X is arbitrary
then one can cover X by affine charts, normalize the charts, and then glue
them back together using the fact that the integral closure commutes with
localization. One can show that if X is a projective variety then X̃ is also
projective (despite apriori being defined abstractly, by gluing charts). It
turns out that the singular locus of a normal variety has codimension at least 2.
In particular, an algebraic curve C is normal iff it is non-singular. �

Thus our moduli problem can be restated as the study of

M = {birational equivalence classes of smooth projective algebraic curves.}

So far everything we said could have been done in any dimension. But
the last step is specific for curves. It is known that

4.2.4. THEOREM ([?, 2.3.3]). If X is a smooth algebraic variety and f : X → Pn
is a rational map then the indeterminancy locus of f has codimension 2.

Thus if C is a smooth curve and f : C → Pn is a rational map then f is
regular. Suppose now that C and C ′ are birational projective curves. Then
we have a birational map C 99K C ′, which has to be regular by the above
theorem. So birational curves are in fact isomorphic,

To summarize, we have the following

4.2.5. THEOREM. There is a bijection between

M = {isom. classes of smooth projective algebraic curves}

and {
isomorphism classes of finitely generated
field extensions K/C with tr.deg.CK = 1

}
,

which sends a curve C to its field of rational functions C(C).

§4.3. Analytic approach. Instead of complex algebraic curves, we can con-
sider compact Riemann surfaces (one–dimensional compact complex man-
ifolds) instead of algebraic curves. It turns out that this gives the same
moduli problem:

M{biholomorphic isom. classes of compact Riemann surfaces} .

Even better we have the following theorem:

4.3.1. THEOREM. Categories of smooth projective curves and of compact Riemann
surfaces are equivalent.

Indeed, ifX is a smooth projective algebraic curve thenXan is a compact
Riemann surface and any morphism X → Y of smooth algebraic curves
gives a holomorphic map Xan → Y an. Thus we have a functor, the analyti-
fication, from one category to another.

4.3.2. LEMMA. Analytification is fully faithful, that is every holomorphic map
f : X → Y between two smooth projective algebraic curves is a regular morphism.
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Sketch. Let G ⊂ X × Y be the graph of f . We embed X ⊂ Pn, Y ⊂ Pm, and

G ⊂ X × Y ⊂ Pn × Pm ⊂ Pnm+n+m

by the Segre embedding. Thus G is a complex submanifold of Pnm+n+m.
But very general Chow embedding theorem [GH] asserts that every complex
submanifold of PN is algebraic7. ThusG ⊂ X×Y is algebraic and therefore
the map f : X → G→ Y is regular. �

4.3.3. EXAMPLE. Every meromorphic function f on a smooth projective alge-
braic curve C can be viewed as a holomorphic map from C to P1. Thus f is
in fact a rational function.

A difficult part is to show that analytification is essentially surjective: any
compact Riemann surface is biholomorphic to a smooth projective curve.
It is hard to construct a single meromorphic function, but once this is done
the rest is straightforward. It is enough to find a harmonic function (why?).
Klein (following Riemann) “covers the surface with tin foil... Suppose the poles
of a galvanic battery are placed at the points A1 and A2. A current arises whose
potential u is single-valued, continuous, and satisfies the equation ∆u = 0 across
the entire surface, except for the points A1 and A2, which are discontinuity points
of the function." A modern treatment can be found in [GH].

§4.4. Genus and meromorphic forms. In the language of Riemann sur-
faces, an Abelian integral is the integral of a meromorphic form. Indeed, it
turns out that all meromorphic forms are rational:

4.4.1. LEMMA. Every meromorphic form ω on a smooth projective algebraic curve
(viewed as a complex Riemann surface) is rational, i.e. can be written as ω = f dg,
where f and g are rational functions.

Proof. This follows from Example 4.3.3. Indeed, let g be a non-constant
rational function onC. Then dg is a non-zero meromorphic form. So we can
write ω = f dg, where f is a meromorphic function. But all meromorphic
functions are rational. �

In particular, the vector space of holomorphic differential forms, i.e. mero-
morphic differential forms without poles is the same as the vector space of
regular differential forms, i.e. rational differential forms without poles. The fun-
damental result is that this space is finite-dimensional and its dimension is
equal to the genus g, the number of handles on a Riemann surface.

Another way to compute the genus is to use the genus formula:

2g − 2 = (number of zeros of ω)− (number of poles of ω) (4.4.2)

of any meromorphic (=rational) differential form ω = f dg.

4.4.3. EXAMPLE. Consider a form ω = dx on P1. It has no zeros or poles in
the x-chart of 0. In the y-chart at infinity we have

dx = d(1/y) = −(1/y2)dy.

So it has a pole of order 2 at infinity, which shows that g(P1) = 0 by (4.4.2).

7In fact the theorem says that every analytic (i.e. locally given as a vanishing set of
holomorphic functions) subset of PN is algebraic. It doesn’t have to be a submanifold.
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4.4.4. EXAMPLE. A smooth plane curve C ⊂ P2 of degree d has genus

g =
(d− 1)(d− 2)

2
. (4.4.5)

In algebraic geometry, it is more natural to write this as

2g − 2 = d(d− 3) (4.4.6)

because this can be generalized to an adjunction formula which computes
the genus of a curve on any algebraic surface S, not just P2.

There is a nice choice of a holomorphic form on C: suppose C ∩ A2
x,y is

given by the equation f(x, y) = 0. Differentiating this equation shows that

ω :=
dx

fy
= −dy

fx

along C, where the first (resp. second) expression is valid where fy 6= 0
(resp. fx 6= 0), i.e. where x (resp. y) is a holomorphic coordinate. Thus ω
has no zeros or poles in C ∩ A2. We will show that ω has zeros at each
of the d intersection points of C with the line at infinity and each zero has
multiplicity d − 3. Combined with (4.4.2), this will give (4.4.6). Indeed,
switching from the chart (x, y) = [x : y : 1] to the chart (x, z) = [x : 1 : z]
gives

ω = − dy

fx(x, y)
= −

d1
z

fx(xz ,
1
z )

=
dz

z2 1
zd−1 g(x, z)

= zd−3 dz

g(x, z)
,

where we can arrange homogeneous coordinates from the start so that at
every point at infinity g doesn’t vanish and z is a holomorphic coordinate.

§4.5. Divisors and linear equivalence. A (Weil) divisorD on a smooth pro-
jective curve C is an integral linear combination

∑
aiPi of points Pi ∈ C.

Divisors form an Abelian group, denoted by DivC, freely generated by
classes of points. There is a homomorphism deg : DivC → Z, called the
degree, namely

degD =
∑

ai.

4.5.1. DEFINITION. A principal divisor of a rational function f on C is

(f) =
∑
P∈C

ordP (f)P,

where ordP (f) is the order of zeros or poles of f at P .

Analytically, if z is a holomorphic coordinate centered at P then in some
neighborhood of P

f(z) = zng(z),

where g(z) is holomorphic and does not vanish at p. Then ordP (f) = n.
Algebraically, instead of choosing a holomorphic coordinate we choose

a local parameter, i.e. a rational function z regular at P , vanishes at P , and
such that any rational function f on C can be written (uniquely) as

f = zng,

where g is regular at P and does not vanish there (see [?, 1.1.5]). This is
an instance of a general strategy in Algebraic Geometry: if there is some
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useful analytic concept (e.g. a holomorphic coordinate) that does not exist
algebraically, one should look for its desirable properties (e.g. a factoriza-
tion f = zng as above). Often it is possible to find a purely algebraic object
(e.g. a local parameter) satisfying the same properties.

A local parameter at x can also be described as follows:

• a uniformizer of the DVR OC,P (with valuation ord);
• any element in mC,P \m2

C,P ;
• a coordinate of an affine chart An such that the tangent space TPC

projects onto the corresponding coordinate axis;
• a rational function z such that ordP (z) = 1.

4.5.2. DEFINITION. A canonical divisor of a meromorphic (=rational) form ω
is defined as follows:

(ω) =
∑
P∈C

ordP (ω)P,

where if z is a holomorphic coordinate (or a local parameter) at P then we
can write ω = f dz and ordP (ω) := ordP (f).

We can rewrite (4.4.2) as

deg(ω) = 2g − 2.

4.5.3. DEFINITION. Two divisors D and D′ are called linearly equivalent if
D −D′ is a principal divisor. Notation: D ∼ D′.

For example, any two canonical divisors are linearly equivalent. Indeed,
if ω and ω′ are two rational forms then ω = gω′ for some rational function g
and it is easy to see that (ω) = (g) + (ω′). A linear equivalence class of a
canonical divisor is denoted by KC .

The quotient of the divisor group DivC by a subgroup of principal divi-
sor is called the Picard group PicC.

§4.6. Branched covers and Riemann–Hurwitz formula. Theorem 4.2.5 can
be upgraded to a (contragredient) equivalence of the category of smooth
projective algebraic curves with non-constant morphisms and the category
of finitely generated field extensions K/C of tr.deg.CK = 1. Morphisms
in this category are inclusions of fields over C. A non-constant map f :
C → C ′ of smooth projective algebraic curves is called a branched cover. The
corresponding field extension C(C ′) ↪→ C(C) is just the pull-back f∗.

4.6.1. LEMMA–DEFINITION. The degree of the branched cover can be computed
• topologically: number of points in the preimage of a general point.
• algebraically: degree of the field extension C(C)/C(C ′).
• with multiplicities: if f−1(P ) = {Q1, . . . , Qr} then

deg f =
r∑
i=1

eQi ,

where
eQi = ordQi f

∗(z),
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where z is a local parameter at P . The multiplicity eQi is called the rami-
fication index. If eQi > 1 then P is called a branch point and Qi is called
a ramification point. The divisor

R =
∑
Q∈C

(eQ − 1)[Q]

is called the ramification divisor.

In particular, viewing a rational function f on C as a map f : C → P1, its
degree is equal to both the number of zeros and the number of poles of f
(counted with multiplicities), and so

deg(f) = (deg f)− (deg f) = 0 for every f ∈ k(C).

In particular, linearly equivalent divisors have the same degree and there-
fore we have a degree homomorphism

deg : PicC → Z.
For example, deg gives an isomorphism PicP1 ' Z because any two points
P,Q ∈ P1 are linearly equivalent using a Möbius function z−P

z−Q ∈ C(P1).

We extend the map [P ] 7→
r∑
i=1

eQi [Qi] by linearity to a homomorphism

f∗ : DivC ′ → DivC.

If α ∈ C(C ′) then we have a suggestive formula

f∗(α) = (f∗α)

because every zero (or pole) P of α contributes to a zero (or pole) Q of f∗α
with multiplicity eQ for every Q ∈ f−1(P ). In particular, f∗ sends principal
divisors to principal divisors and thus induces a homomorphism

f∗ : PicC ′ → PicC.

Moreover, deg f∗D = (deg f) degD for every divisor D on C ′.

4.6.2. THEOREM (Riemann–Hurwitz). For every branched cover f : C → C ′,

KC ∼ f∗KC′ +R.

and comparing the degrees and using (4.4.2),

2g(C)− 2 = (deg f)(2g(C ′)− 2) +
∑
Q∈C

(eQ − 1).

Proof. Choose a meromorphic form ω onC ′without zeros or poles at branch
points. Then KC′ = (ω) and KC = (f∗ω). Every zero (resp. pole) of ω
contributes to deg f zeros (resp. poles) of f∗ω. In addition, if t is a local
parameter at a ramification point Q and z is a local parameter at P = f(Q)
then f∗(z) = teQg, where g is regular at Q. Then

f∗(dz) = d(teQg) = eQt
eQ−1g dt+ teQ dg,

which shows that each ramification point is a zero of f∗ω of order eQ − 1.
So

(f∗ω) = f∗(ω) +
∑
Q∈C

(eQ − 1)[Q],

which proves the Riemann–Hurwitz formula. �
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§4.7. Riemann–Roch formula. The divisor D =
∑
aiPi is called effective

(notation D ≥ 0) if ai ≥ 0 for every i.

4.7.1. THEOREM (Riemann–Roch). For every divisor D on C, we have

l(D)− i(D) = 1− g + degD,

where

l(D) = dimL(D), where L(D) = {f ∈ C(C) | (f) +D ≥ 0}

and

i(D) = dimK(D), where K(D) = {meromorphic forms ω | (ω) ≥ D}.

4.7.2. EXAMPLE. If D = 0 then l(D) = 1 and therefore i(D) = g. Notice that
K(0) is the space of holomorphic differentials.

Here l(D) = 1 because the only rational functions which are regular
everywhere are constants. Analytically, this is Liouville’s Theorem for Rie-
mann surfaces (see also the maximum principle for harmonic functions). Al-
gebraically, this is

4.7.3. THEOREM. If X is an irreducible projective variety then the only functions
regular on X are constants.

Proof. A regular function is a regular morphism X → A1. Composing it
with the inclusion A1 ↪→ P1 gives a regular morphism f : X → P1 such
that f(X) ⊂ A1. But the image of a projective variety under any morphism
is closed, thus f(X) must be closed in P1 and so f(X) must be a point. �

4.7.4. EXAMPLE. IfD = K then L(D) is the space of holomorphic forms and
K(D) is the space of holomorphic functions. So in this case Riemann–Roch
gives the genus formula (4.4.2).

4.7.5. EXAMPLE. Suppose g(C) = 0. Let D = P be a point. Then RR gives

l(P ) = i(P ) + 2 ≥ 2.

It follows thatL(D) contains a non-constant rational function f , which then
has a unique simple pole at P . This function gives an branch cover C → P1

of degree 1, therefore an isomorphism. So

M0 = {pt}.

§4.8. Linear systems.

4.8.1. DEFINITION. A linear system of divisors

|D| = {(f) +D | f ∈ L(D)} = {D′ |D′ ∼ D, D′ ≥ 0},

consists of all effective divisors linearly equivalent to D. Note that D′ de-
fines f uniquely up to a constant, therefore

|D| ' PL(D).

More generally, if L ⊂ L(D) is a vector subspace then an incomplete linear
system |L| ⊂ |D| consists of all divisors of the form {(f) +D | f ∈ L}.
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Choosing a basis f0, . . . , fr of L(D) gives a map

φD : C → Pr, φD(x) = [f0, . . . , fr].

Since C is a smooth curve, this map is regular. More generally, we define a
similar map φ|L| for every incomplete linear system L.

4.8.2. DEFINITION. Let D be an effective divisor. Its base locus is the inter-
section of all divisors in the linear system |D|. Its fixed part is a maximal
effective divisor E such that D′ − E ≥ 0 for every D′ ∈ |D|. Notice that E
is a sum of points in the base locus with positive multiplicities.8

4.8.3. LEMMA. We have
|D| = |D − E|+ E,

L(D) = L(D − E)

and
φD = φD−E .

4.8.4. LEMMA. D has no base points iff l(D − P ) = l(D)− 1 for every P ∈ C.

Proof. If P is in the base locus then l(D − P ) = l(D). If the base locus is
empty then |D−P |+P is strictly contained in |D| and so l(D−P ) < l(D).
Thus we can assume that D is effective and doesn’t contain P . In this case,
we can identifyL(D−P ) with a hyperplane inL(D) of all rational functions
that in addition vanish at P . �

If we are interested in maps φD then we can always assume that D is
effective and base-point-free, i.e. its base locus is empty. In addition, D is
called very ample if φD is an embedding C ⊂ Pr. One has the following very
useful criterion generalizing the previous lemma.

4.8.5. THEOREM. A divisor D is very ample if and only if
• φD separates any points P,Q ∈ C, i.e. l(D − P −Q) = l(D)− 2;
• φD separates tangents, i.e. l(D− 2P ) = l(D)− 2 for any point P ∈ C.

4.8.6. PROPOSITION. Every morphism φ : C → Pr is given by a base-point-free
linear system (possibly incomplete) as long as φ(C) is not contained in a projective
subspace of Pr (in which case we can just switch from Pr to Ps for s < r).

Proof. Indeed, φ is obtained by choosing rational functions

f0, . . . , fr ∈ k(C).

Consider their divisors (f0), . . . , (fr) and letD be the smallest effective divi-
sor such that (fi)+D is effective for every i. Then of course every fi ∈ L(D)
and D is base-point-free (otherwise it’s not the smallest). �

Divisors (f0) +D, . . . , (fr) +D have very simple meaning: they are just
“pull-backs” of coordinate hyperplanes in Pr. More precisely, suppose h is
a local parameter at a point P ∈ C, which contributes nP to D. Then φ (in
the neighborhood of P ) can be written as

[f0h
n : . . . frh

n],

8This is a special feature of algebraic curves as in higher dimension the base locus is not
necessarily a divisor.
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where at least one of the functions does not vanish. So pull-backs of coor-
dinate hyperplanes near P are given by divisors (f0) + nP, . . . , (fr) + nP .

§5. Moduli of elliptic curves

§5.1. Curves of genus 1. Let us recall the following basic result.

5.1.1. THEOREM. Let C be a smooth projective curve. TFAE:
(1) C has a plane model in A2 given by the Weierstrass equation

y2 = 4x3 − g2x− g3, ∆ = g3
2 − 27g2

3 6= 0.

(2) C is isomorphic to a cubic curve in P2.
(3) C admits a 2 : 1 cover of P1 ramified at 4 points.
(4) C has genus 1.

In addition, every cubic curve in P2 has a flex point and admits a unique (up to
scalar) regular form ω. Moreover, this form has no zeros.

Proof. Easy steps.
(1) ⇒ (2). It is easy to check that the projective closure is smooth at all

points including [0 : 1 : 0], which is the only point at infinity. The line
at infinity z = 0 is a flex line (or inflection line): it intersects the curve at
[0 : 1 : 0] with multiplicity 3. The curve has genus 1 by the formula for the
genus of a plane curve.

(2)⇒ (3) A double cover can be obtained as a linear projection P2 99K P1

from any point p ∈ C (projecting from points away from C gives a triple
cover). Use Riemann–Hurwitz to find the number of branch points.

(3) ⇒ (4) Use Riemann–Hurwitz to compute the genus. Then L(K) is
one-dimensional. Let ω be a generator. Since degK = 0, ω has no zeros.

Riemann–Roch analysis. Assume (4). Let D be a divisor of positive
degree. Since degD > degK, we have i(D) = 0 and

l(D) = degD.

It follows thatD is base-point-free if degD ≥ 2 and very ample if degD ≥ 3.
Fix a point P ∈ C. Notice that L(kP ) ⊂ L(lP ) for k ≤ l and that L(kP ) ·

L(lP ) ⊂ L((k + l)P ). Thus we have a graded algebra

R(C,P ) =
⊕
k≥0

L(kP ) ⊂ C(C).

L(0) = L(P ) is spanned by 1. L(2P ) is spanned by 1 and by some non-
constant function, which we will call x. Since 2P has no base-points, we
have a 2 : 1 map

ψ2P : C → P1

given by [x : 1]. This shows (4)⇒ (3). P is one of the ramification points.
L(3P ) is spanned by 1, x, and a new function, which we will call y. Since

3P is very ample, we have an embedding

ψ3P : C → P2,

given by [x : y : 1]. The image is a curve of degree 3. Moreover, P is a flex
point. This shows that (4)⇒ (2).
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Notice that L(6P ) has dimension 6 but contains seven functions

1, x, y, x2, xy, x3, y2.

Thus, they are linearly dependent. Moreover, x3 and y2 are the only func-
tions on the list that have a pole of order 6 at P . Therefore, they must both
contribute to the linear combination. After rescaling them by constants, we
can assume that the equation has form

y2 + αxy = 4x3 − g1x
2 − g2x− g3.

After making the changes of variables y 7→ y − α
2x and x 7→ x+ g1

12 , we get
the Weierstrass form. This shows that (4)⇒ (1).

Logically unnecessary but fun implications:
(2)⇒ (1). Prove existence of a flex point directly, by intersecting with the

Hessian cubic. Then move a flex point to [0 : 1 : 0] by a change of variable,
then make the line at infinity z = 0 the flex line, etc. (this is analogous in
spirit to the Riemann-Roch analysis above but more tedious).

(1)⇒ (3). Project A2
x,y → A1

x. Three ramification points are at the roots of
4x3 − g2x− g3 = 0, the last ramification point is at∞. �

From the complex-analytic perspective, we have the following

5.1.2. THEOREM. Let C be a compact Riemann surface. TFAE:
(1) C is a smooth projective cubic curve in P2.
(2) C is a compact Riemann surface of genus 1.
(3) C is biholomorphic to a complex torus

C/Λ, where Λ ' Z⊕ Zτ , Im τ > 0.

Proof. (1)⇒ (2). Apply analytification and genus formula.
(3) ⇒ (2). C/Λ is topologically a torus and has a structure of a Riemann

surface induced from a translation-invariant complex structure on C. Also
notice that dz descends to a non-vanishing holomorphic form.

(3) ⇒ (1). One can invoke a general theorem about the equivalence of
categories here, but it’s more instructive to show directly that every com-
plex torus is biholomorphic to a projective cubic curve. Let P ∈ C/Λ be
the image of 0 ∈ C. From the Riemann–Roch analysis, we should expect to
find a meromorphic function in with pole of order 2 at P and holomorphic
elsewhere. Its pull-back to C will be a doubly-periodic (i.e. Λ-invariant)
meromorphic function on C with poles only of order 2 and only at lattice
points. Luckily, this function was constructed explicitly by Weierstrass:

℘(z) =
1

z2
+

∑
γ∈Λ, γ 6=0

(
1

(z − γ)2
− 1

γ2

)
.

Notice that ℘′(z) has poles of order 3 at lattice points, and therefore

{1, ℘(z), ℘′(z)}

should be a basis of L(3P ). Indeed, one can check directly that the map

C→ C2, z 7→ [℘(z) : ℘′(z) : 1]
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gives an embedding C ⊂ P2 as a cubic curve. In fact it is easy to see that ℘′

and ℘ satisfy the Weierstrass equation

(℘′)2 = 4℘3 − g2℘− g3,

which explains a traditional factor of 4.
Periods. (2) ⇒ (3). Let’s assume that C is compact Riemann surface

which has a nowhere vanishing holomorphic form ω and topological genus 1.
We fix a point P ∈ C and consider a multi-valued holomorphic map

π : C → C, z 7→
∫ z

P
ω.

It is multi-valued because it depends on the choice of a path of integration.
Notice however that near every point z ∈ C we can choose a branch of π
by specifying paths of integration (say connecting P to z and then z to a
nearby point by a segment in a holomorphic chart) and this branch of π is
conformal (because ω has no zeros and

∫
dz = z.)9

Topologically, we can obtain C by gluing opposite sides of the rectangle,
in other words we have a homeomorphism C/Z2 → C which sends seg-
ments α, β ⊂ C connecting the origin to (1, 0) and (0, 1) to generators of the
first homology group H1(C) = Zα+ Zβ. We can then define periods

A =

∫
α
ω and B =

∫
β
ω.

They generate a subgroup Λ ⊂ C. Integrals along paths in C are uniquely
defined modulo Λ.

5.1.3. LEMMA. A and B are linearly independent over R.

Proof. If not then we can assume that Λ ⊂ R (by multiplying ω by a con-
stant). Then Imπ is a single-valued harmonic function, which must be con-
stant by the maximum principle because C is a compact Riemann surface.
This is a contradiction: a branch of π is a local isomorphism near P . �

So Λ is a lattice and π induces a holomorphic map

f : C → C/Λ.
Notice that its composition with a homeomorphism C/Z2 → C is a home-
omorphism C/Z2 → C/Λ. Indeed, it is induced by the integration map
C→ C which sends α 7→ A and β 7→ B. Thus f is bijective. �

5.1.4. REMARK. An important generalization is a beautiful Klein–Poincare
Uniformization Theorem: a universal cover of a compact Riemann surface is

• P1 if g = 0;
• C if g = 1;
• H (the upper half-plane) if g ≥ 2.

9If C is a cubic curve in the Weierstrass normal form then ω = dx
y

(see Example 4.4.4)
and so these integrals are elliptic integrals∫

dx√
4x3 − g2x− g3

.
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In other words, every compact Riemann surface of genus≥ 2 is isomorphic
to a quotient of H by a discrete subgroup

Γ ⊂ Aut(H) = PGL2(R),

which acts freely on H.

§5.2. J-invariant. Now we would like to classify elliptic curves up to iso-
morphism, i.e. to describe M1 as a set. As we will see many times in this
course, automorphisms of geometric objects can cause problems for con-
structing moduli spaces and so it’s good to know what they are. A curve of
genus 1 has a lot of automorphisms: a complex torus C/Λ admits transla-
tions by vectors in C. These translations are biholomorphic, and therefore
regular, automorphisms. In fact C/Λ is an algebraic group:

5.2.1. DEFINITION. An algebraic variety X with a group structure is called
an algebraic group if the multiplication X ×X → X and the inverse X → X
maps are morphisms of algebraic varieties.

In a cubic plane curve realization, this group structure is a famous “three
points on a line” group. We can eliminate translations by fixing a point.

5.2.2. DEFINITION. An elliptic curve is a pair (C,P ), where C is a smooth
projective curve of genus 1 and P ∈ C. It is convenient to choose P to be
the unity of the group structure on C if one cares about it.

Of course as a set we have

M1 = M1,1.

Every pointed curve (C,P ) still has at least one automorphism, namely
the involution given by permuting the two branches of the double cover

φ2P : C → P1.

In the complex torus model this involution is given by the formula z 7→ −z,
which reflects the fact that the Weierstrass ℘-function is even.

Let’s work out when two elliptic curves are isomorphic and when the
automorphism group Aut(C,P ) is larger than Z/2Z.

5.2.3. THEOREM. (1) Curves with Weierstrass equations y2 = 4x3−g2x−g3

and y2 = 4x3 − g′2x− g′3 are isomorphic if and only if there exists t ∈ C∗
such that g′2 = t2g2 and g′3 = t3g3.

(2) Two smooth cubic curves C and C ′ are isomorphic if and only if they are
projectively equivalent: C = A(C ′) for some A ∈ PGL3(C).

(3) Let C (resp. C ′) be a double cover of P1 with a branch locus p1, . . . , p4

(resp. p′1, . . . , p
′
4). Then C ' C ′ if and only if there exists g ∈ PGL2(C)

such that
{p′1, p′2, p′3, p′4} = g{p1, p2, p3, p4}.

In particular, we can always assume that branch points are 0, 1, λ,∞.
(4) C/Λ ' C/Λ′ if and only if Λ = αΛ′ for some α ∈ C∗. If Λ = Z⊕Zτ and

Λ′ = Z⊕ Zτ ′ with Im τ, Im τ ′ > 0 then this is equivalent to

τ ′ =
aτ + b

cτ + d
for some

[
a b
c d

]
∈ PSL2(Z) (5.2.4)
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There are only two curves with special automorphisms:

Aut(y2 = x3 + 1) = Z/6Z and Aut(y2 = x3 + x) = Z/4Z.

Their lattices in C are the hexagonal and the square lattices. These curves are
double covers of P1 branched at 0, 1, λ,∞, with λ = e

πi
3 and −1, respectively.

Proof. Let C be and C ′ be two plane smooth cubic curves, which are ab-
stractly isomorphic. Let P ∈ C and P ′ ∈ C ′ be flex points. Then embed-
dings C ↪→ P2 and C ′ ↪→ P2 are given by linear systems L(3P ) and L(3P ′),
respectively. After translation by an element C ′, we can assume that an iso-
morphism φ : C → C ′ takes P to P ′. Then L(3P ) = φ∗L(3P ′). Applying
projective transformations to C and C ′ is equivalent to choosing bases in
the linear systems. If we choose a basis in L(3P ′) and pull it back to the
basis of L(3P ), we will have

φ3P = φ3P ′ ◦ φ,

i.e. C and C ′ are equal cubic curves. This proves (2). In the Weierstrass
form, the only possible linear transformations are x 7→ tx and y 7→ ±t3/2y,
which proves (1).

A similar argument proves (3). Notice that in this case Aut(C,P ) modulo
the hyperelliptic involution acts on P1 by permuting branch points. In fact,
λ is simply the cross-ratio:

λ =
(p4 − p1)

(p2 − p1)

(p2 − p3)

(p4 − p3)
,

but branch points are not ordered, so we have an action of S4 on possible
cross-ratios. However, it is easy to see that the Klein’s four-group V does
not change the cross-ratio. The quotient S4/V ' S3 acts non-trivially:

λ 7→ {λ, 1− λ, 1/λ, (λ− 1)/λ, λ/(λ− 1), 1/(1− λ)} (5.2.5)

Special values of λ correspond to cases when some of the numbers in this
list are equal. For example, λ = 1/λ implies λ = −1 and the list of possible
cross-ratios boils down to −1, 2, 1/2 and λ = 1/(1 − λ) implies λ = e

πi
3 ,

in which case the only possible cross-ratios are e
πi
3 and e

−πi
3 . To work out

the actual automorphism group, we look at the Weierstrass models. For
example, if λ = −1 then the branch points are 0, 1,−1,∞ and the equation
is y2 = x3−x. One can make a change of variables x 7→ ix, y 7→ e3πi/4, then
the equation becomes

y2 = x3 + x

as required and the branch points now are 0, i,−i,∞. An automorphism
of P1 permuting these branch points is x 7→ −x. To keep the curve in the
Weierstrass form, we also have to adjust y 7→ iy. This gives an automor-
phism of C and its square is an automorphism x 7→ x, y 7→ −y, i.e. an
involution permuting branches of the double cover.

(4) Consider an isomorphism f : C/Λ′ → C/Λ. Composing it with trans-
lations on the source and on the target, we can assume that f(0+Λ′) = 0+Λ.
Then f induces a holomorphic map C→ C/Λ with kernel Λ′, and its lift to
the universal cover gives an isomorphism F : C→ C such that F (Λ′) = Λ.
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But it is proved in complex analysis that all automorphisms of C preserving
the origin are maps z 7→ αz for α ∈ C∗. So we have

Z + Zτ = α(Z + Zτ ′),

which gives
ατ ′ = a+ bτ, α = c+ dτ,

which gives (5.2.4). �

5.2.6. THEOREM. We can define the j-invariant by any of the two formulas:

j = 1728g3
2/∆ = 256

(λ2 − λ+ 1)3

λ2(λ− 1)2
. (5.2.7)

The j-invariant uniquely determines an isomorphism class of an elliptic curve. The
special values of the j-invariant are j = 0 (for Z/6Z) and j = 1728 (for Z/4Z).

Proof. It is easy to see that the expression 256 (λ2−λ+1)3

λ2(λ−1)2 does not change
under the transformations (5.2.5). Thus, for fixed j, the polynomial

(λ2 − λ+ 1)3 − 1

256
jλ2(λ− 1)2 (1)

has 6 roots related by transformations (5.2.5). So the j-invariant uniquely
determines an isomorphism class of an elliptic curve. The rest is left to the
homework exercises. �

§5.3. Monstrous Moonshine. Trying to compute the j-invariant in terms
of the lattice parameter τ produces some amazing mathematics. Notice that
j(τ) is invariant under the action of PSL2(Z) onH. This group is called the
modular group. It is generated by two transformations,

S : z 7→ −1/z and T : z 7→ z + 1

It has a fundamental domain (see the figure). The j-invariant maps the
fundamental domain to the plane A1.

Since the j-invariant is invariant under z 7→ z + 1, it can be expanded in
a variable q = e2πiτ :

j = q−1 + 744 + 196884q + 21493760q2 + . . .

According to the classification of finite simple groups, there are a few infi-
nite families (like alternating groups An) and several sporadic groups. The
largest sporadic group F1 is called the Monster. It has about 1054 elements.
Its existence was predicted by Robert Griess and Bernd Fischer in 1973 and
it was eventually constructed by Griess in 1980 as the automorphism group
of a certain (commutative, non-associative) algebra of dimension 196884.
In other words, the Monster has a natural 196884-dimensional representa-
tion, just like Sn has a natural n-dimensional representation. This dimen-
sion appears as one of the coefficients of j(q) and In fact all coefficients in
this q-expansion are related to representations of the Monster group. This
is a Monstrous Moonshine Conjecture of McKay, Conway, and Norton proved
in 1992 by Borcherds (who won a Fields medal for this work).
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FIGURE 1. Modular group.

§5.4. Families of elliptic curves. We would like to upgrade Mg and Mg,n

to moduli functors. What is a family of smooth projective curves? It should
be a morphism f : X → B such that every fiber of f is a smooth projective
curve. We have to impose a technical condition: the morphism f must be
smooth and proper. We postpone definitions until later and focus on the
following good properties, which are sufficient for most applications and
will allow us to define the moduli functor.

5.4.1. THEOREM.
• If X → B is a smooth morphism of algebraic varieties then all fibers are

non-singular and have the same dimension dimX − dimB. If B is non-
singular then X is also non-singular.
• Let f : X → B be a morphism of non-singular complex algebraic vari-

eties. Then f is smooth if and only if the induced map of analytifications
Xan → Ban is a submersion of complex manifolds, i.e. its differential is
surjective at every point.
• Let f : X → B be a smooth morphism and let g : B′ → B be any

morphism of algebraic varieties. Consider the fiber product

X ×B B′ = {(x, b′) | f(x) = g(b′)} ⊂ X ×B′.

Then X ×B B′ → B′ is a smooth morphism of algebraic varieties.

5.4.2. THEOREM. Let f : X → B be a morphism of non-singular algebraic vari-
eties. Then f is proper iff the corresponding map of analytifications Xan → Ban

is a proper holomorphic map, i.e. the preimage of every compact set is compact.
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5.4.3. DEFINITION. A family of smooth projective curves of genus g is a
smooth proper morphism of algebraic varieties f : X → B such that all
fibers are smooth projective curves of genus g. The moduli functor

Mg : AlgebraicV arieties→ Sets

sends every algebraic varietyB to the set of isomorphism classes of families
f : X → B of smooth projective curves of genus g and every morphism
B′ → B a pull-back functionMg,n(B)→Mg,n(B′), X 7→ X ×B′.

Likewise, a family of smooth projective curves of genus g with nmarked
points is a family f : X → B of smooth projective curves of genus g with n
disjoint sections, i.e. morphisms s1, . . . , sn : B → X such that f ◦ si = IdB
for every i and such that si(b) 6= sj(b) for every b ∈ B and i 6= j.

The moduli functor

Mg,n : AlgebraicV arieties→ Sets

sends every algebraic varietyB to the set of isomorphism classes of families
f : X → B of smooth projective curves of genus g with n marked points
and every morphism B′ → B a pull-back functionMg,n(B) → Mg,n(B′),
X 7→ X ×B′. (Try to define the pullback of sections s1, . . . , sn yourself.)

5.4.4. DEFINITION. A family of smooth projective curves of genus 1 with a
marked point is also called an elliptic fibration.

It would be nice to have a better structure theory of elliptic fibrations.
We will later show the following:

5.4.5. THEOREM. A morphism π : X → B with a section σ : B → X is
an elliptic fibration if and only if every point b ∈ B has an affine neighborhood
U = SpecR such that π−1(U) is isomorphic to a subvariety of U × P2

[x:y:z] given
by the Weierstrass equation

y2z = 4x3 − g2(u)xz2 − g3(u)z3,

where g2, g3 ∈ R = O(U) are regular functions such that ∆ = g3
2 − 27g2

3 ∈ R∗
is invertible. Moreover, g2 and g3 are defined uniquely up to transformations

g2 7→ t4g2, g3 7→ t6g3 (5.4.6)

for some invertible function t ∈ R∗.

5.4.7. REMARK. Dependence on t comes from the following basic observa-
tion: multiplying y by t3 and x by t2 will induce transformation (5.4.6).
Notice that if t ∈ O∗(pt) = C∗ then we can take a square root

√
t and mul-

tiply by it instead. This gives Theorem 5.2.3 (1). But if t is a non-constant
regular function in O(U) then the square root may not exist. For example,
take t to be a coordinate in A1

t \ {0}.

§5.5. The j-line is a coarse moduli space. We are going to see that the
functor of elliptic fibrationsM1,1 doesn’t have a fine moduli space. Indeed,
if M is a fine moduli space then its points should bijectively correspond
to isomorphism classes of elliptic curves, i.e. to different values of the j-
invariant. In other words, M should be bijective to A1 with coordinate j.
Moreover, the identity map M → M should come from the universal fam-
ily π : U → M with a section σ : M → U such that every elliptic fibration
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is a pull-back of the universal family. In particular, every elliptic curve
should appear as exactly one fiber of the universal elliptic fibrations. As a
first approximation, let’s show

5.5.1. LEMMA. There is no elliptic fibration over A1
j such that the j-invariant of

the fiber over j is j.

Proof. Suppose this fibration exists. Then Theorem 5.4.5 would be applica-
ble to it and so locally at every point j0 ∈ A1 we would have

j = 1728
g3

2(j)

g3
2(j)− 27g2

3(j)

for some rational functions g2, g3 ∈ C(j) regular at j0. Taking j0 = 0 gives
a contradiction because j has zero of multiplicity 1 at 0, whereas the RHS
has zero of multiplicity divisible by 3. Taking j0 = 1728 gives another
contradiction:

j − 1728 = 1728
27g2

3(j)

g3
2(j)− 27g2

3(j)
.

The LHS has simple zero at 1728 (multiplicity 1) but the RHS has a zero of
even multiplicity. �

To turn lemons into lemonade, let’s show that A1 is a coarse moduli space
of the functor of elliptic fibrations.

5.5.2. DEFINITION. We say that an algebraic variety M is a coarse moduli
space of the moduli functorM : Algebraic V arieties→ Sets if

(1) We have a natural transformation of functors M → hM (but not
necessarily an equivalence), which induces a bijection of sets

M(point) = Mor(point,M) = M.

More concretely, points of M correspond to isomorphism classes of
objects and everyX-pointE ∈M(X) induces a morphismX →M .

(2) Suppose M ′ is another algebraic variety satisfying (1). There is an
obvious map M → M ′ because points of both varieties correspond
to the same isomorphism classes. We require that this map is a
morphism of algebraic varieties. This condition guarantees that the
coarse moduli space is unique up to an isomorphism (if it exists).

IfM admits a fine moduli spaceM thenM is also a coarse moduli space.
Indeed, by Yoneda’s lemma any natural transformation M ' hM → hM ′
comes from a morphism M →M ′, which gives (2).

5.5.3. THEOREM. The j-line A1 is a coarse moduli space forM1,1.

Proof. Suppose we have an elliptic fibration π : X → B. Then we have a
function jB : B → A1 which sends every b ∈ B to the j-invariant of π−1(b).
We have to show that this function is a morphism of algebraic varieties.
This can be checked in affine charts on B, and thus by Theorem 5.4.5 we
can assume that the fibration is in the Weierstrass normal form. But then
jB can be computed by the usual formula (5.2.7). Since g2 and g3 are regular
functions in the chart, jB is a regular function as well.
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A tricky part is to check the second condition in the definition of a coarse
moduli space. Suppose we have another variety Z and a natural transfor-
mation M1,1 → hZ such that points of Z are in 1-1 correspondence with
isomorphism classes of elliptic curves. Every elliptic fibration π : X → B
then gives a regular morphism jZ : B → Z. We want to show that it fac-
tors through a morphism A1

j → Z. Let I ⊂ Z × A1
j be the locus of pairs

corresponding to curves with the same j-invariant. It is a bijective corre-
spondence between Z and A1. Suppose we know that I is closed. Then
both projections I → Z and I → A1

j are bijective morphisms of closed al-
gebraic sets. Since A1

j is irreducible, I and Z are irreducible as well. It
follows that both projections I → Z and I → A1

j are bijective morphisms
of algebraic curves. But A1

j is a smooth curve, and therefore I → A1
j is an

isomorphism. Thus I is a graph of a morphism A1 → Z.
It remains to show that I is closed. For this we need to remind

5.5.4. DEFINITION. Recall that a morphism of algebraic varieties π : X → Y
is called finite if for some (and therefore any) affine covering Y = ∪iUi,
every pre-image Vi := π−1(Ui) is an affine variety and k[Vi] is a finitely
generated k[Ui] module. Equivalently, k[Vi] is generated (as a k-algebra) by
finitely many elements which are roots of monic polynomials with coeffi-
cients in k[Ui]. The basic properties of finite morphisms include:

(1) a finite morphism has finite fibers.
(2) a finite morphism is surjective.

It is easy to construct an elliptic fibrationX → B over a smooth algebraic
curve such that every elliptic curve appears as one of the fibers. Just take
B = P1 \ {0, 1,∞} and define X ⊂ B × P2

[x:y:z] by the Weierstrass equation

y2z = x(x− z)(x− λz).
The j-invariant in this case is the map

P1 \ {0, 1,∞} = SpecC
[
λ,

1

λ
,

1

1− λ

]
→ A1

j

given by (5.2.7). Notice that this morphism is finite. Indeed,

k[P1 \ {0, 1,∞}] = k

[
λ,

1

λ
,

1

1− λ

]
and λ is a root of a monic polynomial (1) with coefficients in C[j], with other
roots given by (5.2.5), which include 1

λ and 1
λ−1 . By one of the homework

problems, jZ × j : B → Z × A1
j is also finite and therefore its image I is

closed. �

§5.6. The j-line is not a fine moduli space.

5.6.1. PROPOSITION.M1,1 does not admit a fine moduli space.

Proof. Indeed, ifM1,1 admits a fine moduli space then it should be A1
j , be-

cause a fine moduli space is also automatically a coarse one. But the uni-
versal family over A1

j can’t exist by Lemma 5.5.1.
There are other ways to reach the same conclusion. Let B = A1

s or more
generally let B = MaxSpecR, where R contans an element s without a
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square root (for example take R = C[s]). Consider any elliptic fibration
f : E → B with Weierstrass equation

y2 = 4x3 − g2x− g3

and let E′ → B be a “twisted” fibration with Weierstrass equation

y2 = 4x3 − s2g2x− s3g3.

These fibrations have isomorphic fibers (over every b ∈ B) hence give the
same maps into the coarse moduli space B → A1

j . However, they are not
isomorphic. If they were, we would have

s2 = t4, s3 = t6

for some t ∈ R by Theorem 5.4.5. Thus s = t2, a contradiction. �

§5.7. Homework 2.

Problem 1. (2 points) Using a birational isomorphism between P1 and
the circle {x2 + y2 = 1} ⊂ A2 given by stereographic projection from (0, 1),
describe an algorithm for computing integrals of the form∫

P (x,
√

1− x2) dx

where P (x, y) is an arbitrary rational function.

Problem 2. (3 points) The formula j = 256 (λ2−λ+1)3

λ2(λ−1)2 gives a 6 : 1 cover
P1
λ → P1

j . Thinking about P1 as a Riemann sphere, color P1
j in two colors:

color the upper half-plane H white and the lower half-plane −H black.
Draw the pull-back of this coloring to P1

λ.
Problem 3. (1 points) Let F : Sets → Sets be a contravariant functor

that sends a set S to the set of subsets of S and any function f : S → S′ to
a function that sends U ⊂ S′ to f−1(U) ⊂ S. Show that F is representable.

Problem 4. (2 points) Let F be a contravariant) functor from the category
of topological spaces to Sets which sends a topological space X to the set
of open sets of X and any continuous function f : X → X ′ to a function
that sends U ⊂ X ′ to f−1(U) ⊂ X . Is it representable?

Problem 5. (2 points) Let S ⊂ R be a multiplicative system in the com-
mutative ring R. Consider the covariant functor from commutative rings
to sets that sends a ring A to the set of all homomorphisms f : R→ A such
that f(s) is a unit for any s ∈ S (describe its action of homomorphisms
A→ A′ yourself). Show that this functor is representable.

Problem 6. (2 points) Let F : AlgebraicV arieties → Sets be a functor
which assigns to each X the subset S ⊂ O(X) of all regular functions f
which an be written as a square f = g2 of a regular function. Describe the
action of F on morphismsX → Y of algebraic varieties. Is F representable?

Problem 7. (2 points) Let X and Y be irreducible quasi-projective va-
rieties with fields of rational functions C(X) and C(Y ). Show that these
fields are isomorphic if and only if there exist non-empty affine open sub-
sets U ⊂ X and V ⊂ Y such that U is isomorphic to V .

Problem 8. (3 points) Let C be an algebraic curve. Then one can describe
morphisms C → Pr either using Theorem 3.7.11 (line bundles) or using
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Proposition 4.8.6 (linear systems of divisors). Explain how these methods
are related.

Problem 9. (2 points) Compute j-invariants of elliptic curves

(a) y2 + y = x3 + x; (b) y2 = x4 + bx3 + cx.

Problem 10. (1 point) Show that every elliptic curve is isomorphic to a
curve of the form y2 = (1− x2)(1− e2x2).

Problem 11. (2 points) Show that the two formulas in (5.2.7) agree.
Problem 12. (3 points) Let (C,P ) be an elliptic curve. (a) By considering

a linear system φ|4P |, show that C embeds in P3 as a curve of degree 4.
(b) Show that quadrics in P3 containing C form a pencil P1 with 4 singular
fibers. (c) These four singular fibers define 4 points in P1. Relate their cross-
ratio to the j-invariant of C.

Problem 13. (2 points). (a) Compute the j-invariant of an elliptic curve

y2 + xy = x3 − 36

q − 1728
x− 1

q − 1728
,

where q is some parameter. (b) Show that A1
j \ {0, 1728} carries a family of

elliptic curves with j-invariant j.
Problem 14. (2 points) Solve a cross-word puzzle.

§6. Families of algebraic varieties

Our next goal is to sketch the proof of Theorem 5.4.5 following [MS].
Recall that our goal is to describe explicitly any smooth proper morphism
π : X → B with a section σ such that all of the fibers are elliptic curves.
In order to do that, we have to introduce a more advanced viewpoint on
families of algebraic varieties. For starters, we can shrink B to an affine
open neighborhood of a point b ∈ B and assume that B is an affine variety
with ring of functions R = k[B]. We can think about X as “an elliptic
curve over the ring R” generalizing “an elliptic curve E over the field C”.
Eventually we will write a Weierstrass equation for it with coefficients inR.

We adopt the same strategy as in the proof of Theorem 5.1.1, namely the
Riemann–Roch analysis of linear systems L(kP ) on E. But we will have to
upgrade our technology so that we can work with a family over the base B
and with a section A = σ(B) ⊂ X instead of a single point P ∈ E.

We will go back and forth between introducing general techniques and
filling the gaps in the proof of Theorem 5.4.5.

§6.1. Short exact sequence associated with a subvariety. Let X be an al-
gebraic variety and let Z ⊂ X be a subvariety. Algebraically, it is given by
a sheaf of (radical) ideals IZ ⊂ OX . Namely,

IZ(U) = {f ∈ OX(U) | f |Z∩U = 0} ⊂ OX(U)

for every open subsetU ⊂ X . These sheaves sit in the following very useful
short exact sequence of sheaves

0→ IZ → OX → i∗OZ → 0, (2)
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where i : Z ↪→ X is the inclusion map and i∗ is the push-forward of sheaves10.
If U ⊂ X is an affine open subset with ring of functions R = k[U ] then
I = IZ(U) is an ideal of R and R/I is a coordinate ring of Z ∩ U . Taking
sections of sheaves in (2) over U gives a short exact sequence

0→ I → R→ R/I → 0.

10Recall that if X → Y is a continuous map of topological spaces and F is a sheaf on X
then the pushforward f∗F has sections f∗F(U) = F(f−1(U)) for every open set U ⊂ Y .
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For example, if P ∈ C is a point of a smooth curve then (2) becomes

0→ IP → OC → CP → 0, (3)

where CP is the skyscraper sheaf of the point P .

§6.2. Cartier divisors and invertible sheaves.

6.2.1. DEFINITION. A Cartier divisorD on an algebraic varietyX is an (equiv-
alence class of) data

(Uα, fα), α ∈ I,
where X = ∪Uα is an open covering and fα ∈ C(X) are non-zero rational
functions such that fα/fβ is an invertible function on each overlap Uα∩Uβ .
A Cartier divisor is called effective if fα ∈ OX(Uα) for every α.

We can think about a Cartier divisor D as a divisor given by equation
fα = 0 in each chart Uα. The fact that fα/fβ is invertible on every overlap
makes this consistent. More precisely, we have the following definition:

6.2.2. DEFINITION. Suppose the singular locus of X has codimension at
least 211. Then an associated divisor is∑

ordH(fα)[H],

the summation over all prime divisors (=irreducible hypersurfaces)H ⊂ X
and ordH(fα) is the order of zeros–poles along H . The order is defined
using any fα such that H ∩ Uα 6= ∅. The fact that fα/fβ is invertible on
Uα ∩ Uβ makes this definition independent of α. The sum of course turns
out to be finite.

In general, not every prime divisor is Cartier: locally the former corre-
spond to prime ideals of height 1 and the latter to locally principal ideals.
If X is non-singular then every divisor is Cartier12.

6.2.3. EXAMPLE. Suppose n1P1+. . .+nrPr is a divisor on a curveC. Choose
a covering C = U0 ∪ U1 ∪ . . . ∪ Ur, where U0 = C \ {P1, . . . , Pr} and Ui is
defined as follows: choose a local parameter gi for Pi and define Ui to be C
with removed points Pj , j 6= i and removed zeros and poles of gi except for
its simple zero at Pi13. Finally, define fi = gnii .

A Cartier divisor D has an associated line bundle X = LD, which has trivi-
alizing atlas ∪Uα and transition functions fα/fβ . In algebraic geometry we
often bypass this line bundle and work with its sheaf of sections, denoted
by OX(D). One can define it directly: for every open subset U ⊂ X ,

OX(D)(U) = {f ∈ C(X) | ffα ∈ OX(U ∩ Uα).

The sheaf OX(D) is invertible, i.e. every point of X has a neighborhood U
such that OX(D)|U ' OU . Namely, for every α,

OX(D)|Uα =
1

fα
OX |Uα .

11Recall that this is always the case if X is a normal variety.
12A difficult step of the proof is that non-singular varieties are locally factorial, i.e. every

local ring is a UFD. It is easy to show that on locally factorial varieties all divisors are Cartier.
13In the analytic category one can take Ui to be a small neighborhood of Pi and gi a

corresponding local coordinate.
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6.2.4. EXAMPLE. One very useful application is a special case of the exact
sequence (2) when Z = D is a prime divisor, which happens to be Cartier:

0→ OX(−D)→ OX → i∗OD → 0.

For example, the exact sequence (3) can be rewritten as

0→ OC(−P )→ OC → CP → 0.

6.2.5. EXAMPLE. The linear system L(D) in this language is the space of
global sections:

L(D) = Γ(X,OX(D)) = H0(X,OX(D)).

§6.3. Morphisms with a section. A section is always a subvariety:

6.3.1. LEMMA. Suppose a morphism of algebraic varieties π : X → B has a
section σ : B → X . Then A = σ(B) is a closed subvariety isomorphic to B.

Proof. It suffices to show that A is closed because then π|A and σ give a
required isomorphism. Arguing by contradiction, take x ∈ Ā \ A. Let
b = π(x). Then y = σ(b) 6= x. Since X is quasiprojective, there exists an
open subset U of X , which contains both x and y, and a function f ∈ O(U)
such that f(x) = 1 and f(y) = 0. But this gives a contradiction: the function

f − f ◦ σ ◦ π
vanishes identically along A, and therefore has to vanish at x ∈ Ā but its
value at x is equal to f(x)− f(y) = 1.14. �

§6.4. Morphisms with reduced fibers. Let π : X → B be a morphism of
algebraic varieties, b ∈ B. What are the equations of the fiber Xb = π−1(b)?
Notice that x ∈ Xb if and only if π∗f(x) = 0 for every function f on B
regular and vanishing at b. Therefore the ideal J ⊂ OX,x of the fiber is
equal to the radical of the ideal in OX,x generated by π∗(mB,b).

6.4.1. DEFINITION. The fiber Xb is reduced at x ∈ Xb if J = OX,xπ∗(mB,b) is a
radical ideal. We say that Xb is a reduced fiber if it is reduced at every point.

6.4.2. EXAMPLE. Let f : C → D be a non-constant morphism of algebraic
curves. For every point of a curve, its maximal ideal in the local ring is gen-
erated by a local parameter at that point. Thus the fiber f−1(y) is reduced
at x if and only if f is unramified at x.

6.4.3. LEMMA. Under the assumptions of Lemma 6.3.1, let x ∈ A, b = π(x).
Suppose that the fiber Xb is reduced. Under the restriction homomorphism

OX,x → OXb,x,
the maximal ideal mXb,x ⊂ OXb,x is the image of the ideal I ⊂ OX,x of the section.

14The proof reflects the fact that every quasi-projective algebraic variety is separated.
Moreover, an algebraic variety is separated whenever any two points x, y ∈ X are con-
tained in an open subset U which admits a regular function f ∈ O(U) separating x and y,
i.e. such that f(x) 6= f(y). It is easy to construct an unseparated variety by gluing affine
open varieties. A simple example is an affine line with two origins X obtained by gluing
two copies of A1 along an open subset {x 6= 0} using the identity map. The two origins
cannot be separated by a function. Notice by the way that a projection map X → A1 has a
section with the non-closed image! In the category of manifolds, the “separation of points
by a continuous function” property is equivalent to Hausdorffness.
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Proof. It is clear that I restricts to the ideal Ī ⊂ OXb,x contained in mXb,x.
So it suffices to prove thatOXb,x/Ī = C. Since the fiber is reduced, we have
OXb,x = OX,x/J , where J = OX,xπ∗(mB,b). Thus it suffices to show that

OX,x/(J + I) = C.

And indeed, doing factorization in a different order gives

OX,x/(I + J) = OA,x/π∗(mB,b) ' OB,b/mB,b = C.

This proves the Lemma. �

If all fibers of π are curves then

dimA = dimB = dimX − 1,

i.e. the section A is a divisor. We claim that it is a Cartier divisor if π has
reduced fibers and all of them are smooth curves.

6.4.4. LEMMA. Let π : X → B be a morphism with a section σ, reduced fibers,
and such that all fibers are smooth curves. Then A = σ(B) is a Cartier divisor.

Proof. We have to show that every point x = σ(b) ∈ A has an affine neigh-
borhood U such that IA(U) is a principal ideal. It suffices to prove that its
localization, I := IA,x ⊂ OX,x is a principal ideal. Let J := IXb,x ⊂ OX,x be
the vanishing ideal of the fiber.

By Lemma 6.4.3, the maximal ideal mXb,x of x in the fiber is equal to the
restriction of I . Since the fiber is a non-singular curve, mXb,x is generated
by a local parameter z (algebraically, OXb,x is a discrete valuation ring and
z is a uniformizer). Choose f ∈ I that restricts to z ∈ mXb,x.

We claim that I = (f), or equivalently I/(f) = 0. Since I/(f) is a finitely
generated module of the local ring OX,x, Nakayama’s lemma applies, and
thus I/(f) = 0 if and only if

I/(f) = mX,xI/(f),

i.e.
I = (f) + mX,xI.

Choose α ∈ I and choose gf ∈ (f) which has the same restriction to the
local ring OXb,x of the fiber as α. Then α− gf restricts trivially, i.e. belongs
to J . Thus it suffices to prove that I ∩ J ⊂ mX,xI . In fact we claim that

I ∩ J = IJ.

The pull-back by π∗ and by σ∗ give an isomorphism of OB,b modules

OX,x = π∗OB,b + I.

Since the fiber Xb is reduced, we have

J = OX,xπ∗mB,b = π∗OB,bπ∗mB,b + Iπ∗mB,b = π∗mB,b + IJ.

Thus if α ∈ I ∩ J then, modulo IJ , we can assume that α = π∗β. But then

β = σ∗π∗β = σ∗α = 0

because α vanishes along the section. Thus α = π∗β = 0 as well. �
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§6.5. Flat and smooth morphisms. Let’s finally define smooth morphisms.

6.5.1. DEFINITION. A morphism f : X → Y of algebraic varieties is called
flat if OX,x is a flat OY,y-module for every point x ∈ X and y = f(x).

6.5.2. DEFINITION. A morphism f : X → Y of algebraic varieties is called
smooth if it is flat, has reduced fibers, and every fiber is non-singular.

Let X → B be an elliptic fibration, i.e. a smooth proper morphism with
a section A = σ(B) such that all fibers are elliptic curves. We would like to
write down Weierstrass equation ofX , possibly after shrinkingB. WhenB
is a point, the argument will reduce to the previous calculation with linear
systems

L(E, kP ) = H0(E,OE(kP )).

Recall that if F is a sheaf of Abelian groups on an algebraic variety X
then we can define higher cohomology groups Hk(X,F) in addition to the
group H0(X,F) of global sections. There are several important facts to
know about these groups.

6.5.3. THEOREM. For every short exact sequence of sheaves

0→ F → F ′ → F ′′ → 0,

we have a long exact sequence of cohomology groups

. . .→ Hk(X,F)→ Hk(X,F ′)→ Hk(X,F ′′)→ Hk+1(X,F)→ . . . ,

functorial with respect to commutative diagrams of short exact sequences

0 −−−−→ F −−−−→ F ′ −−−−→ F ′′ −−−−→ 0y y y
0 −−−−→ G −−−−→ G′ −−−−→ G′′ −−−−→ 0

6.5.4. DEFINITION. A sheaf F on an algebraic variety X is called locally free
of rank r if every point has a neighborhood U such that F|U ' O⊕rU . Equiv-
alently, F is a sheaf of sections of some vector bundle π : F → X , i.e.

F(U) = {s : X → F | π ◦ s = IdX}.

For example, a locally free sheaf of rank 1 is nothing but an invertible sheaf,
a sheaf of sections of a line bundle.

6.5.5. THEOREM. LetX be a projective algebraic variety and let F be a locally free
sheaf on X . Then all cohomology groups Hk(X,F) are finite-dimensional vector
spaces which vanish for k > dimX15. Their dimensions are denoted by hk(X,F).

If X is a smooth projective curve16 then we also have

6.5.6. THEOREM (Serre duality). Let D be any divisor on X and let K be the
canonical divisor. Then we have duality of vector spaces

H i(X,OX(D)) ' H1−i(X,OX(K −D))∗.

15More generally, one can reach the same conclusion if F is a coherent sheaf.
16In fact much more generally but we won’t need that.
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In particular,
i(D) = dimK(D) = h0(K −D) = h1(D)

and we can rewrite Riemann–Roch theorem in a (less useful) form

h0(D)− h1(D) = 1− g + degD.

Now let π : X → B be an elliptic fibration with section A = σ(B) and
consider invertible sheaves OX(kA) for k ≥ 0. We would like to under-
stand the space of global sections H0(X,OX(kA)), but since we need a
freedom to shrink B, it is better to study the push-forward π∗OX(kA). Its
sections over an open subset U ⊂ B is the space of global sections

H0(π−1(U),OX(kA)).

Recall that this is the space of rational functions on X regular at any point
x ∈ π−1(U) \A and that can be written as g/fk at any point x ∈ A, where g
is regular and f is a local defining equation of the Cartier divisor A.

§6.6. Pushforwards and derived pushforwards. If F is a sheaf of Abelian
groups on an algebraic variety X and π : X → B is a morphism then one
can define derived pushforward sheaves Rkπ∗F on B in addition to the
push-forward R0π∗F := π∗F . When B is a point, π∗F = H0(X,F) and
Rkπ∗F = H0(X,F). The analogue of Theorem 6.5.3 is the following:

6.6.1. THEOREM. For every short exact sequence of sheaves

0→ F → F ′ → F ′′ → 0,

we have a long exact sequence of derived push-forwards

. . .→ Rkπ∗F → Rkπ∗F ′ → Rkπ∗F ′′ → Rk+1π∗F → . . . ,

functorial with respect to commutative diagrams of short exact sequences

0 −−−−→ F −−−−→ F ′ −−−−→ F ′′ −−−−→ 0y y y
0 −−−−→ G −−−−→ G′ −−−−→ G′′ −−−−→ 0

6.6.2. REMARK. Suppose F is a locally free sheaf on X and let π : X → B
be a morphism. Notice that π∗F is not just a sheaf of Abelian groups but a
sheaf of OB-modules. Indeed, for every open subset U ⊂ B,

π∗F(U) = F(π−1U)

is an OX(π−1U)-module but we have a homomorhism of rings

f∗ : OB(U)→ OX(π−1U)

which makes its a OB(U)-module as well. In particular, the stalk (π∗F)b
at b ∈ B is a OB,b-module. Derived pushforwards are also sheaves of OB-
modules, generalizing the fact that cohomology groups are vector spaces.

Here’s the analogue of Theorem 6.5.5:
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6.6.3. THEOREM. Let π : X → B be a proper morphism of algebraic varieties and
let F be a locally free17 sheaf on X . Then all derived push-forwards Rkπ∗F are
sheaves of finitely generated OB-modules.

§6.7. Cohomology and base change.

6.7.1. DEFINITION. Take any vector bundleE → X and a subvarietyZ ⊂ X .
The restriction E|Z of E is a vector bundle on Z. If F is a (locally free) sheaf
of sections of E then the sheaf of sections F|Z of E|Z can be described as
follows: if U ⊂ X is an affine open set then

F|Z(U ∩ Z) = F(U)/IZ(A)F(U).

In other words, we have an exact sequence of sheaves on X

0→ IZ ⊗F → F → i∗FZ → 0, (4)

obtained by tensoring the short exact sequence (2) with F .

6.7.2. EXAMPLE. Suppose π : X → B is a morphism with a section A =
σ(B) such that all fibers are reduced curves. We can apply the previous
definition either to the fibers of π or to the section.

The restriction of an invertible sheaf OX(kA) (its local sections are ratio-
nal functions on X with poles of order at most k along A) to every fiber is
the sheaf

OXb(kA) = OXb(kP )

(its local sections are rational functions on Xb with poles of order at most k
at P = σ(b).)

Another very useful short exact sequence for us will be the sequence (4)
with Z = A. It goes as follows:

0→ OX((k − 1)A)→ OX(kA)
ψ−→ i∗OA(kA)→ 0. (5)

What is the meaning of the last map ψ?

6.7.3. CLAIM. At any point x ∈ A, a local section α of OX(kA) looks like g/fk,
where f is a local equation of A. Then

ψ(g/fk) = g|A.
We call ψ(α) the principal part of α.

6.7.4. DEFINITION. We would like to compare π∗F , which is a sheaf on B,
with the vector space of global sections H0(Xb,F|Xb). For every neighbor-
hood b ∈ U , we have a restriction homomorphism

π∗F(U) = F(π−1U)→ H0(Xb,F|Xb).
These homomorphisms commute with further restrictions b ∈ V ⊂ U , and
therefore give a homomorphism from the stalk of the push-forward

(π∗F)b → H0(Xb,F|Xb).
This stalk (π∗F)b is a module over the local ring OB,b. If f ∈ mB,b then
every section in f(π∗F)b restricts to Xb trivially. Thus we have a canonical
homomorphism

i0b : (π∗F)b ⊗ C→ H0(Xb,F|Xb),

17Or, more generally, a coherent sheaf.
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where C ' OB,b/mB,b. More generally, we have canonical homomorphisms

ikb : (Rkπ∗F)b ⊗ C→ Hk(Xb,F|Xb).

An ideal situation would be ifRkπ∗F were a locally free sheaf of sections
of some vector bundle F k n B. Then (Rkπ∗F)b ⊗ C would be identified
with the fiber of F k at b ∈ B. The canonical homomorphism would give a
linear map from the fiber of F k to Hk(Xb,F|Xb). If that linear map were an
isomorphism, we would be able to interpretRkπ∗F as a sheaf of sections of
a vector bundle with fibers given by cohomologies of fibers Hk(Xb,F|Xb).
This is not always the case (for example, dimensions of these cohomology
groups can jump in special fibers), but there is a powerful cohomology and
base change theorem, which gives a necessary condition.

6.7.5. THEOREM. Let π : X → B be a proper flat morphism of algebraic varieties
with reduced fibers and let F be an invertible or locally free sheaf on X .

(1) If ikb is surjective for some k and b ∈ B then it is bijective.
(2) Suppose (1) is satisfied. Then Rkπ∗F is locally free in a neighborhood of b

if and only if ik−1
b is surjective.

(3) If Hk+1(Xb,F|Xb) = 0 then ikb is an isomorphism.

The following corollary is the most often used form of cohomology and
base change:

6.7.6. COROLLARY. If H1(Xb,F|Xb) = 0 for some b ∈ B then π∗F is locally free
in a neighborhood of b and i0b is an isomorphism.

§6.8. Riemann-Roch analysis. Consider an elliptic fibration π : X → B
with a sectionA = σ(B). The key players will be invertible sheavesOX(kA)
for k ≥ 0 and their push-forwards

Fk := π∗OX(kA).

6.8.1. LEMMA. Fk is a locally free sheaf of rank k for every k ≥ 1. Also,

F0 = π∗OX ' OB
(a canonical isomorphism via pull-back π∗).

Pushing an exact sequence (5) forward to B gives a long exact sequence

0→ Fk−1 → Fk
ψ−→L⊗k → R1π∗OX((k − 1)A),

where
L := π∗i∗OA(A) ' σ∗OX(A)

is an invertible sheaf and ψ is the principal parts map.

6.8.2. LEMMA. For k ≥ 2, this gives a short exact sequence

0→ Fk−1 → Fk → L⊗k → 0

For k = 1, we get is an isomorphism F0 ' F1 ' OB .

Let B = SpecR. Then

H0(B,F0) = H0(B,F1) = R.
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Since L is invertible, we can shrink B to a smaller affine neighborhood
so that L ' OB . We are going to fix a trivialization of L. Everything that
follows will be determined up to making a different choice of trivialization,
i.e. up to multiplying it by an invertible function λ ∈ R∗.

Shrink B further to get short exact sequences

0→ Fk−1(B)→ Fk(B)→ L⊗k(B)→ 0

for every 2 ≤ k ≤ 6, or, equivalently, given our trivialization of L,

0→ Fk−1(B)→ Fk(B)
ψk−→R→ 0,

where ψ is the principal parts map.
The following easy lemma is left as a homework exercise.

6.8.3. LEMMA. If 0 → M → N → K → 0 is an exact sequence of R-modules
and M and K are free then N is also free.

By induction, in our case we see that Fk(B) is a free R-module of rank
k for every 2 ≤ k ≤ 6. Its generators can be obtained by choosing any
generators in Fk−1(B) along with any element which maps to 1 by ψk.

Thus F2(B) is a free R-module generated by 1 ∈ F1(B) = R and some
element x such that ψ2(x) = 1. Also, F3(B) is a free R-module generated
by 1, x ∈ F2(B) and some y such that ψ3(y) = 2. An annoying renormal-
ization “2” is here by historical reasons. As functions on X , x has a pole
of order 2 and y has a pole of order 3 along A. Notice that x and y are not
uniquely determined: we can add to x any R-multiple of 1 ∈ F1(B) = R
and we can add to y any linear combination of 1 and x ∈ F2(B) .

Arguing as in the case of a single elliptic curve, we see that

6.8.4. CLAIM. 1, x, y, x2, xy, x3 freely generate F6(B).

But y2 is also a section of F6(B), thus it can be expressed as a linear
combination of these generators (with coefficients in R). Since ψ6(y2) = 4
and ψ6(x3) = 1, and ψ6 sends other generators to 0, the linear combination
will look like

y2 = 4x3 + a+ bx+ cy + dx2 + exy,

where a, b, c, d, e ∈ R. By completing the square with y and then the cube
with x, we can bring this expression into the Weierstrass form

y2 = 4x3 − g2x− g3, (6)

where g2, g3 ∈ R. This eliminates any ambiguities in choices of x and y.
Functions x and y map X \A to A2

x,y ×B, and the image lies on a hyper-
surface given by equation (6). Projectivizing, we get a morphism

X → P2
x,y,z ×B,

and the image lies on a hypersurface E with equation

y2z = 4x3 − g2xz
2 − g3z

3.

It remains to show that the induced morphism α : X → E is an isomor-
phism. It restricts to an isomorphism on every fiber Xb → Eb, in particular
it is bijective. Let’s use one of the versions of Zariski main theorem:
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6.8.5. THEOREM. A morphism of algebraic varieties X → E with finite fibers can
be factored as an open embedding i : X ↪→ U and a finite morphism g : U → E .

In our case, U must be equal to X . This follows from the following basic
property of proper morphisms:

6.8.6. LEMMA. Let f : X → B be a proper morphism and suppose it can be
factored as X → U → B. Then the image of X in U is closed.

Thus X → E is a finite morphism. To show that it is an isomorphism, it
is enough to check that the map of local rings

α∗ : OE,α(p) → OX,p
is surjective (and hence an isomorphism) for every p ∈ X . Since we know
that this is true on every fiber, we have

OX,p = α∗(OE,α(p)) + mB,bOX,p = α∗(OE,α(p)) + α∗(mE,α(p))OX,p.

Thus we can finish by Nakayama’s lemma which applies, because X → E
is finite, and therefore OX,p is a finitely generated OE,α(p)-module.

§6.9. Homework 3.

Problem 1. (3 points) Let M be the set of isomorphism (=conjugacy)
classes of invertible complex 3 × 3 matrices. (a) Describe M as a set.
(b) Let’s define the following moduli problem: a family over a variety X
is a 3×3 matrixA(x) with coefficients inO(X) such that detA(x) ∈ O∗(X),
i.e. A(x) is invertible for any x ∈ X . Describe the corresponding moduli
functor. (c) Show that this moduli functor has no coarse moduli space.

Problem 2. (1 point) Show that a coarse moduli space (of any moduli
functor) is unique (if exists) up to an isomorphism. Show that a fine moduli
space is always also a coarse moduli space.

Problem 3. (1 point) In Definition 5.4.3, explain how to pullback sections.
Problem 4. (2 points) Let f be a rational function on an algebraic curve

C such that all zeros of f have multiplicity divisible by 3 and all zeros of
f − 1728 have multiplicities divisible by 2. Show that C \ {f = ∞} carries
an elliptic fibration with j-invariant f .

Problem 5. (2 points) Let E be an elliptic curve and consider the trivial
family P1 × E over P1. Now take two copies of this algebraic surface and
glue them along {0} × E by identifying E with E by identity and along
{∞} × E by identifying E with E via a non-trivial involution. This gives
an elliptic fibration over a reducible curve obtained by gluing two copies of
P1 along 0 and∞. Show that all elliptic curves in this family are isomorphic
but the family is not trivial.

Problem 6. (3 points) Let (C,P ) be an elliptic curve. Let Γ ⊂ C be the
ramification locus of φ|2P |. (a) Show that Γ ' Z2 × Z2 is precisely the 2-
torsion subgroup in the group structure on C. (b) A level 2 structure on
(C,P ) is a choice of a basis {Q1, Q2} ∈ Γ (considered as a Z2-vector space).
Based on Theorem 5.4.5, describe families of elliptic curves with level 2
structure. Define a moduli functor of elliptic curves with a level 2 structure.
Show that P1

λ \ {0, 1,∞} carries a family of elliptic curves with a level 2
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structure such that every curve with a level 2 structure appears (uniquely)
as one of the fibers.

Problem 7. (2 points) Is P1
λ \ {0, 1,∞} a fine moduli space for the moduli

functor of the previous problem?
Problem 8. (3 points) Consider the family of cubic curves

Ca = {x3 + y3 + z3 + axyz = 0} ⊂ P2

parametrized by a ∈ A1. (a) Find all a such that Ca is smooth and find its
inflection points. (b) Compute j as a function on a and find all a such that
Ca has a special automorphism group.

Problem 9. (3 points) Let (C,P ) be an elliptic curve equipped with a
morphism C → C of degree 2. By analyzing the branch locus φ2P , show
that the j-invariant of C has only 3 possible values and find these values.

Problem 10. (2 points) Let X be an algebraic variety. Recall that it is
called normal if it can be covered by affine open sets X = ∪iUi such that
every O(Ui) is integrally closed in its field of fractions. Show that X is
normal if and only if every birational finite map Y → X is an isomorphism.

Problem 11. (2 points) Let f : X → Y be a finite morphism of algebraic
varieties and let g : X → Z be an arbitrary morphism. Show that f × g :
X → Y × Z is a finite morphism of algebraic varieties.

Problem 12. (1 point). Prove Claim 6.7.3
Problem 13. (1 point). Prove Corollary 6.7.6
Problem 14. (2 points). Prove Lemma 6.8.1
Problem 15. (2 points). Prove Lemma 6.8.2
Problem 16. (2 points). Prove Lemma 6.8.3.
Problem 17. (2 points). Prove Claim 6.8.4.

§7. Invariants of finite groups

In the second half of the course we are going to study invariant theory
and orbit spaces more systematically. We will start with a finite group G

acting linearly18 on a vector space V and discuss the quotient morphism
π : V → V/G to the orbit space (or the quotient space) V/G. There are
several reasons to isolate this case:

• The quotient space V/G is typically singular. Singularities of this
form (called quotient or orbifold singularities) form are very common.
• Globally, moduli spaces can often be constructed as quotients X/G

of algebraic varieties by reductive group actions. Most of the results
generalize to this set-up but new subtleties arise.
• Locally, near some point p, moduli spaces can often be modeled on

the quotient V/G, where V is a vector space (a versal deformation
space of the geometric object that corresponds to p) and G is an au-
tomorphism group of this object, which is often finite.

18Recall that a linear action is given by a homomorphism G → GL(V ). In this case we
also say that V is a representation of G.
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§7.1. First examples.

7.1.1. EXAMPLE. LetG = Sn be a symmetric group acting on Cn by permut-
ing the coordinates. Recall that our recipe for computing the orbit space
calls for computing the ring of invariants

C[x1, . . . , xn]Sn .

By the classical theorem on symmetric functions, this ring of Sn-invariant
polynomials is generated by elementary symmetric polynomials

σ1 = x1 + . . .+ xn,

. . .

σk =
∑

i1<...<ik

xi1 . . . xik ,

. . .

σn = x1 . . . xn.

Thus the candidate for the quotient map is

π : An → An, (x1, . . . , xn) 7→ (σ1, . . . , σn).

This map is surjective and its fibers are the Sn-orbits. Indeed, we can re-
cover x1, . . . , xn (up to permutation) from σ1, . . . , σn because they are roots
of the polynomial Tn − σ1T

n−1 + . . .+ (−1)nσn = 0.

7.1.2. EXAMPLE. A linear action of a finite group G on C is given by a char-
acter, a homomorphism G→ C∗. Its image is a subgroup µd of d-th roots of
unity. Let ζ be the primitive d-th root of 1. Thus

C[x]G = C[x]µd = C[xd].

It is clear that xd separates orbits because every non-zero orbit has d ele-
ments x, ζx, . . . , ζd−1x. The quotient morphism in this case is just

π : A1 → A1, x 7→ xd.

7.1.3. EXAMPLE. Let Z2 act on A2 by (x, y) 7→ (−x,−y). Invariant polyno-
mials are just polynomials of even degree, and so

C[x, y]Z2 = C[x2, y2, xy].

The quotient morphism is

π : A2 → A3, (x, y) 7→ (x2, y2, xy).

It is clear that invariants separate orbits. It is also clear that the quotient
map is surjective onto the quadratic cone

(uv = w2) ⊂ A3.

The quadratic cone is the simplest du Val singularity called A1.
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§7.2. Quotient singularity 1
r (1, a) and continued fractions. Computing the

algebra of invariants can be quite complicated but things are much easier if
the group is Abelian. Let’s look at an amusing example of a cyclic quotient
singularity 1

r (1, a). It is defined as follows: consider the action of µr on C2,
where the primitive generator ζ ∈ µr acts via the matrix[

ζ 0
0 ζa

]
How to compute the algebra of invariants C[x, y]µr? Notice that the group
acts on monomials diagonally as follows:

ζ · xiyj = ζ−i−jaxiyj .

So a monomial xiyj is contained in C[x, y]µr if and only if

i+ ja ≡ 0 mod r.

7.2.1. EXAMPLE. Consider 1
r (1, r− 1). Notice that this is the only case when

µr ⊂ SL2. The condition on invariant monomials is that

i ≡ j mod r

(draw). We have

C[x, y]µr = C[xr, xy, yr] = C[U, V,W ]/(V r − UW ).

We see that the singularity 1
r (1, r − 1), also known as the Ar−1-singularity,

is a hypersurface in A3 given by the equation V r = UW .

7.2.2. EXAMPLE. Consider 1
r (1, 1). The condition on invariant monomials is

i+ j ≡ 0 mod r

(draw). We have

C[x, y]µr = C[xr, xr−1y, xr−2y2, . . . , yr].

The quotient morphism in this case is

A2 → Ar+1, (x, y) 7→ (xr, xr−1y, xr−2y2, . . . , yr).

The singularity 1
r (1, 1) is a cone over the rational normal curve

[xr : xr−1y : xr−2y2 : . . . : yr] ⊂ Pr−1.

7.2.3. DEFINITION. Let r > b > 0 be coprime integers. The following ex-
pression is called the Hirzebruch–Jung continued fraction:

r/b = a1 −
1

a2 − 1
a3−...

= [a1, a2, ..., ak].

Hirzebruch–Young continued fractions are similar to ordinary continued
fractions but have minuses instead of pluses. For example,

5/1 = [5],

5/4 = [2, 2, 2, 2],

5/2 = [3, 2].

Here’s the result:
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7.2.4. THEOREM. Suppose µr acts on A2 with weights 1 and a, where (a, r) = 1.
Let r

r−a = [a1, a2, ..., ak] be the Hirzebruch–Jung continued fraction expansion19.
Then C[x, y]µr is generated by

f0 = xr, f1 = xr−ay, f2, . . . , fk, fk+1 = yr,

where the monomials fi are uniquely determined by the following equations:

fi−1fi+1 = faii for i = 1, . . . , k. (7.2.5)

7.2.6. EXAMPLE. An example is in Figure 2.

FIGURE 2

7.2.7. REMARK. We see that the codimension of A2//Γ in the ambient affine
space Ak+2 is equal to the length of the Hirzebruch–Young continued frac-
tion. This is a good measure of the complexity of the singularity. From
this perspective, 1

r (1, 1) (the cone over a rational normal curve) is the most
complicated singularity: the Hirzebruch–Young continued fraction

r/(r − 1) = [2, 2, 2, . . . , 2] (r − 1 times)

uses the smallest possible denominators. It is analogous to the standard
continued fraction of the ratio of two consecutive Fibonacci numbers, which
has only 1’s as denominators.

Proof of Theorem 7.2.4. Invariant monomials in C[x, y]µr are indexed by vec-
tors of the first quadrant

{(i, j) | i, j ≥ 0} ⊂ Z2

which are in the lattice

L = {(i, j) | i+ aj ≡ 0 mod r} ⊂ Z2.

19Notice that we are expanding r/(r − a) and not r/a.
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This intersection is a semigroup and we have to find its generators. We
note for future use that L contains the sublattice rZ2 and can be described
as the lattice generated by[

0
r

]
,

[
r − a

1

]
,

[
r
0

]
.

The semigroup of invariant monomials is generated by
[
r
0

]
,
[
0
r

]
, and by

the monomials inside the square {(i, j) | 0 < i, j < r}, which are precisely
the monomials

((r − a)j mod r, j), j = 1, . . . , r − 1.

Of course many of these monomials are unnecessary. The first monomial in

the square that we actually need is
[
r − a

1

]
. Now take multiples of

[
r − a

1

]
.

The next generator will occur when (r − a)j goes over r, i.e. when

j = d r

r − a
e = a1

(in the Hirzebruch–Young continued fraction expansion for r
r−a ). Since

(r − a)a1 mod r = (r − a)a1 − r,

the next generator is [
(r − a)a1 − r

a1

]
.

Notice that so far this confirms our formula (7.2.5). We are interested in the
remaining generators of L inside the r × r square. Notice that they all lie

above the line spanned by
[
r − a

1

]
. So we can restate our problem: find

generators of the semigroup obtained by intersecting L with points lying

in the first quadrant and above the line spanned by
[
r − a

1

]
.

Next we notice that[
r
0

]
= a1

[
r − a

1

]
−
[
(r − a)a1 − r

a1

]
.

It follows that lattice L is also spanned by
[
0
r

]
,
[
(r − a)a1 − r

a1

]
, and

[
r − a

1

]
.

We are interested in generators of the semigroup obtained by intersecting

this lattice with the “angle” spanned by vectors
[
0
r

]
and

[
r − a

1

]
.

Consider the linear transformation ψ : R2 → R2 such that

ψ

[
1
0

]
=

[
1
−1
r

]
, ψ

[
0
1

]
=

[
0
r−a
r

]
.

Then we compute

ψ

[
0
r

]
=

[
0

r − a

]
, ψ

[
r − a

1

]
=

[
r − a

0

]
, ψ

[
(r − a)a1 − r

a1

]
=

[
(r − a)a1 − r

1

]
.



74 JENIA TEVELEV

So we get the same situation as before with a smaller lattice. Notice that if
r

r − a
= a1 −

1

q

then
q =

r − a
(r − a)a1 − r

,

so we will recover all denominators in the Hirzebruch–Jung continued frac-
tion as we proceed inductively. �

§7.3. Finite generation.

7.3.1. THEOREM. LetG be a finite group acting linearly on a vector space V . Then
the algebra of invariants O(V )G is finitely generated.

7.3.2. REMARK. Since G acts on V , it also acts on the polynomial algebra
k[V ] = O(V ). The right way to do it is as follows: if f ∈ k[V ] then

(g · f)(x) = f(g−1x).

This is how the action on functions is defined: if you try g instead of g−1,
the group action axiom will be violated.

We split the proof into Lemma 7.3.4 and Lemma 7.3.5. The second Lemma
will be reused later to prove finite generation for reductive groups.

7.3.3. DEFINITION. Let G be a group acting on a C-algebra A by automor-
phisms. A linear map

R : A→ AG

is called a Reynolds operator if
• R(1) = 1 and
• R(fg) = fR(g) for any f ∈ AG and g ∈ A.

In particular, the Reynolds operator is a projector onto AG:

R(f) = R(f · 1) = fR(1) = f for every f ∈ AG.

7.3.4. LEMMA. The Reynolds operator R : A→ AG exists if G is a finite group.

Proof. We define the Reynolds operator R as an averaging operator:

R(a) =
1

|G|
∑
g∈G

g · a.

It is clear that both axioms of the Reynolds operator are satisfied. This
works over any field as soon as its characteristic does not divide |G|. �

7.3.5. LEMMA. LetG be a group acting linearly on a vector space V and possessing
a Reynolds operator R : O(V )→ O(V )G. Then O(V )G is finitely generated.

Proof. This ingenious argument belongs to Hilbert. First of all, the action
of G on O(V ) preserves degrees of polynomials. So O(V )G is a graded
subalgebra of O(V ). Let I ⊂ O(V ) be the ideal generated by homogeneous
invariant polynomials f ∈ O(V )G of positive degree. By the Hilbert’s basis
theorem (proved in the same paper as the argument we are discussing),
I is finitely generated by homogeneous invariant polynomials f1, . . . , fr of
positive degrees. We claim that the same polynomials generate O(V )G as
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an algebra, i.e. any f ∈ O(V )G is a polynomial in f1, . . . , fr. Without loss of
generality, we can assume that f is homogeneous and argue by induction
on its degree. We have

f =

r∑
i=1

aifi,

where ai ∈ O(V ). Now apply the Reynolds operator:

f = R(f) =

r∑
i=1

R(ai)fi.

Each R(ai) is an invariant polynomial, and if we let bi be its homogeneous
part of degree deg f − deg fi, then we still have

f =

r∑
i=1

bifi.

By inductive assumption, each bi is a polynomial in f1, . . . , fr. This shows
the claim. �

§7.4. Properties of quotients.

7.4.1. DEFINITION. An algebraic group G is a group and an algebraic vari-
ety such that both the multiplication map G × G → G, (g, g′) 7→ gg′ and
the inverse map G → G, g 7→ g−1 are morphisms of algebraic varieties.
Likewise, an action of an algebraic group on an algebraic variety is called
algebraic if an action map G × X → X is a morphism. All actions we
consider will be algebraic.

7.4.2. DEFINITION. Let G be an algebraic group acting algebraically on an
affine variety X . Suppose O(X)G is finitely generated. The categorical quo-
tient X//G is defined as an affine variety such that

O(X//G) = O(X)G

and the quotient morphism π : X → X//G is defined as a morphism such
that the pull-back of regular functions given by inclusion

π∗ : O(X)G ⊂ O(X).

Concretely, choose a system of generators f1, . . . , fr of O(X)G and write

C[z1, . . . , zr]/I ' O(V )G, zi 7→ fi.

We define X//G as an affine subvariety in Ar given by the ideal I and let

π : X → X//G ↪→ Ar, v 7→ f1(v), . . . , fr(v).

A different system of generators gives an isomorphic affine variety.

For example, we can define the quotient of a vector space by a finite
group action, due to the finite generation theorem. To show that this defi-
nition is reasonable, let’s check two things:

• Fibers of π are exactly the orbits, i.e. any two orbits are separated by
polynomial invariants.
• All points of V//G correspond to orbits, i.e. π is surjective.

7.4.3. THEOREM. Any two G-orbits are separated by invariant polynomials.
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Proof. The proof relies significantly on finiteness of the group. Take two
orbits, S1, S2 ⊂ V . Since they are finite, there exists a polynomial f ∈ O(V )
such that f |S1 = 0 and f |S2 = 1. Then the average

F = R(f) =
1

|G|
∑
g∈G

g · f

is an invariant polynomial but we still have F |S1 = 0 and F |S2 = 1. �

Now surjectivity:

7.4.4. THEOREM. Let G be an algebraic group acting on an affine variety X and
possessing a Reynolds operator O(X) → O(X)G. Suppose O(X)G is finitely
generated. Then the quotient map π : X → X//G is surjective.

7.4.5. LEMMA. A regular map π : X → Y of affine varieties is surjective if and
only if O(X)π∗(n) 6= O(X) for any maximal ideal n ⊂ O(Y ).

Proof. For every point y ∈ Y (i.e. a maximal ideal n ⊂ O(Y )) we have to
show existence of a point x ∈ X (i.e. a maximal ideal m ⊂ O(X)) such that
f(x) = y, equivalently (π∗)−1(m) = n. So we have to show that there exists
a maximal ideal m ⊂ O(X) that contains π∗(n). The image of an ideal under
homomorphism is not necessarily an ideal, so the actual condition is that
the ideal O(X)π∗(n) is a proper ideal. �

Proof of Theorem 7.4.4. Let n ⊂ O(X)G be a maximal ideal. We have to show
that

O(X)n 6= O(X)

(recall that a pull-back of functions for the quotient map π : X → X//G is
just the inclusionO(X)G ⊂ O(X)). Arguing by contradiction, suppose that
O(X)n = O(X). Then we have∑

aifi = 1,

where ai ∈ O(X) and fi ∈ n. Applying the Reynolds operator, we see that∑
bifi = 1,

where bi ∈ O(X)G. But n is a proper ideal of O(X)G, contradiction. �

This argument only uses the existence of a Reynolds operator, but for
finite groups we can do a little bit better:

7.4.6. LEMMA. Let G be a finite group acting on an affine variety X . Then O(X)
is integral over O(X)G. In other words, the quotient morphism π : V → V//G is
finite (and in particular surjective) for finite groups.

Proof. Indeed, any element f ∈ O(X) is a root of the monic polynomial∏
g∈G

(T − g · f).

Coefficients of this polynomial are in O(X)G (by Vieta formulas). �
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7.4.7. REMARK. This argument relies on surjectivity of finite morphisms.
Interestingly, this fact can be demonstrated in the spirit of Theorem 7.4.4!
Indeed, suppose π : X → Y is a finite morphism of affine varieties and Y
is normal. Algebraically, the inclusion O(Y ) ↪→ O(X) is integral and O(Y )
is integrally closed in its field of fractions k(Y ). The extension of fields
k(Y ) ↪→ k(X) in this case is finite, and hence we have a k(Y )-linear trace
map Tr : k(X) → k(Y ) which sends every element of k(X) to the first
coefficient of its minimal polynomial (with a minus sign), i.e. to the sum of
roots of the minimal polynomial. We claim that

Tr(O(X)) = O(Y ).

Indeed, all roots of the minimal polynomial of α ∈ O(X) are integral over
O(Y ), hence Tr(α) is also integral over O(Y ), but it also belongs to k(Y ).
Since O(Y ) is integrally closed, in fact Tr(α) ∈ O(Y ). Notice that the trace
map has all the properties of the Reynolds operator: it is a O(Y )-linear
projector onto O(Y ). Hence the argument from the proof of Theorem 7.4.4
applies.

7.4.8. REMARK. In Remark 7.4.7, the extension k(Y ) ↪→ k(X) doesn’t have
to be a Galois extension.

§7.5. Chevalley–Shephard–Todd theorem. When is the algebra of invari-
ants a polynomial algebra? The answer is pretty but hard to prove:

7.5.1. THEOREM. Let G be a finite group acting linearly and faithfully on Cn.
The algebra of invariants C[x1, . . . , xn]G is a polynomial algebra if and only if G
is generated by pseudo-reflections, i.e. by elements g ∈ G such that the subspace of
fixed points {v ∈ Cn | gv = v} has codimension 1.

In other words, g is a pseudo-reflection if and only if its matrix is some
basis is equal to diag[ζ, 1, 1, . . . , 1], where ζ is a root of unity. If ζ = −1
then g is called a reflection. For example, if Sn acts on Cn by permuting
coordinates then any transposition (ij) acts as a reflection with the mirror
xi = xj . Further examples of groups generated by reflections are Weyl
groups of root systems. On the other hand, the standard action of µd on C
is generated by a pseudo-reflection z 7→ ζz, which is not a reflection (for
d > 2) but the algebra of invariants is still polynomial. The action of Z2 on
C2 by ±1 is not a pseudoreflection (a fixed subspace has codimension 2).

Groups generated by pseudo-reflections were classified by Shephard and
Todd. There is one infinite family which depends on 3 integer parameters
(and includes Sn) and 34 exceptional cases.

Sketch of the proof in one direction. Suppose C[x1, . . . , xn]G is a polynomial al-
gebra. Then the quotient morphism is the morphism π : X → Y , where
both X and Y are isomorphic to Cn. By Theorem 7.4.3, π separates orbits.
Let U ⊂ X be the complement of the union of subspaces of fixed points
of all elements of G that are not pseudo-reflections. Then U is G-invariant
and its complement has codimension at least 2. Let V = π(U) ⊂ Y .

We can endow complex algebraic varietiesX and Y with Euclidean rather
than Zariski topology, i.e. view them both as a complex manifold Cn. Since
the complements of V and U in Cn have codimension at least 2,

π1(U) = π1(V ) = 0.
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Then it is clear that the action ofG on U can not be free: a simply connected
manifold does not admit a non-trivial covering space! In our case, having
a fixed point in U is equivalent to being a pseudoreflection, because fixed
points of all other elements were removed by construction of U .

To finish the proof, we can use a lemma from geometric group theory:

7.5.2. LEMMA. Let Γ be a discrete group of homeomorphisms of a linearly con-
nected Hausdorff topological space U . Suppose the quotient space U/Γ is simply
connected. Then Γ is generated by elements having a fixed point in U .

It is instructive to re-examine a quotient C2/µ2 by the action (x, y) 7→
(−x,−y) which is not generated by a pseudo-refection. In this case the
quotient is a quadratic cone Y = (AB = C2) ⊂ A3 and the map

C2 \ (0, 0)→ Y \ (0, 0, 0)

is the universal covering space. Thus π1(Y ) = π1(Y \ (0, 0, 0)) = µ2. �

§7.6. E8-singularity.

7.6.1. DEFINITION. Let Γ be a finite subgroup of SL2. The quotient singu-
larity C2/Γ is called du Val or ADE or canonical singularity.

Three of the finite subgroups of SO3 are groups of rotations of platonic
solids. For example, A5 is a group of rotations of the icosahedron (or do-
decahedron). Thus A5 acts on the circumscribed sphere of the icosahedron.
This action is obviously conformal (preserves oriented angles), and so if we
think about the sphere S2 as the Riemann sphere P1 (by stereographic pro-
jection), we get an embedding A5 ⊂ PSL2 (since it is proved in complex
analysis that conformal maps are holomorphic). The preimage of A5 in SL2

is called the binary icosahedral group Γ. It has 2 × 60 = 120 elements. The
orbit space C2/Γ is called an E8 du Val singularity.

In order to describe the E8 singularity, we have to compute C[x, y]Γ.
There is a miraculously simple way to write down some invariants using
three special orbits of A5 on P1:

• 20 vertices of the icosahedron,
• 12 midpoints of faces (vertices of the dual dodecahedron),
• and 30 midpoints of the edges.

Let f12, f20, and f30 be polynomials in x, y (homogeneous coordinates on P1)
that factor into linear forms that correspond to these special points. These
polynomials are defined uniquely up to a scalar multiple. We claim that
these polynomials are invariant. Since Γ permutes their roots, they are
clearly semi-invariant, i.e. any γ ∈ Γ can only multiply them by a scalar,
which will be a character of Γ. Since they all have even degree, the element
−1 ∈ Γ does not change these polynomials. But Γ/{±1} ' A5 is a simple
group, hence has no characters at all, hence the claim.

7.6.2. THEOREM. C[x, y]Γ = C[f12, f20, f30] ' C[U, V,W ]/(U5 + V 3 +W 2).

Proof. Let’s try to prove this using as few explicit calculations as possible.
The key is to analyze a chain of algebras

C[x, y] ⊃ C[x, y]Γ ⊃ C[f12, f20, f30] ⊃ C[f12, f20].
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7.6.3. CLAIM. C[f12, f20] ⊂ C[x, y] (and hence all other inclusions in the chain)
is an integral extension.

Proof. In other words, a regular map

A2 → A2, (x, y) 7→ (f12, f20) (7.6.4)

is a finite morphism. Since f12 and f20 have no common zeros in P1, Null-
stellensatz implies that √

(f12, f20) = (x, y),

i.e. xn, yn ∈ (f12, f20) for some large n. Thus C[x, y] is finitely generated by
monomials xiyj for i, j < n as a module over C[f12, f20]. �

Now let’s consider the corresponding chain of fraction fields

C(x, y) ⊃ Quot
(
C[x, y]Γ

)
⊃ C(f12, f20, f30) ⊃ C(f12, f20). (7.6.5)

Here are some basic definitions, and a fact.

7.6.6. DEFINITION. Let f : X → Y be a dominant map of algebraic varieties
of the same dimension. It induces an embedding of fields

f∗ : C(Y ) ⊂ C(X).

We define the degree of f as follows20:

deg f = [C(X) : C(Y )].

7.6.7. DEFINITION. An affine varietyX is called normal ifO(X) is integrally
closed in C(X). More generally, an algebraic variety is called normal if
every local ring OX,x is integrally closed in C(X).

7.6.8. THEOREM. Let f : X → Y be a finite map of algebraic varieties. Suppose
that Y is normal. Then any fiber f−1(y) has at most deg f points. Let

U = {y ∈ Y | f−1(y) has exactly deg f points }.

Then U is open and non-empty.

Let’s see how to apply this theorem in our situation. First of all, any UFD
is integrally closed, hence C[x, y] and C[f12, f20] are integrally closed.

Secondly, C[x, y]Γ is integrally closed. Indeed, if f ∈ QuotC[x, y]Γ is
integral over C[x, y]Γ then it is also integral over C[x, y], but the latter is
integrally closed, hence f ∈ C[x, y], and so f ∈ C[x, y]Γ.

It follows that [C(x, y) : QuotC[x, y]Γ] = 120 because fibers of the quo-
tient morphism are orbits and the general orbit has 120 points.21 The fibers
of the map (7.6.4) are level curves of f12 and f20, and therefore contain at
most 240 points by Bezout theorem. One can show geometrically that gen-
eral fibers contain exactly 240 points or argue as follows: if this is not the
case then we can conclude from (7.6.5) that QuotC[x, y]Γ = C(f12, f20) and
therefore f30 ∈ C(f12, f20). But f30 is integral over C[f12, f20], and the latter

20The dimension is equal to the transcendence degree of the field of functions, so
C(X)/C(Y ) is an algebraic extension, hence finite (because C(X) is finitely generated).

21if we knew that the second field is C(x, y)Γ, the formula follows from Galois theory.
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is integrally closed, so f30 ∈ C[f12, f20]. But this can’t be true because of the
degrees! So in fact we have

QuotC[x, y]Γ = C(f12, f20, f30) and [C(f12, f20, f30) : C(f12, f20)] = 2.

The latter formula implies that the minimal polynomial of f30 over C(f12, f20)
has degree 2. The second root of this polynomial satisfies the same integral
dependence as f20, and therefore all coefficients of the minimal polynomial
are integral over C[f12, f20], by Vieta formulas. But this ring is integrally
closed, and therefore all coefficients of the minimal polynomial are in fact
in C[f12, f20]. So we have an integral dependence equation of the form
f2

30 + af30 + b = 0, where a, b ∈ C[f12, f20]. Looking at the degrees, there is
only one way to accomplish this (modulo multiplying f12, f20, and f30 by
scalars), namely

f5
12 + f3

20 + f2
30 = 0.

Note that we can’t have, say, f3
20 + f2

30 = 0 because these polynomials are
coprime.

It remains to prove that C[x, y]Γ = C[f12, f20, f30]. Since they have the
same quotient field, it is enough to show that the latter algebra is integrally
closed, and this follows from the following extremely useful theorem that
we are not going to prove, see [?, page 198]. �

7.6.9. THEOREM. Let X ⊂ An be an irreducible affine hypersurface22 such that
its singular locus has codimension at least 2. Then X is normal.

For example, a surface S ⊂ A3 with isolated singularities is normal. It
is important that S is a surface in A3, it is easy to construct examples of
non-normal surfaces with isolated singularities in A4.

Proof of Theorem 7.6.8. Let y ∈ Y and choose a function a ∈ O(X) that takes
different values on points in f−1(y). The minimal polynomial F (T ) of a
over C(Y ) has degree at most deg f . Since Y is normal, all coefficients of the
minimal polynomial are in fact in O(Y ). Thus f−1(y) has at most n points.
Since we are in characteristic 0, the extension C(X)/C(Y ) is separable, and
hence has a primitive element. Let a ∈ O(X) be an element such that its
minimal polynomial (=integral dependence polynomial) has degree n:

F (T ) = Tn + b1T
n−1 + . . .+ bn, bi ∈ O(Y ).

Let D ∈ O(Y ) be the discriminant of F (T ) and let U = {y ∈ Y |D 6= 0
be the corresponding principal open set. We claim that f has exactly n
different fibers over any point of U . Indeed, the inclusion O(Y )[a] ⊂ O(X)
is integral, hence induces a finite map, hence induces a surjective map. But
over a point y ∈ Y , the fiber of

MaxSpecO(Y )[a] = {(y, t) ∈ Y × A1 | tn + b1(y)tn−1 + . . .+ bn(y) = 0}

is just given by the roots of the minimal polynomial, and hence consists of
n points. Thus the fiber f−1(y) also has n points. �

22More generally, X can be a complete intersection, or Cohen–Macaulay, or just satisfy
Serre’s property S2
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§8. Quotients by algebraic groups

Let G be an algebraic group acting algebraically on an algebraic vari-
ety X , i.e. the action map G×X → X is a morphism of algebraic varieties.

8.0.10. EXAMPLE.

§8.1. Properties of actions. We will use without proof various properties
of algebraic actions (some of them are homework exercises).

8.1.1. THEOREM. For every x ∈ X , the stabilizer Gx is a (Zariski) closed sub-
group of G and the orbit Gx is a locally closed (i.e. open in its Zariski closure)
subset of X . We have the formula

dimGx+ dimGx = dimG.

The structure of an orbit as an algebraic variety is completely determined
by the stabilizer:

8.1.2. THEOREM. For every Zariski closed subgroup H ⊂ G, there exists a tran-
sitive action of G on an algebraic variety X such that H is the stabilizer of a point
x ∈ X . This variety, called the homogeneous space G/H , is unique up to an iso-
morphism. Furthermore, suppose an algebraic group acts transitively on algebraic
varieties X and Y and Gx ⊂ Gy for some points x ∈ X , y ∈ Y . Then there exists
a unique morphism X → Y sending x to y and commuting with the G-action.
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§8.2. Linear algebraic groups. We have a theorem of Chevalley:

8.2.1. THEOREM. Let G be an algebraic group. The following are equivalent:
(1) G is an affine algebraic variety.
(2) G is isomorphic to a (closed) subgroup of GLn(C) for some n.

A group satisfying these properties is called a linear algebraic group.

Examples:
• GLn = D(det) ⊂ Matn; SLn = V (det−1) ⊂ GLn,
• the maximal torus of GLn (diagonal matrices in GLn),
• the Borel subgroup of GLn (upper-triangular matrices in GLn),
• On, SOn, Spn,
• finite groups.

Non-examples:
• SL2(Z) and other infinite discrete groups.
• SUn ⊂ SLn(C) and other infinite compact linear Lie groups.

8.2.2. DEFINITION. A finite-dimensional representation of a linear algebraic
group is called algebraic (or regular) if the corresponding homomorphism
G → GL(V ) is a regular morphism. An arbitrary representation V of a
linear algebraic group is called algebraic (or regular) if every vector v ∈ V is
contained in a finite-dimensional algebraic representation.

8.2.3. LEMMA. If a linear algebraic group G acts on an affine variety X then an
induced representation of G in the algebra of regular functions O(X) is algebraic.

Proof. The action α : G×X → X is given by homomorphism of C-algebras.

α∗ : O(X)→ O(G×X) = O(G)⊗O(X).

Let f ∈ O(X). Then

α∗(f) =
∑

hi ⊗ fi, hi ∈ O(G), fi ∈ O(X).

We claim that the G-orbit of f in O(X) is contained in a finite-dimensional
subspace, namely the linear span of fi’s. Indeed

(g · f)(x) = f(g−1x) = α∗(f)(g−1, x) =
∑

hi(g
−1)fi(x).

It follows that the linear span of the G-orbit of f is finite-dimensional, and
obviously preserved byG. The formula above also shows that the matrix of
every g ∈ G acting on this vector space depends polynomially on g, i.e. this
finite-dimensional representation is algebraic. �

§8.3. Reductive groups.

8.3.1. THEOREM. An algebraic group G is called reductive if it satisfies any of the
following equivalent conditions:

(1) Every algebraic representation V of G is completely reducible, i.e. is a di-
rect sum of finite-dimensional irreducible representations.

(2) Every algebraic representation V of G admits a unique G-equivariant lin-
ear projector πV : V → V G.

(3) For every surjective linear mapA : V →W of algebraicG-representations,
the induced map V G →WG is also surjective.
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Proof. (1)⇒ (2). We claim that we have a unique decomposition

V = V G ⊕ V0,

where V0 is the sum of all non-trivial irreducible subrepresentations. The
projector V → VG then should be the projector along V0.

Indeed, decompose V into irreducible representations:

V =
⊕
α∈I

Vα.

Let J ⊂ I be the subset of indices such that Vα is trivial. Let U ⊂ V be an
irreducible subrepresentation. By Schur’s lemma, its projection on every
Vα is either an isomorphism or a zero map. It follows that U is contained in
either

⊕
α∈J

Vα or
⊕
α 6∈J

Vα. Thus
⊕
α∈J

Vα = V G and
⊕
α 6∈J

Vα = V0

(2) ⇒ (3). It is enough to prove this for finite-dimensional V and W .
Suppose the induced map V G → WG is not onto. Choose w ∈ WG not in
the image of V G and choose any projector WG → 〈w〉 that annihilates the
image of V G. Then the composition

V
A−→W

πW−→WG → 〈w〉 = C

is a surjective G-invariant linear map f : V → C that annihilates V G. After
dualizing, we have a G-invariant vector f ∈ V ∗ which is annihilated by
all G-invariant linear functions on V ∗. However, this is nonsense: we can
easily construct a G-invariant linear function on V ∗ which does not annihi-
late f by composing a G-invariant projector V ∗ → (V ∗)G (which exists by
(2)) with any projector (V ∗)G → 〈f〉.

(3)⇒ (1). We will check this if V is finite-dimensional and leave the gen-
eral case to the homework. It is enough to show that any sub-representation
W ⊂ V has an invariant complement. Here we get sneaky and apply (3) to
the restriction map of G-representations

Hom(V,W )→ Hom(W,W ).

The G-invariant lift of Id ∈ Hom(W,W ) gives a G-invariant projector V →
W and its kernel is a G-invariant complement of W . �

§8.4. Unitary trick. Let’s show that SLn(C) and C∗ are reductive.

8.4.1. LEMMA.
• The circle S1 = {|z| = 1} is a Zariski dense subgroup of C∗.
• The special unitary group SUn is a Zariski dense subgroup of SLn(C).

Proof. The first claim is clear because S1 is infinite.
Let f be a regular function on SLn(C) that vanishes on SUn. We have to

show that f is identically 0. In fact any function holomorphic in a neigh-
borhood U of the identity Id ∈ SLn(C) will vanish in U if it vanishes on
U ∩ SUn. Indeed, consider the exponential map

exp : Matn(C)→ GLn(C), A 7→ exp(A) = Id +A+
A2

2
+ . . .
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This map is biholomorphic in a neighborhood of 0 (the inverse map is given
by matrix log) and (locally) identifies SLn(C) with a complex vector sub-
space sln of complex matrices with trace 0 and SUn with a real subspace
sun of skew-Hermitian matrices such that A+ Āt = 0.

So g = f(exp(A)) is a holomorphic function near the origin which van-
ishes on sun. But since sun + isun = sln, this function vanishes identically
by Cauchy–Riemann equations. �

8.4.2. THEOREM. SLn and C∗ are reductive groups.

Proof. We use a unitary trick of Weyl (and Hurwitz). We let G = SLn
(resp. C∗) and K = SUn (resp. S1). An algebraic representation V of G
induces a continuous representation of K. Any sub-representation of K in
V is a sub-representation forG by Lemma 8.4.1. So it is enough to show that
every continuous complex representation of K is completely reducible.23

8.4.3. CLAIM. V has an K-invariant positive-definite Hermitian form h.

Given the claim, every complex sub-representation U ⊂ V has a comple-
mentary sub-representation, the orthogonal complement U⊥ with respect
to h. We can keep decomposing V into pieces until each piece is irreducible.
To prove the claim, we need the lemma:

8.4.4. LEMMA. Let S ⊂ Rn is a convex subset preserved by a compact subgroupK
of the group of affine transformations (i.e. compositions of linear transformations
and translations) of Rn. Then K has a fixed point on S.

Proof. We can assume that S is both convex and compact. Indeed, since
K is compact, any K-orbit in S is compact (being the image of K under a
continuous map). The convex hull S′ of this K-orbit is a compact, convex,
and G-invariant subset of S. A fixed point in S′ will be a fixed point in S.

We can also assume that S spans Rn. Indeed, take the minimal affine
subspace Rk containing S. Since K preserves S, it also preserves Rk and
acts there by affine transformations.

Now let p be the center of mass of S with coordinates

pi =

∫
S xi dV∫
S dV

(here dV is the standard measure on Rn). Since S is convex, the Riemann
sum definition of the integral shows that p ∈ S and that p is preserved by
any affine transformation of Rn that preserves S. So, p is fixed by K. �

Back to the claim, consider the action of K on the real vector space of all
Hermitian forms (·, ·) on V . Let S be the subset of positive-definite forms.
The action ofK preserves the set S, which is convex because every positive

23One approach is to construct an equivariant projector V → V K for every finite-
dimensional continuous representation. Just like in the case of finite groups, one can take
any projector p : V → V K and then take its average

π(v) =

∫
K
p(gv) dµ∫
K
dµ

.

Here µ should be an equivariant measure on K (called Haar measure). We follow a different
approach which doesn’t use Haar measure.
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linear combination of positive-definite Hermitian forms is positive-definite.
So we are done by the Lemma. �

§8.5. Geometric Quotient. Let X be an algebraic variety with an algebraic
action of an algebraic group G. The most obvious way to construct the
quotient Y = X/G would be

• As a set, Y should be the set of G-orbits on X .
• Topology on Y should be the quotient topology.
• For every open subset U ⊂ Y , functions in OY (U) embed, via pull-

back, into G-invariant functions in OX(π−1U). And vice versa, G-
invariant functions inOX(π−1U) should descend to functions on U .
Thus we can ask for

OY (U) = OX(π−1U)G,

i.e. OY = (π∗OX)G.
In addition, note that π has to be an open map. Indeed, if V ⊂ X is open

then π−1(π(V )) is the union of G-translates of V , hence open. Therefore
π(V ) is open by definition of the quotient topology. The same argument
shows that π is closed if G is a finite group. In general, it shows that the
image of a G-invariant closed set is closed.

Of course (Y,OY ) defined this way does not always exist as an algebraic
variety. If it does, we say that Y = X/G is a geometric quotient. One can also
characterize the geometric quotient as follows:

8.5.1. LEMMA. Let X be an algebraic variety with an algebraic action of an alge-
braic group G. A morphism π : X → Y is a geometric quotient if and only if the
following properties are satisfied:

(1) π is surjective and the fibers are precisely the orbits;
(2) π is open;
(3) OY = (π∗OX)G.

The geometric quotient rarely exists. For example, it doesn’t exist in both
cases of Example 8.0.10 (unless we remove some orbits).

§8.6. Categorical quotient.

8.6.1. DEFINITION. Let G be an algebraic group acting on an algebraic vari-
ety X . A morphism π : X → Y is called a categorical quotient if

• π is constant along G-orbits and
• any morphism π′ : X → Z constant alongG-orbits factors through Y .

If it exists, the categorical quotient is clearly unique up to an isomorphism.

Mumford proved the following theorem, some parts of which we will
prove and other leave as an exercise.

8.6.2. THEOREM. Let G be a reductive group acting on an affine variety X . Then
• There exists a categorical quotient X//G, namely MaxSpecO(X)G.
• X//G is a geometric quotient if and only if all orbits are closed (for example

if G is a finite group).

We start by proving finite generation of the algebra of invariants.



86 JENIA TEVELEV

8.6.3. THEOREM. Consider an algebraic action of a reductive groupG on an affine
variety X (for example an algebraic representation of G in a vector space V ). Then

• There exists a unique G-equivariant Reynolds operatorO(X)→ O(X)G.
• The algebra O(X)G is finitely generated.
• The quotient morphism π : X → X//G is surjective.

Proof. By Lemma 8.2.3, the induced action of G on the algebra of regular
functions O(X) is algebraic. By Theorem 8.3.1, there exists a unique G-
invariant projector R : O(X)→ O(X)G.

8.6.4. CLAIM. R is the Reynolds operator, i.e. R(fg) = fR(g) for f ∈ O(X)G.

Indeed, R(fg) = fR(g) for every g ∈ k[X]G and both sides vanish if
g ∈ k[X]0 because k[X]0 is preserved by multiplication with f ∈ O(X)G.

Next we show that O(X)G is finitely generated. The algebra O(X) is
finitely generated by a finite-dimensional subspace V ⊂ O(X). Let S•(V )
be the symmetric algebra of V . The homomorphism S•(V ) → O(X) is
surjective, and therefore the homomorphism S•(V )G → O(X)G is also sur-
jective by one of the characterizations of reductive groups (Theorem 8.3.1).
So it suffices to prove that the algebra S•(V )G is finitely generated. But

S•(V ) = O(V ∗)

and G acts on V ∗ linearly. So the theorem follows from Lemma 7.3.5.
Surjectivity of the quotient map follows from Theorem 7.4.4. �

Although the categorical quotient does not necessarily separate all or-
bits, it does separate closed orbits:

8.6.5. THEOREM. Let G be a reductive group acting on an affine variety X . Take
two orbits O and O′. Then their closure are disjoint (Ō ∩ Ō′ = ∅) if and only
if they are separated by invariants. In particular, every fiber of π : X → X//G
contains exactly one closed orbit.

Proof. One direction is clear because every G-invariant regular function is
constant along every orbit and its closure. For an opposite direction, let
I, I ′ ⊂ O(X) be the ideals of Ō, Ō′. By Nullstellensatz,

I + I ′ = O(X),

i.e. we can write 1 = f + g, where f ∈ I and g ∈ I ′.
Now apply the Reynolds operator: R(f) +R(g) = 1.

8.6.6. CLAIM. R(f) ∈ I (and similarly R(g) ∈ I ′).

Given the claim, R(f) is an invariant function which is equal to 0 on Ō
and 1 on Ō′, i.e. they are separated by invariants.

To prove the Claim, it suffices to demonstrate a commutative diagram

O(X) −−−−→ O(Ō)

R

y yR
O(X)G −−−−→ O(Ō)G

,

which we leave as an exercise.
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Finally, why is there a closed orbit in each fiber of π? Take some orbit O.
By Theorem 8.1.1, O is open in its closure Ō. If it’s closed, we are done. If
not, pick an orbit in Ō \O, which will have smaller dimension, etc. �

8.6.7. THEOREM. Let G be a reductive group acting on an affine variety X . Let
U ⊂ X//G be an open subset (not necessarily affine). Then

OX//G(U) = OX(π−1(U))G,

i.e. OX//G = (π∗OX)G. Moreover, X//G is a categorical quotient.

Proof. This is clear for principal affine open sets D(f) ⊂ X//G for f ∈
k[X]G:

k[U ] = (k[X]G)f = (k[X]f )G = k[π−1(U)]G.

But this implies the general case because principal affine open sets form the
basis of Zariski topology.

Now let’s show that X//G is a categorical quotient. Suppose we have a
morphism f : X → Z constant on G-orbits, i.e. equivariant if we endow
Z with trivial action. We have to show that f factors through π. This is
clear set-theoretically: since f is constant on G-orbits and every fiber of π
contains a unique closed orbit, every fiber of π is mapped by f to the same
point of Z. On the level of varieties, this is clear if Z is affine: in this case f
is determined by f∗ : k[Z]→ k[X], which has to factor through k[X]G.

In general, take an affine chart U ⊂ Z. Let V = f−1(U). Since f is
constant on G-orbits and every fiber of π contains a unique closed orbit,
we have π−1(π(V )) = V , in particular π(V ) is open. Note that V is not
necessarily affine but the morphism to an affine variety U is uniquely de-
termined by the pull-back k[U ] → k[V ] which has to factor through k[V ]G,
which is equal to k[π(V )] by OX//G = (π∗OX)G. Thus we have a morphism
π(V )→ U ⊂ Z which glue and give a morphism X//G→ Z. �

How to compute the algebra of invariants? Here’s one technique and an
example.

8.6.8. LEMMA. Let G be a group acting linearly on a vector space V . Let L ⊂ V
be a linear subspace. Let

Z = {g ∈ G | g|L = Id|L}, N = {g ∈ G | g(L) ⊂ L}, andW = N/Z.

Then we have a natural homomorphism π : k[V ]G → k[L]W , which is injective if
G · L = V .

8.6.9. EXAMPLE. Let G = SOn(C) be an orthogonal group preserving a
quadratic form f = x2

1 + . . . + x2
n. We claim that C[x1, . . . , xn]G = C[f ].

Indeed, we can apply Lemma 8.6.8 to L = Ce1).

§8.7. Homework 4.

Problem 1. (2 point) Let F : An → An be a morphism given by homoge-
neous polynomials f1, . . . , fn such that V (f1, . . . , fn) = {0}. Show that F is
a finite morphism.

Problem 2. (1 point) Let G be a group acting by automorphisms on a
normal affine variety X . Show that the algebra of invariants O(X)G is in-
tegrally closed.
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Problem 3. (2 points) For the cyclic quotient singularity 1
7(1, 3), compute

generators of C[x, y]µ7 and compute generators of the ideal of A2/µ7 as an
affine subvariety of A? (use computer algebra for the second part).

Problem 4. (2 points). (a) Let G be a finite group acting linearly on a
vector space V . Show that C(V )G (the field of invariant rational functions)
is equal to the quotient field of k[V ]G. (b) Show that (a) can fail for an
infinite group.

Problem 5. (3 points) Let G be a finite group acting linearly on a vec-
tor space V . Show that the algebra of invariants O(V )G is generated by
polynomials of degree at most |G|.

Problem 6. (2 points) An affine variety X is called a cone if its coordi-
nate algebra R = k[X] admits a grading R =

∑
k≥0Rk such that R0 = k.

Show that the cone X is non-singular if and only if R is isomorphic to a
polynomial algebra.

Problem 7. (1 point) Let G → GL(V ) be a representation of a reductive
group and let π : V → V//G be the quotient. Show that the following
properties are equivalent (2 points):

• V//G is non-singular at π(0).
• V//G is non-singular.
• O(V )G is a polynomial algebra.

Problem 8. (3 points) Let G = GLn be a general linear group acting on
Matn by conjugation. (a) Let L ⊂ Matn be the space of diagonal matrices.
Show that G · L = Matn. (b) Show that k[Matn]G is generated by coeffi-
cients of the characteristic polynomial.

Problem 9. (2 point) (a) In the previous problem, find all fibers of the
quotient morphism π : Matn → Matn //G that contain only one orbit.
(b) Find a closed orbit in very fiber of π.

Problem 10. (2 points) Prove Theorem 8.1.1

Problem 11. (2 points) Prove Lemma 8.5.1

Problem 12. (2 points) (a) Let G be a reductive group and let φ : X → Y
be an equivariant map of affine varieties with G-action. Show that we have
a commutative diagram of morphisms

X
φ−−−−→ Y

πX

y yπY
X//G −−−−→ Y//G

.

(b) Let G be a reductive group acting on an affine variety X . Let Y ⊂ G
be a G-invariant closed subset. Show that πX(Y ) is closed in X//G and
isomorphic to Y//G.

Problem 13. (3 points) Let V4 be the space of degree 4 polynomials in 2
variables. Show that k[V4]SL2 is a polynomial algebra generated by invari-
ants of degrees 2 and 3. Hint: apply Lemma 8.6.8.
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Problem 14. (3 points) Consider the action of SL2 on homogeneous poly-
nomials in x and y of degree 6 written as follows:

ζ0x
6 + 6ζ1x

5y + 15ζ2x
4y2 + 20ζ3x

3y3 + 15ζ4x
2y4 + 6ζ5xy

5 + ζ6y
6.

Show that the function

det


ζ0 ζ1 ζ2 ζ3

ζ1 ζ2 ζ3 ζ4

ζ2 ζ3 ζ4 ζ5

ζ3 ζ4 ζ5 ζ6


belongs to the algebra of invariants k[ζ0, ζ1, . . . , ζ6]SL2 .

§9. GIT quotients and stability

§9.1. Weighted projective space. Fix positive integers a0, . . . , an (weights)
and consider the action of C∗ on An+1 defined as follows:

t · (x0, . . . , xn) = (ta0x0, . . . , t
anxn) for every t ∈ C∗.

The weighted projective space is the geometric quotient

P(a0, . . . , an) := (An+1 \ {0})/C∗,

which we are going to construct. For now we define it as the set of orbits.
For example, P(1, . . . , 1) = Pn.

9.1.1. EXAMPLE. Recall that any elliptic curve has a Weierstrass equation

y2 = 4x3 − g2x− g3, ∆ = g3
2 − 27g2

3 6= 0

and coefficients g2 and g3 are defined up to admissible transformations

g2 7→ t4g2, g3 7→ t6g3.

So the moduli space of elliptic curves is P(4, 6) with one point removed
(which corresponds to the C∗-orbit {∆ = 0} of singular cubics). Of course

P(4, 6)[g2:g3] ' P1
[j:1],

where j = 1728g3
2/∆ by the usual formula (5.2.7). But thinking about M1,1

as P(4, 6) has its advantages. For example, one can refine the structure of
an algebraic variety P(4, 6) to construct an algebraic stack P(4, 6), which in
appropriate sense “represents” the functor of elliptic fibrationsM1,1.

9.1.2. EXAMPLE. Let’s construct P(1, 1, 2) by hand. Take the map

π : A3
x,y,z \ {0} → P3

[A:B:C:D], (x, y, z) 7→ [x2 : xy : y2 : z].

It is easy to see that it separates orbits, i.e. π(x, y, z) = (x′, y′, z′) if and only
if there exists t ∈ C∗ such that

x′ = tx, y′ = ty, z′ = t2z.

The image is a quadratic cone AB = C2 in P3.
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Now let’s discuss the construction of P(a0, . . . , an) in general. The ring
of invariants

C[x0, . . . , xn]C
∗ ' C

and the categorical quotient An+1//C∗ is a point. This agrees with the fact
that there is only one closed orbit – the origin. We will remove it. Another
idea is that there are many rational invariant functions C(x0, . . . , xn)C

∗
, which

are constant along G-orbits wherever they are defined.
Concretely, we cover An+1 \ {0} by principal affine open sets

D(xi) = (xi 6= 0) ' An

and take the quotients
Dxi = D(xi)//C∗.

All C∗-orbits in D(xi) are closed, and therefore πi : D(xi) → Dxi is a geo-
metric quotient by Theorem 8.6.2. Then we would like to glue these quo-
tients to obtain the quotient

π : An+1 \ {0} → P(a0, . . . , an)

just like in the definition of the standard projective space. Before doing
that, let’s try to understand Dxi better. Notice that

O(D(xi)) = C
[
x0, . . . , xn,

1

xi

]
⊂ C(x0, . . . , xn)

and that D(xi) is an affine variety. To compute its categorical quotient, we
take the algebra of invariants and its spectrum:

O(Dxi) = O(D(xi))
C∗ =

{
p

xki
| p ∈ C[x0, . . . , xn], deg p = kai

}
,

fractions of degree 0 (here and after the degree deg is our weighted degree).
There are two cases: if ai = 1 then we just have

O(Dxi) = C
[
x0

xa0
i

, . . . ,
xn
xani

]
' C[y1, . . . , yn].

The chart Dxi ' An, just like for the standard Pn. In the general case, let’s
restrict discussion to the weighted projective plane P(a0, a1, a2).

9.1.3. CLAIM. Dx0 is the cyclic quotient singularity 1
a0

(a1, a2).

Proof. First an informal argument. If a0 = 1 then we can kill the C∗-action
by setting x0 = 1 and identify D(x0)//C∗ with A2. In the weighted case
a0 > 1 setting xi = 1 does not eliminate the C∗-action but reduces it to the
action of a subgroup µai ⊂ C∗. Thus

Dx0 = D(x0)/C∗ ' A2/µa0 = MaxSpecC[x1, x2]µa0 ,

where µa0 acts with weights a1, a2.
More formally, we would like to have an element of weight 1, which can

be achieved by considering a cyclic field extension

C(x0, x1, x2) ⊂ C(z0, x1, x2),
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where x0 = za0
0 . Then we have

O(Dxi) =

{
p

za0k
0

| p ∈ C[x0, x1, x2], deg p = ka0

}
=

∑
i,j

aij

(
x1

za1
0

)i( x2

za2
0

)j
| a1i+ a2j ≡ 0 mod a0

 ⊂ C
[
x1

za1
0

,
x2

za2
0

]
.

We get a subalgebra in C[y1, y2] spanned by all monomials yi1y
j
2 such that

a1i+ a2j ≡ 0 mod a0, the algebra of functions of a CQS 1
a0

(a1, a2). �

9.1.4. EXAMPLE. A projective quadratic cone P(1, 1, 2) is covered by two
copies of A2 and 1

2(1, 1), which is isomorphic to an affine quadratic cone.

§9.2. Projective spectrum. Instead of showing how to glue charts Dxi to
get the weighted projective space, we give a more general construction.

Let R be any finitely generated graded integral domain with R0 = C.
We define an algebraic action of C∗ onR by setting that t ·f = tnf for every
f ∈ R of degree n. Then C∗ acts on R by automorphisms of this algebra,
and therefore defines an action on

X = MaxSpecR.

One of the points is special: the linear span R+ of elements of positive
degree is a maximal ideal and hence defines the point, which we call 0 ∈ X .

We are going to define an algebraic variety, the projective spectrum of R,
which in our special case of a graded polynomial algebra is P(a0, . . . , an).
As a set, we define

Y = ProjR

to be the set of non-zero C∗-orbits on X24.

9.2.1. REMARK. A geometric way to see the action of C∗ on X is to choose
homogeneous generators for R (say of degrees a0, . . . , an) and to use them
to embed X into An+1. The group C∗ then acts on An+1: an element t ∈ C∗
sends xi 7→ taixi. This action preserves X . The special point 0 ∈ X is just
the origin 0 ∈ An. This also shows that Y is a subvariety of P(a0, . . . , an).

Rational functions on Y are defined as C∗-invariant rational functions
on X , i.e. ratios of polynomials of the same degree:

C(Y ) = (QuotR)0,

where the subscript means that we are only taking fractions of degree 0.
We call a function regular at some point if it has a presentation as a fraction
with a denominator non-vanishing at this point. It is clear that Y is cov-
ered by affine charts Df for each homogeneous element f ∈ R of positive
degree, where

O(Df ) = O(D(f))C
∗

= R[1/f ]0.

What is the gluing? Given Df and Dg, notice that

Df ∩Dg = Dfg,

24Technically speaking, it’s better to call it MaxProj because we are not going to enhance
it to an algebraic scheme.
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is a principal open subset in bothDf (where it is a complement of a vanish-
ing set of a regular function gdeg f

fdeg g ) and Dg (where we use fdeg g

gdeg f ). Formally
speaking, we have to check that in C(Y ) we have

R[1/fg]0 = R[1/f ]0

[
fdeg g

gdeg f

]
, (9.2.2)

which we leave it as an exercise.

9.2.3. REMARK. We can recast the structure of a graded algebra in the lan-
guage of semi-invariants. Every homogeneous element x ∈ Rd is a semi-
invariant for the C∗-action of weight d (i.e. t ∈ C∗ acts by multiplying this
element by td). Invariant rational functions are rational functions of degree 0
(with respect to the grading):

(QuotR)0 ⊂ QuotR.

§9.3. Abstract algebraic varieties.

9.3.1. DEFINITION. An algebraic pre-varietyX is given by the following data:
• A finitely generated field extension K of C. This will be a field of

rational functions on X .
• Topological space X .
• For each open subset U ⊂ X we need a subalgebra OX(U) ⊂ K.

It should satisfy the condition

OX

(⋃
i∈I

Ui

)
=
⋂
i∈I
OX(Ui).

OX is called the structure sheaf.
• Finally, X should admit a finite cover {Ui} such that each Ui (with

an induced topology) is an affine variety (with Zariski topology)
with function field K and for each open subset V ⊂ Ui,OX(V ) ⊂ K
is the algebra of rational functions regular on V .

An algebraic variety is a separated algebraic pre-variety, i.e. the diagonal
morphism X → X ×X has a closed image.

Algebraic pre-varieties can be constructed by gluing affine varieties. Sup-
pose A and B are affine varieties with the same function field K. In addi-
tion, we are given another affine variety C and open immersions

iA : C ↪→ A and iB : C ↪→ B.

Then we define the topological space X = A ∪C B by identifying points
iA(x) with iB(x) for any x ∈ C and by declaring a subset U ⊂ X open if
U ∩A and U ∩B is open. Finally, we set

OX(U) = OA(U ∩A) ∩ OB(U ∩B)

It is easy to generalize this to several affine charts: given affine varieties

U0, . . . , Ur

with the same function field and, for each pair Ui, Uj , affine open subsets

Uij ⊂ Ui, Uji ⊂ Uj
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and an isomorphism
φij : Uij → Uji.

satisfying
• φij = φ−1

ji ,
• φij(Uij ∩ Uik) = Uji ∩ Ujk, and
• φik = φjk ◦ φij on Uij ∩ Uik,

we can glue X = U0 ∪ . . . ∪ Ur.
9.3.2. LEMMA. ProjR is an algebraic pre-variety.

Proof. We have K = (QuotR)0. For any homogeneous f ∈ R we have an
affine variety

Df = MaxSpecR[1/f ]0.

To get a finite atlas, take only homogeneous generators ofR. To see the glu-
ing condition, notice that Dfg is a principal open subset in both Df and Dg.
The compatibility conditions on triple overlaps are of set-theoretic nature,
and are clearly satisfied. �

§9.4. Veronese embedding. We now have two models for P(1, 1, 2): as a
weighted projective plane defined by charts and as a quadratic cone in P3.
What is the relationship between these models? We are going to show that
in fact every ProjR is a projective variety (and in particular separated).

9.4.1. DEFINITION. If R is a graded ring then its subring R(d) =
∑

d|nRn is
called the d-th Veronese subring.

For example, for P(1, 1, 2) the second Veronese subring is generated by
x2, xy, y2, and z, subject to a single quadratic relation. So

R(2) = C[A,B,C,D]/(AC −B2),

which explains why ProjR(2) is a quadratic cone in P3. The basic fact is:

9.4.2. LEMMA. ProjR = ProjR(d) for any d.

Proof. First of all, we have (QuotR)0 = (QuotR(d))0. Indeed, any fraction
a/b ∈ (QuotR)0 can be written as abd−1/bd ∈ (QuotR(d))0.

Let f1, . . . , fr be homogeneous generators of R We claim that

ProjR =
r⋃
i=1

Dfi and ProjR(d) =
r⋃
i=1

Dfdi

The first claim is clear. For the second claim, note that fd1 , . . . , f
d
r ∈ R(d)

do not necessarily generate R(d). However, if all fdi vanish at some point
p ∈ ProjR(d) then every function in the radical of the ideal (fdi ) ⊂ R(d)

vanishes at p as well. We claim that this radical is equal to R(d)
+ . Indeed, let

g ∈ R(d) be a homogeneous element of positive degree. It can be expressed
as a polynomial in f1, . . . , fr, and therefore a sufficiently high power of g
belongs to the ideal (fdi ) ⊂ R(d).

The basic local calculation we need is that charts Dfi of ProjR and Dfdi

of ProjR(d) can be identified, i.e. that

R(d)[1/fd](0) ' R[1/f ](0)



94 JENIA TEVELEV

for any homogeneous element f of R. But indeed, as soon as dj > i we
have

g

f i
=
fdj−ig

fdj
.

So ProjR and ProjRd have the same charts glued in the same way. �

9.4.3. LEMMA. For a sufficiently large d, R(d) is generated by Rd.

Proof. Let a1, . . . , ar be degrees of homogeneous generators f1, . . . , fr of R.
Let a = l. c.m.(a1, . . . , ar) and let d = ra. We claim that this d works, which
we leave as a homework exercise. �

9.4.4. COROLLARY. ProjR is a projective variety.

Proof. By Lemmas 9.4.2 and 9.4.3 we can assume without loss of generality
that R is generated by R1 by passing to the Veronese subalgebra.. Then
R = C[y0, . . . , yN ]/I , where I is a homogeneous ideal. We claim that

ProjR = V (I) ⊂ PN .
Indeed, the description and gluing of affine charts V (I) ∩ ANi , i = 0, . . . , N
matches the description of charts Dxi of ProjR. �

§9.5. GIT quotients. So far we discussed quotients of affine varieties and
examples of gluing them. How about quotients of projective varieties?

9.5.1. EXAMPLE. Here is a preview: what is the quotient of P2 by the action
of the symmetric group S3 that acts by permuting x1, x2, x3?

We can realize P2 as the quotient of A3 \ {0} by the action of C∗ which
commutes with the action of S3. Let’s change the order of taking quotients:
first take the quotient of A3 by the action of S3:

MaxSpecC[x1, x2, x3]S3 = MaxSpecC[σ1, σ2, σ3] = A3,

where σ1, σ2, σ3 are the elementary symmetric functions. Next take the quo-
tient of A3 \ {0} by the action of C∗ but notice that σ1, σ2, σ3 have weights
1, 2, 3 for the C∗ action! So the quotient morphism is

π : P2 → P(1, 2, 3),

[x1 : x2 : x3] 7→ [x1 + x2 + x3 : x1x2 + x2x3 + x1x3 : x1x2x3].

The quotient space is the weighted projective plane P(1, 2, 3) with two du
Val singularities,

1

2
(1, 3) =

1

2
(1, 1) = A1 and

1

3
(1, 2) = A2.

More systematically, the procedure is as follows. Let G be a reductive
group acting on a projective variety X . We are going to make two choices:

• Write X = ProjR, where R is a finitely generated graded algebra
(choice of polarization).
• Find an action of G on R that preserves the grading (if it exists) and

which gives back our action on X (choice of linearization).
Then we can form the GIT quotient

X//GITG = ProjRG.
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9.5.2. EXAMPLE. In the example above, P2 = ProjC[x1, x2, x3] and we lift
the action of S3 to a standard action on C3 on C[x1, x2, x3]. Then

P2//GITS3 = ProjC[x1, x2, x3]S3 =

= ProjC[x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3] = P(1, 2, 3).

9.5.3. DEFINITION. A polarization is a choice of an ample divisor D on X ,
equivalently an ample line bunde L = O(D). The coordinate algebra of D
is the graded algebra

R =
⊕
n≥0

H0(X,O(nD)) =
⊕
n≥0

H0(X,L⊗n). (9.5.4)

A linearization is an action of G on the total space of the line bundle L
such that, for every point of x ∈ X and g ∈ G, g takes the fiber Lx to the
fiber Lgx and the induced map Lx → Lgx is linear. A line bundle with a
linearization is called a linearized (or equivariant) line bundle. Notice that G
acts naturally on the space of global sections of any linearized line bundle.

9.5.5. EXAMPLE. Consider the action of GL(V ) on the vector space V and
induced action on P(V ). We claim that the tautological line bundle O(−1)
admits a natural linearization. Indeed, by the definition its total space L
embeds into the product P(V )× V and the natural action of GL(V ) on this
product preserves L. More geometrically, we can also identify L with the
blow-up of V at the origin. This also shows that O(−1) is linearized for
every algebraic subgroup of GL(V ) (for example SL(V )).

9.5.6. DEFINITION. A tensor product of linearized line bundles and a dual
of a linearized line bundle are naturally linearized. Thus linearized line
bundles (modulo isomorphism) form a group with respect to⊗ denoted by

PicG(X).

In particular, every tensor power L⊗n is linearized. Thus G acts naturally
on the graded algebra (9.5.4). The induced action on ProjR gives back the
original action of G on X .

9.5.7. REMARK. In practice one can pass to the Veronese subalgebra of R by
substituting an ample divisor D for nD for some integer n. Thus we can
assume that R is generated by R1. Then ProjR embeds equivariantly into
the projective space PN = Proj(Sym•R1). The GIT quotient ProjRG will
then embed in the GIT quotient Proj(Sym•R1)G of PN .

The case of a finite group action, as in the example P2 → P(1, 2, 3) above,
is special. In general, the GIT quotient π : X 99K X//GITG is not defined
on the whole X : some orbits have to be removed. More generally, if S ⊂ R
is a finitely generated graded subalgebra then the map ProjR 99K ProjS
is only a rational map. Where is it not regular? We always have a map
SpecR → SpecS but recall that points of ProjR correspond to non-zero
C∗-orbits in SpecR. So the map ProjR 99K ProjS is not defined at orbits
that map to the zero orbit of SpecS, i.e. at points where every function
f ∈ S of positive degree vanishes. In our case, this leads to the following
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9.5.8. DEFINITION. A point x ∈ X is called unstable if all functions in RG of
positive degree vanish at x. Let Xus ⊂ X be the locus of unstable points.
Not unstable points are called semistable. Let Xss = X \Xus be their locus.

9.5.9. DEFINITION. The GIT quotient is the map

π : Xss → X//GITG := ProjRG

induced by the inclusion RG ⊂ R. Concretely, choose homogeneous gen-
erators f1, . . . , fr for RG. Let Dfi ⊂ ProjRG (resp. D̃fi ⊂ ProjR) be the
corresponding principal affine open sets. Then

r⋃
i=1

D̃fi = Xss and
r⋃
i=1

Dfi = ProjRG.

We have

O(D̃fi) = R

[
1

fi

]
0

and O(Dfi) = RG
[

1

fi

]
0

,

where the subscript 0 denotes elements of degree 0. The map π : D̃fi → Dfi
is dual to the inclusion of algebras

RG
[

1

fi

]
0

↪→ R

[
1

fi

]
0

.

9.5.10. EXAMPLE. Let X = P3 = ProjC[x1, x2, y1, y2]. Let’s take the action
of G = C∗ on X induced by the following action on C4: every t ∈ C∗ acts
by

(x1, x2, y1, y2) 7→ (tx1, tx2, t
−1y1, t

−1y2).

The fixed points of this action are the two lines

L1 = {x1 = x2 = 0}, L2 = {y1 = y2 = 0}.

Every other orbit is isomorphic to C∗ and its closure is isomorphic to P1,
with one point on L1 and another on L2. Geometrically, orbit closures are
just lines connecting a point of L1 to a point of L2. It is clear that

C[x1, x2, y1, y2]G = C[x1y1, x1y2, x2y1, x2y2] = C[A,B,C,D]/(AD −BC).

So the GIT quotient is the quadric

Q = ProjC[x1, x2, y1, y2]G = {AD −BC = 0} ⊂ P3.

The quotient map π : X 99K Q sends

[x1 : x2 : y1 : y2] 7→ [x1y1 : x1y2 : x2y1 : x2y2].

It is undefined at points of the unstable locus

Xus = {x1y1 = x1y2 = x2y1 = x2y2 = 0} = L1 ∪ L2.

If we use an isomorphism Q ' P1 × P1 with homogeneous coordinates
[x1 : x2] and [y1 : y2] then the quotient map is simply

P3 \ (L1 ∪ L2)→ P1 × P1,

[x1 : x2 : y1 : y2] 7→ ([x1 : x2], [y1 : y2]).
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§9.6. More on polarization and linearization. The map forgetting a lin-
earization gives a homomorphism

PicG(X)→ Pic(X).

We would like to understand its kernel and image (uniqueness and exis-
tence of linearizations).

9.6.1. LEMMA. Suppose L→ X is a linearized line bundle with the action

G× L→ L, (g, l)→ g · l.

Then every other linearization of L is obtained as follows: choose a homomorphism
χ : G→ C∗ (a character) and define a new action

(g, l)→ g ? l = χ(g)(g · l).

Proof. It is clear that g ? l is indeed a linearization. Now suppose that we
have two linearizations, g · l and g ? l. We have a function χ : G× L→ C∗
defined as follows:

g ? l = χ(g, l)(g · l)
and it is clear that χ(g, l) is a character of G for any fixed l. The claim is that
characters of G can not deform, i.e. χ(g, l) is locally constant in l and so in
fact only depends on g.

Characters ofG are the same as characters of the abelianizationG/[G,G],
a commutative linear algebraic group. These come in several flavors:

• Algebraic tori (C∗)n. Their characters are given by

(z1, . . . , zn) 7→ zk1
1 . . . zknn

for a fixed vector (k1, . . . , kn) ∈ Zn – see Lemma 9.6.2 below.
• Vector groups Cn. They don’t have non-trivial characters, in fact Cn

obviously doesn’t have any non-constant invertible functions!
• Finite abelian group A. Their characters form a “Pontryagin dual

group” Â, non-canonically isomorphic to A.
It turns out that every commutative linear algebraic group is either a prod-
uct A × (C∗)n × Ck of groups as above or its quotient by a finite subgroup
Γ ∈ A × (C∗)n. In particular, every function χ(g, l) is locally constant with
respect to the second argument. �

9.6.2. LEMMA. An algebraic torus T is a linearly reductive group. In fact, every
algebraic representation of T is diagonalizable and is isomorphic to a direct sum of
one dimensional irreducible representations given by algebraic characters χ : T →
GL1(C) = C∗. Any character has a form

(z1, . . . , zn)→ zm1
1 . . . zmnn

for some vector m = (m1, . . . ,mn) ∈ Zn.

Proof. This can be proved using unitary trick like in Theorem 8.4.2 - the
analogue of S1 (or SUn) is the real torus (S1)n ⊂ (C∗)n. Just for fun, let’s
give a different proof. We have

O(T ) = C[z±1
1 , . . . , z±1

n ],
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the algebra of Laurent polynomials. Let µ ⊂ C∗ be the subgroup of all roots
of unity. Being infinite, it is Zariski dense in C∗. And in fact, µn ⊂ (C∗)n
(the subgroup of all torsion elements) is also Zariski dense. Indeed, if

f(z1, . . . , zn) =
∑
i

gi(z1, . . . , zn−1)zin

vanishes on µn then all functions gi must vanish on µn−1, hence they are
identically zero by inductive assumption.

Every representation T → GL(V ) restricts to a representation µn →
GL(V ). The image consists of commuting matrices of finite order, hence
can be simultaneously diagonalizable. But then the image of T is diagonal-
izable in the same basis since µn ⊂ (C∗)n is Zariski dense.

For the description of one-dimensional representations, notice that a char-
acter T → C∗ is a non-vanishing regular function on T . We can write it as
a Laurent monomial multiplied by a polynomial f(z1, . . . , zn) which does
not vanish in (C∗)n. Therefore, its vanishing locus in An is a union of co-
ordinate hyperplanes. By factoriality of the ring of polynomials (and Null-
stellensatz), it follows that f is a monomial multiplied by a constant. Since
f(1, . . . , 1) = 1, this constant is equal to 1. �

Let’s address existence of linearizations. For simplicity, let L = O(D) be
a very ample line bundle on X . If L admits a linearization then G acts on
H0(X,L) and on the projectivization of this vector, the linear system |D|.
In particular, for every g ∈ G, the divisor g∗D is linearly equivalent to D.
Equivalently, the image of PicGX in PicX is contained in (PicX)G, the
subgroup of G-invariant divisor classes.

9.6.3. EXAMPLE. If S2 acts on P1 × P1 by permuting two factors then the
only polarizations that can be S2-linearized are O(d, d) for some d.

9.6.4. EXAMPLE. If G is a connected linear algebraic group (like SLn) then
(PicX)G = PicX . Indeed, the map

G→ PicX, g 7→ [g∗L]

must be a constant map. Indeed, PicX contains an abelian variety (a pro-
jective algebraic group like an elliptic curve) such that PicX/Pic0(X) is
discrete. Therefore the image of G belongs to one of the cosets, which is
isomorphic to an abelian variety. Abelian varieties do not contain any ra-
tional curves but G is covered by them, so the map G → PicX must be
constant. Of course this is only a sketch of the proof, one needs to check
that various maps are in fact regular, etc.

Suppose L ∈ (PicX)G. Then G acts on the projective space |D| = P(V )
and G is linearized if and only if this action can be lifted to the action on V .
Indeed, in this case O(−1) and therefore O(1) on P(V ) are G-linearized
but L is just a pull-back of O(1). So we reduce to a classical problem of
representation theory: given a homomorphism G → PGL(V ), when it can
be lifted to a homomorphism G → GL(V )? This is not always the case
can be done if G is simply-connected in complex topology, for example if
G = SLn. Indeed, let G̃ be the preimage of G in SL(V ). Since the kernel
of the homomorphism SL(V ) → PGL(V ) is a finite group, G̃ is a finite
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cover of G. Since G is simply-connected, the connected component of G̃ is
isomorphic to G and thus the action lifts.

§9.7. More general GIT. The weighted projective space is the “quotient”
of the affine variety given by Proj of the algebra of semi-invariants and
the GIT “quotient” of a projective variety is given by Proj of the algebra of
invariants of the homogenous coordinate algebra. What’s the relation?

In fact is a more general GIT construction which covers both cases. In-
stead of giving full details, let’s explain the basic idea. Suppose G acts on
an affine variety X . Regular functions on X can be identified with global
sections of the trivial line bundle L = X × C. We have

H0(X,L⊗n) = O(X)

for every n and assembling these pieces into a graded algebra gives⊕
n≥0

H0(X,L⊗n) = O(X)⊕O(X)⊕O(X)⊕ . . . ' O(X)⊗ C[t]

with the grading by powers of t. Note however that the degree 0 part is
no longer C! From the general theory of projective spectrum, ProjR is not
a projective variety if R0 6= C but rather admits a projective morphism to
SpecR0, which in our case is the identity map:

Proj (O(X)⊗ C[t]) = SpecO(X)× ProjC[t] = SpecO(X) = X.

The trivial line bundle has an obvious linearization (given by the trivial
action on C). Tensor powers of L are then also trivially linearized and

H0(X,L⊗n)G = O(X)G.

Assembling these spaces into a graded algebra gives⊕
n≥0

H0(X,L⊗n)G = O(X)G ⊕O(X)G ⊕O(X)G ⊕ . . . ' O(X)G ⊗ C[t]

and

Proj
(
O(X)G ⊗ C[t]

)
= SpecO(X)G × ProjC[t] = SpecO(X)G = X//G.

In this case the GIT gives the Mumford’s categorical quotient.
Let’s change the linearization by a non-trivial character χ : G → C∗.

Then
H0(X,L)G = {f : X → C | f(gx) = χ(g)f(x)},

semi-invariants of weight χ−1. It follows that

R =
⊕
n≥0

H0(X,L⊗n)G

is a graded subalgebra ofO(X) of semi-invariants of weights 1, χ−1, χ−2, . . ..
Note that the degree 0 part is the algebra of invariants O(X)G. Thus

X//GITG = ProjR admits a projective morphism to X//G = SpecO(X)G,
which is a point only if O(X)G = C. This was the case for the weighted
projective space and also in the case of the Grassmannian G(k, n), which
in this language is the GIT quotient of Akn = Mat(k, n) by GLk with po-
larization given by the trivial line bundle and linearization given by the
determinant. The unstable locus is the set of matrices of rank less than k.



100 JENIA TEVELEV

§9.8. GIT moduli space of n points in P1. Consider the action of G =
PGL2 on X = (P1)n. We have PicX ' Zn and polarizations are line bun-
dles L = O(d1, . . . , dn) such that di > 0 for every i. We identify the space
of global sections H0(X,L) with the space of polynomial in 2n variables,
which we arrange in a 2× n matrix[

x1 . . . xn
y1 . . . yn

]
,

of degree di in variables in the i-th column (homogeneous coordinates on
the i-th copy of P1). The space of global sections of all line bundles (known
as the Cox ring) of X is nothing but

R̃ =
⊕

d1,...,dn>0

H0(X,O(d1, . . . , dn)) = O(Mat2,n).

The coordinate ring of L = O(d1, . . . , dn) is the following subring :

R =
⊕

kd1,...,kdn

H0(X,O(kd1, . . . , kdn)) ⊂ R̃.

A PGL2-linearization of L induces a unique SL2-linearization and the
matrix −Id will act by (−1)d1+...+dn . Since PGL2 = SL2 /〈±Id〉, a PGL2-
linearization exists if and only if d1 + . . .+ dn is even. We have

RPGL2 = RSL2 ⊂ R̃SL2 = O(Mat2,n)SL2 .

By the first fundamental theorem of invariant theory, this ring is generated
by 2× 2 Plücker minors

O(Mat2,n)SL2 = C[∆ij ]/(Plücker relations). (9.8.1)

Thus we have proved the following theorem:

9.8.2. THEOREM. The GIT quotient of (P1)n by PGL2 with respect to polarization
O(d1, . . . , dn) is the projective spectrum of a subring R of the ring

C[∆ij ]/(Plücker relations)

of polynomials of multidegree (kd1, . . . , kdn) in variables (x1, y2), . . . , (xn, yn).

9.8.3. REMARK. Note that (9.8.1) is the coordinate ring of the Grassmannian

R(G(2, n) =
⊕
k≥0

H0(G(2, n),L⊗k),

where L is the Plücker polarization. Note that we have a torus T = (C∗)n
acting on G(2, n) and L has a natural linearization coming from the action
of T on Cn, which can be changed by a character zd1

1 . . . zdnn . We leave it to
the exercises to prove Gelfand–Macpherson correspondence: GIT quotients of
(P1)n by PGL2 (with respect to different polarizations) are isomorphic to
GIT quotients of G(2, n) by (C∗)n (with respect to different linearizations).

As an example, suppose n = 4 and consider the polarizationO(1, 1, 1, 1).
Using the Plücker relation

∆13∆24 = ∆12∆34 + ∆14∆23,
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we can rewrite any polynomial of multidegree (d1, d2, d3, d4) as a polyno-
mial in all minors ∆ij except ∆13. Denoting by dij the degree with respect
to ∆ij , we see that

d1 + d3 = 2d13 + d12 + d14 + d23 + d34 ≥ d14 + d12 + d23 + d34 = d2 + d4

with equality only if d13 = 0. Therefore every invariant polynomial of mul-
tidegree (d, d, d, d) is a polynomial in ∆12,∆34,∆14,∆23. Moreover, since

d1 = d12 + d14 = d12 + d23 = d2

and d = d1 = d2, in fact we have d14 = d23 and analogously d12 = d34,
i.e.every invariant polynomial of multidegree (d, d, d, d) is in fact a polyno-
mial in ∆14∆23 and ∆12∆34. In short,

RG =
⊕
d,d,d,d

H0(X,O(d, d, d, d))G = k[∆14∆23,∆12∆34].

Therefore, the GIT quotient is

Proj k[∆14∆23,∆12∆34] = P1

and the quotient is given by[
x1 . . . x4

y1 . . . y4

]
7→ [∆14∆23,∆12∆34].

More concretely, representing a point in (z1, z2, z3, z4) ∈ (P1)4 by a matrix[
1 . . . 1
z1 . . . z4

]
7→ (z4 − z1)(z3 − z2)

(z2 − z1)(z4 − z3)
,

the cross-ratio.

§10. Hilbert–Mumford criterion

§10.1. Case of a linear action. Computing invariants explicitly is a daunt-
ing task that can be achieved only in a few special cases. Therefore it is
important to have an efficient algorithm to describe semi-stable orbits in-
stead of relying on Definition 9.5.8. We first explain it in a special case
when a reductive group G acts on the projective space P(V ) and the action
is induced by a linear action of G on V .

10.1.1. DEFINITION. Let G be a connected reductive group. An algebraic
subgroup T ⊂ G is called a maximal torus if T ' (C∗)n and T is maximal by
inclusion among algebraic subtori of G.

10.1.2. THEOREM. All maximal tori in G are conjugate.

10.1.3. EXAMPLE. We won’t prove this theorem but the result is clear for
G = GLn. Indeed, any algebraic torus T ⊂ G acts on Cn hence is diagonal-
izable in some basis of Cn. Equivalently, after conjugation by a change of
basis matrix, T is contained in a subgroup

diag(z1, . . . , zn).

It follows that this subgroup is a maximal torus and every other maximal
torus is conjugate to it. The same argument applies for SLn: every maximal
torus is conjugate to the standard torus

diag(z1, . . . , zn), where z1 . . . zn = 1.
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The Hilbert–Mumford criterion consists of two parts: reduction from G
to T and analysis of stability for torus actions. First the reduction part.

10.1.4. THEOREM. Let G → GL(V ) be an algebraic finite-dimensional represen-
tation of a reductive group. Let T ⊂ G be a maximal torus, and let v ∈ V .
The following are equivalent:

(1) v is unstable, i.e. every homogeneous polynomial f ∈ O(V )G of positive
degree vanishes at v.

(2) The G-orbit of v contains 0 in its closure.
(3) There exists u ∈ Gv such that the T -orbit Tu contains 0 in its closure.

Proof. It is clear that (3)⇒(2)⇒(1). Theorem 8.6.5 shows that (1)⇒(2).
We will explain a difficult implication (2)⇒(3) only for G = GLn. Recall

that every matrix A ∈ GLn has a polar decomposition

A = UP,

where U is a unitary matrix and P is a positive-definite Hermitian matrix.
Let K := Un be the unitary group. By the spectral theorem, P has an
orthonormal basis of eigenvectors, so we can write

P = U ′D(U ′)−1,

where U ′ ∈ K and D ∈ T is a diagonal matrix. Combining these facts, we
get a useful Cartan decomposition

G = KTK.

Analogous decomposition holds in any connected complex reductive group,
where K is its maximal connected compact subgroup (which is defined
uniquely up to conjugation). For example, K = SUn for G = SLn.

By hypothesis, 0 ∈ Gv (Zariski closure). Since Gv contains Gv as a
Zariski open subset, in fact we also have 0 ∈ Gv (closure in the Euclidean
topology). Since K is compact, this implies that

0 ∈ TKv

(closure in the Euclidean topology). Consider the quotient map

πT : V → V//T

and let
O = πT (0).

As any morphism of complex algebraic varieties, πT is continuous in Eu-
clidean topology (since polynomials are continuous functions), so we have

O ∈ πT (TKv) ⇒ O ∈ πT (TKv) = πT (Kv)

(closure in the Euclidean topology). But by compactness,

πT (Kv) = πT (Kv),

and so there exists g ∈ K such that πT (gv) = O, i.e. 0 ∈ Tu for u = gv. �
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§10.2. Unstable locus of torus linear actions. Let T = (C∗)n be an alge-
braic torus and let M ' Zn be its lattice of characters. For every m =
(m1, . . . ,mn) ∈M , the corresponding character is

χm : T → C∗, z = (z1, . . . , zn) 7→ zm := zm1
1 . . . zmnn .

Consider any finite-dimensional representation T = (C∗)n → GL(V ). Let

V =
⊕
m∈M

Vm

be the decomposition of V into T -eigenspaces.

10.2.1. DEFINITION. For any u ∈ V , let u =
∑
um be the decomposition of

u into T -eigenvectors. Then

NP (u) = Convex Hull{m ∈ Zn |um 6= 0}
is called the Newton polytope of u.

10.2.2. THEOREM. Let (C∗)n → GL(V ) be a finite-dimensional algebraic repre-
sentation. Let v ∈ V . TFAE:

(1) v is unstable.
(2) 0 6∈ NP (v).

Proof. There are two “dual” ways to study convexity: using positive linear
combinations and using supporting hyperplanes. We need the following
lemma, known as Farkas Lemma, Gordan Theorem, etc.

10.2.3. LEMMA. Let S ⊂ Rn be a convex hull of lattice points m1, . . . ,mk ∈ Zn.
Then

• 0 6∈ S if and only if there exists u ∈ Zn such that u ·mi > 0 for every i.
• 0 ∈ S if and only if there exist integers α1, . . . , αk ≥ 0 such that

0 =
∑

αimi and
∑

αi > 0.

Now we can prove the Theorem. If 0 6∈ NP (v) then by Lemma we can
choose a vector u = (u1, . . . , un) ∈ Zn such that u ·vi > 0 for any i. Consider
a subgroup χ(t) = (tu1 , . . . , tun) ⊂ T . Then we have

χ(t) · v =
∑
m∈Zn

χ(t) · vm =
∑
m

tm·uvm.

Therefore 0 ∈ Tv because

lim
t→0

χ(t) · v = 0.

On the other hand, let’s suppose that 0 ∈ NP (v). By Lemma 10.2.3, we can
choose integers αm ≥ 0 (indexed by m such that vm 6= 0), not all of them
equal to 0, such that

0 =
∑
vm 6=0

αmm

Set αm = 0 if vm = 0. Choose coordinates fm on V dual to the basis of
eigenvectors for the (C∗)n action. Consider the function

I =
∏

fαmm .



104 JENIA TEVELEV

Then I(v) 6= 0 and I is T -invariant:

I(t · v) =
∏

fαmm (t · v) =
∏

fαmm (t · vm) =
∏

fαmm (tmvm)

= t
∑
αmm

∏
fαmm (vm) =

∏
fαmm (v) = I(v),

where notation tm stands for zm1
1 . . . zmnn for t = (z1, . . . , zn) and m =

(m1, . . . ,mn). So 0 is not in the closure of Tv. �

10.2.4. EXAMPLE. Consider the action of SL2 on the space Vd = C[x, y]d of
binary forms of degree d. The maximal torus T in SL2 consists of diagonal
matrices [

z 0
0 z−1

]
and the weights of the monomials are

z−d, z−d+2, . . . , zd.

The unstable locus S for the T -action is the union of two components:
S+ (resp. S−) is a linear span of monomials xmyd−m (resp. xd−mym) for
m > d/2. By the Hilbert–Mumford criterion, the unstable locus for the SL2-
action is SL2 ·S. Concretely, it is the set of binary forms with a multiple root
of multiplicity m > d/2.
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10.2.5. EXAMPLE. Consider the action of SL3 on degree 2 polynomials in
three variables. The following analysis illustrates that the unstable locus
consists of reducible conics. In fact O(V2)SL3 is generated by a single in-
variant, namely the discriminant.

§10.3. General case. Now consider any action of a reductive group G on a
projective variety X with a G-linearized ample line bundle L.

10.3.1. DEFINITION. A 1-parameter subgroup of G is a homomorphism

λ : C∗ → G, t 7→ λ(t).

Suppose x ∈ X is a λ-fixed point. Since L is linearized, λ then acts on the
fiber L|x over x by a character

λ(t) · L|x = twL|x.

The number w is called the weight of λ at x, denoted by wtλ L|x. Let Zλ be
the union of points such that wtλ < 0. Let ΣΛ be the union of points x ∈ X
such that

lim
t→0

λ(t)x ∈ Zλ.

Finally, let
Sλ = G · Σλ.

10.3.2. THEOREM. The unstable locus Xus is the union of strata Sλ for all one-
parameter subgroups λ, which can be taken up to conjugacy.

10.3.3. EXAMPLE. Let G = PGL2 acting on X = (P1)n with a G-linearized
ample line bundle L = O(d1, . . . , dn), di > 0 for every i and

∑
di even.

Up to conjugation, a 1-parameter subgroup λ : C∗ → PGL2 has the form

λ(t) =

[
t 0
0 t−1

]
.

Its fixed points in P1 are 0 = [0 : 1] and∞ = [1 : 0]. We have

wtλOP1(1)|p =

{
1 if p = 0
−1 if p =∞

The λ-fixed points in (P1)n have the following description: fix a subset
K ⊆ {1, . . . , n} and consider

zK = (p1, . . . , pn), with pi =

{
0 if i /∈ K
∞ if i ∈ K

}
.

It follows that
wtλ L|zK =

∑
i∈Kc

di −
∑
i∈K

di.

The weight is negative if ∑
i∈K

di >
∑
i∈Kc

di. (10.3.4)

Take any point p = (p1, . . . , pn). Then

lim
t→0

λ(t)p = zK
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if and only of pi =∞ for i ∈ K and pi 6=∞ for i ∈ Kc. Thus

ΣK = (p1, . . . , pn), with pi

{
6=∞ if i /∈ K
=∞ if i ∈ K

}
.

Let ∆K be a diagonal in (P1)n consisting of points (p1, . . . , pn) such that
for all i ∈ K the points pi are equal. Let SK ⊂ ∆K be a locally closed
diagonal (the complement to the union of other diagonals). Then

SK = G · ΣK .

The unstable locus is the union of diagonals ∆K such that (10.3.4) holds.
If the polarization is symmetric (d1 = . . . = dn) the condition just means

that more than half of the n points are equal.

Proof of Theorem 10.3.2. We only sketch the proof and leave details to ex-
ercises. By considering a high tensor power of L (which doesn’t change
neither the unstable locus nor the sign of weights of one-parameter sub-
groups), we can assume without loss of generality that L is very ample
that the coordinate algebra R of L is generated by R1. Choose generators
r0, . . . , rn. Then we have a surjection

C[x0, . . . , xn]→ R

which induces a G-equivariant embedding

X ↪→ Pn.
Since G is reductive, we also have a surjection

C[x0, . . . , xn]G → RG,

which shows that the unstable locus of in X is the intersection of X with
the unstable locus in Pn. It remains to interpret the definition of Σλ in terms
of Lemma 10.2.3, which we leave as an exercise. �

§10.4. Stability of smooth hypersurfaces.

10.4.1. DEFINITION. For a reductive group G acting on an affine variety X ,
we call a point of X stable if its orbit is closed and its stabilizer is finite.

10.4.2. THEOREM. Let π : X → X//G = MaxSpecO(X)G be the quotient for
an action of the reductive group on an affine variety. Let

Xs ⊂ X
be the set of stable points and let

Z ⊂ X
be the subset of points such that Gx is not finite. Then Z is closed, Xs is open
and Xs is the complement of π−1(π(Z)). The quotient π induces a 1− 1 bijection
between G-orbits in Xs and points in π(Xs).

Proof. Consider the map

G×X → X ×X, (g, x) 7→ (gx, x).

Let Z̃ be the preimage of the diagonal. It is closed. But

Z = {x ∈ X | dim(π2|Z̃)−1(x) > 0}.
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Thus Z is closed by semi-continuity of dimension of fibers. Since Z is
clearly G-invariant, π(Z) is also closed (a HW exercise).

Now suppose x ∈ π−1(π(Z)). Then the fiber of π through x contains a
closed orbit with a positive-dimensional stabilizer. Thus either Gx is not
closed or Gx is positive-dimensional. In any case x is not stable.

If x 6∈ π−1(π(Z)) then Gx is finite. If Gx is not closed then a closed
orbit in the closure of Gx also does not belong to π−1(π(Z)), which is a
contradiction. So in fact x is stable. �

We would like to prove a classical theorem of Matsumura, Monsky and
Mumford that smooth hypersurfaces are GIT stable. Specifically, consider
the representation of SLn+1 in the vector space

Vn,d = Symd(Cn+1)∗

which parametrizes polynomials of degree d in n+ 1 variables. Let

Un,d ⊂ Vn,d
be the locus of polynomials F such that the corresponding hypersurface
V (F ) ⊂ Pn is smooth. Let Dn,d be the complement, the discriminant set.

10.4.3. THEOREM. Dn,d is an irreducible hypersurface. Its defining equationDn,d

(called the discriminant) belongs to O(Vn,d)
SLn+1 .

Proof. The proof is by dimension count. Consider the incidence subset

Z ⊂ P(V n,d)× Pn

of pairs (F, z) such that z ∈ Sing(F = 0). This is a closed subset defined
by vanishing of partial derivatives of F . All fibers of the projection of Z
onto Pn are projective spaces of dimension dimP(Vn,d) − n − 1 (why?) .
Therefore Z is irreducible (in fact smooth) and

dimZ = dimP(Vn,d)− 1

by the theorem on dimension of fibers. Notice that the projectivization of
Dn,d is the image of Z. Thus Dn,d is irreducible and to count its dimension
it suffices to show that a general hypersurface singular at z ∈ Pn is singular
only there: this would imply that the first projection

Z → Dn,d
is birational (giving resolution of singularities of the discriminant locus).
But this is easy: just take the cone over any smooth hypersurface S ⊂ Pn−1.
The only singular point of a cone is the vertex. �

10.4.4. THEOREM (Matsumura–Monsky–Mumford). Every smooth hypersur-
face of degree d ≥ 3 is stable.

Proof. The main point is that every point F ∈ Un,d has a finite stabilizer in
SLn+1. Given that, we claim that F is stable, i.e. its orbit is in fact closed.
Indeed, if F ′ is the closure of the SLn+1-orbit of F then F ′ has positive-
dimensional stabilizer. On the other hand, the discriminant of F ′ has to be
equal to the discriminant of F , so it’s not equal to 0. Thus (F ′ = 0) is also
smooth, contradiction. For a simple proof that the stabilizer is finite, see
my book Projective duality and homogeneous spaces. �
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As the main application, we can now consider the GIT quotient

P(Vn,d)//GIT SLn+1,

which by what we have just proved compactifies the principal open subset

(P(Vn,d) \ Dn,d)//SLn+1,

the moduli space of non-singular hypersurfaces.
What kind of moduli spaces one can get this way?

10.4.5. EXAMPLE. Let n = 1, d = 2g + 2 ≥ 6. The GIT quotient compactifies
the moduli space of unordered d-tuples of distinct points in P1. A double
cover of P1 ramified at these points is a hyperelliptic curve of genus g by the
Riemann-Hurwitz formula. One can show that every hyperelliptic curve of
genus g > 1 can be written as a double cover of P1 uniquely. Thus the GIT
quotient in this case is the compactification of Hg, the coarse moduli space
of hyperelliptic curves.

10.4.6. EXAMPLE. Let n = 2, d = 4. The GIT quotient compactifies the
moduli space of smooth quartic curves in P2, or equivalently M3 \H3, the
coarse moduli space of non-hyperelliptic curves of genus 3.

10.4.7. EXAMPLE. Let n = 2, d = 6. The GIT quotient compactifies the
moduli space of smooth sextic curves in P2. A double cover of P2 branched
along a sextic is a polarized K3 surface. The GIT quotient compactifies
one of the components in the moduli space of polarized K3 surfaces, of
dimension (

6 + 2

2

)
− 1− 8 = 19.

10.4.8. EXAMPLE. Let n = 3, d = 4. The GIT quotient compactifies the
moduli space of smooth quartic surfaces, another component in the moduli
space of K3 surfaces, of dimension(

4 + 3

3

)
− 1− 15 = 19.

§10.5. Homework 5.

Problem 1. (1 point) Check (9.2.2).
Problem 2. (2 points) Finish the proof of Lemma 9.4.3.
Problem 3. (2 points) A weighted projective space P(a0, . . . , an) is called

well-formed if no n of the weights a0, . . . , an have a common factor. For
example, P(1, 1, 3) is well-formed but P(2, 2, 3) is not. Consider the poly-
nomial ring R = C[x0, . . . , xn], where xi has weight ai. (a) Let d =

gcd(a0, . . . , an). Show that R(d) = R and P(a0, . . . , an) ' P(a0/d, . . . , an/d).
(b) Let d = gcd(a1, . . . , an) and suppose that (a0, d) = 1. Compute R(d)

and show that P(a0, . . . , an) ' P(a0, a1/d . . . , an/d). Conclude that every
weighted projective space is isomorphic to a well-formed one.

Problem 4. (2 points) Compute ProjC[x, y, z]/(x5 + y3 + z2). Here x has
weight 12, y has weight 20, and z has weight 30.
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Problem 5. (2 points) Let C ⊂ Pd be a rational normal curve of degree d,
let Ĉ ⊂ Ad+1 be the affine cone over it, and let C̄ ⊂ Pd+1 be its projective
closure. Show that C̄ is isomorphic to P(1, 1, d).

Problem 6. (2 points) Let P ∈ E be a pointed elliptic curve. Consider the
graded algebra R =

⊕
k≥0

H0(E,O(kP )). Find all d such that the Veronese

subalgebra R(d) is generated by Rd.

Problem 7. (2 points) Let G be a reductive group acting on a projective
variety X with a G-linearized ample line bundle L. Let Xss be the set of
semistable points. Show that the GIT quotient X//GITG is a categorical
quotient of Xss by G in the sense of Mumford. Moreover, X//GITG is a
geometric quotient if all G-orbits in Xss are closed.

In problems 8–11, we consider linear actions of algebraic groups with a
standard linearization.

Problem 8. (2 points) Use the Hilbert–Mumford criterion to show that a
degree 3 polynomial in 3 variables in Sym3 C3 is semistable for the action
of SL3 if and only if the corresponding cubic curve is smooth or nodal.

Problem 9. (2 points) Use the Hilbert–Mumford criterion to describe the
unstable locus for the action of GL3 on Mat3,3 by conjugation. Then com-
pute generators of the algebra of invariant polynomials and their common
zero locus. Why is the answer the same?

Problem 10. (3 points) Show that a degree 4 polynomial in 3 variables in
Sym4 C3 is semistable for the action of SL3 if and only if the corresponding
quartic curve in P2 has no triple points25 and is not the union of the plane
cubic and an inflectional tangent line.

Problem 11. (3 points) Show that a degree 3 polynomial in 4 variables in
in Sym3 C4 is semistable for the action of SL4 if and only if all points of the
corresponding cubic surface S ⊂ P3 are either smooth, or ordinary dou-
ble points, or double points p such that (after a linear change of variables)
the quadratic part of F (x, y, z, 1) is xy and the line x = y = 0 is not con-
tained in S. Show that (after a holomorphic change of variables) the last
singularities are A2 singularities.

Problem 12. (2 points) In Example 9.5.10, describe all possible polariza-
tions and linearizations for the action of G on X . For every choice, describe
the unstable locus, the GIT quotient and the quotient map.

Problem 13. (2 points) Describe unstable locus for the action of (C∗)n on
G(2, n). Use Plücker polarization and symmetric linearization.

Problem 14. (2 points) Prove Gelfand–Macpherson correspondence of
Remark 9.8.3.

25A hypersurface F (x0, . . . , xn) ⊂ Pn has a point of multiplicity d at p ∈ Pn if the
following holds. Change coordinates so that p = [0 : . . . : 0 : 1]. Then F (x0, . . . , xn−1, 1)
should have no terms of degree less than d. A point of multiplicity 2 (resp. 3) is called a
double (resp. triple) point. A point p is called an ordinary double point (or a node) if p is a
double point and the quadratic part of F (x0, . . . , xn−1, 1) is non-degenerate.



110 JENIA TEVELEV

Problem 15. (2 points) Prove using theorem 9.8.2 (but without using the
Hilbert–Mumford stability criterion) that the unstable locus of the GIT quo-
tient of (P1)n by PGL2 with respect to a symmetric polarizationO(d, . . . , d)
consists of n-tuples of points such that more than half of them are equal.

Problem 16. (3 points) Prove using theorem 9.8.2 that the GIT quotient of
(P1)n by PGL2 with respect to the symmetric polarization O(1, . . . , 1) is a
cubic hypersurface in P4. What is its equation? Use computer if necessary.

Problem 17. (2 points) Describe the unstable locus for the action of PGL3

on (P2)5. Use “symmetric” polarization O(d, d, d, d, d).
Problem 18. (2 points) Finish the proof of Theorem 10.3.2.

§11. Genus 2 curves.

Our next goal is to study the moduli space M2 of algebraic curves of
genus 2. Incidentally, this will also give us the moduli space A2 of prin-
cipally polarized Abelian surfaces, talgebraic surfaces isomorphic to C2/Λ,
where Λ ' Z4 is a lattice. So Abelian surfaces are naturally Abelian groups
just like elliptic curves. We will see thatM2 embeds inA2 as an open subset
(via the Jacobian construction) and the complement A2 \M2 parametrizes
split Abelian surfaces of the form E1 × E2, where E1 and E2 are elliptic
curves. The map Mg ↪→ Ag can be constructed in any genus (its injectivity
is called the Torelli theorem) but the dimensions are vastly different:

dimMg = 3g − 3 and dimAg =
g(g + 1)

2
.

The characterization of Mg as a sublocus of Ag is called the Shottky problem.

§11.1. Genus 2 curves: analysis of the canonical ring. Let’s start with a
basic Riemann–Roch analysis of a genus 2 curve C. We fix a canonical
divisor K. We have

degK = 2× g − 2 = 2 and l(K) = g = 2.

So we can assume that
K ≥ 0

is an effective divisor. by Riemann–Roch, for any point P ∈ C,

l(K − P )− l(K − (K − P )) = 1− 2 + deg(K − P ) = 0.

Since l(P ) = 1 (otherwise C is isomorphic to P1), we have l(K − P ) = 1.
So |K| has no fixed part, and therefore gives a degree 2 map

φ|K| : C → P1.

By Riemann–Hurwitz, it has 6 ramification points called Weierstrass points.
We also see that C admits an involution permuting two branches of φ|2K|.
It is called the hyperelliptic involution.

Now consider |3K|. By Riemann–Roch, we have l(3K) = 5 and l(3K −
P −Q) = 3 for any points P,Q ∈ C. It follows that |3K| is very ample and
gives an embedding

C ↪→ P4.
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To get a bit more, we observe that most of geometry of C is nicely en-
coded in the canonical ring

R(K) =
∞⊕
n=0

L(nK).

We can give a more general definition:

11.1.1. DEFINITION. Let D ≥ 0 be an effective divisor on a curve C. Its
graded algebra is defined as follows:

R(D) =

∞⊕
n=0

L(nD).

This is a graded algebra: notice that if f ∈ L(aD) and g ∈ L(bD) then

(fg) + (a+ b)D = (f) + aD + (g) + bD ≥ 0,

so fg ∈ L(a+ b)D.

11.1.2. REMARK. We have only defined divisors on curves in this class, but
in principle it is no harder to defined a graded algebra of any divisor on an
algebraic variety of any dimension. The canonical ring R(K) of a smooth
variety of dimension n was a subject of a really exciting research in the last
30 years which culminated in the proof of a very important theorem of Siu
and Birkar–Cascini–Hacon–McKernan: R(K) is a finitely generated alge-
bra. This does not sound like much, but it allows us to define ProjR(K),
the so-called canonical model of X . It is easy to see that it depends only on
the field of rational functions C(X). In the curve case, C is uniquely deter-
mined by its field of functions, by in dimension > 1 it is easy to modify a
variety without changing its field of rational functions (e.g. by blow-ups).
So it is very handy to have this canonical model of the field of rational func-
tions. There exists a sophisticated algorithm, called the Minimal Model
Program, which (still conjecturally) allows one to construct the canonical
model by performing a sequence of basic “surgeries” on X called diviso-
rial contractions and flips.

We can compute the Hilbert function of R(K) by Riemann–Roch:

hn(R(K)) = l(nK) =



1 if n = 0

2 if n = 1

3 if n = 2

5 if n = 3

2n− 1 if n ≥ 2.

Let’s work out the generators. L(0) = C is generated by 1. This is a unity
in R(K). Let x1, x2 be generators of L(K). One delicate point here is that
we can (and will) take x1 to be 1 ∈ C(C), but it should not be confused with
a previous 1 because it lives in a different degree in R(K)! In other words,
R(K) contains a graded polynomial subalgebra C[x1], where any power xn1
is equal to 1 as a rational function on C.

Any other element of first degree has pole of order 2 at K (because if it
has a pole of order 1, it would give an isomorphism C ' P1.
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A subalgebra S = C[x1, x2] of R is also a polynomial subalgebra: if we
have some homogeneous relation f(x1, x2) of degree d then we have

f(x1, x2) =
d∏
i=1

(αix1 + βix2) = 0 in C(C),

which implies that αix1 + βix2 = 0 for some i, i.e. that x1 and x2 are not
linearly independent, contradiction.

The Hilbert function of S is

hn(S) =



1 if n = 0

2 if n = 1

3 if n = 2

4 if n = 3

n if n ≥ 2.

So the next generator we need for R(K) is a generator y in degree 3.
What happens in degree 4? We need 7 elements and we have 7 elements

x4
1, x

3
1x2, x

2
1x

3
2, x1x

3
2, x

4
2, yx1, yx2.

We claim that they are indeed linearly independent, and in fact we claim:

11.1.3. LEMMA. There is no linear relation in C(C) of the form

yfk(x1, x2) = fk+3(x1, x2),

where the lower index is the degree. In particular, R(K) is generated by x1, x2, y.

Proof. Suppose the linear relation of the form above exists. Then y, as a
rational function on C, is a rational function f(x1, x2). One can show that
this is impossible either by an elementary analysis of possible positions of
roots of y and this rational function f(x1, x2) or by simply invoking the fact
that as we already know 3K is very ample, and in particular functions in
|3K| separate points of C. But if y is a rational function in x1 and x2 then y
takes the same values on two points from each fiber of φ|2K|. �

It follows that

11.1.4. LEMMA. R(K) is isomorphic to a polynomial algebra in x1, x2, y modulo
a relation

y2 = f6(x1, x2),

where f6 is a polynomial of degree 6.

Proof. We already know that R(K) is generated by x1, x2, y, and that y 6∈
C(x1, x2). It follows that y2, yC[x1, x2]3, and C[x1, x2]6 are linearly depen-
dent in R(K)6 and this gives the only relation in R(K):

y2 = yf3(x1, x2) + f6(x1, x2).

We can make a change of variables y′ = y − 1
2f3 to complete the square,

which brings the relation in the required form. �
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§11.2. Graded algebra of an ample divisor. Now let’s interpret these al-
gebraic results geometrically. The basic fact is:

11.2.1. LEMMA. If D is an ample divisor on a curve C then ProjR(D) = C.

Proof. If D is very ample and R(D) is generated by R(D)1 then R(D) is
isomorphic to a a polynomial algebra in x0, . . . , xN ∈ L(D) modulo the
relations that they satisfy, i.e. R(D) = C[x0, . . . , xN ]/I , where I is a homo-
geneous ideal of C ⊂ PN . So in this case clearly ProjR(D) = C. In general,
if D is ample then kD is very ample for some k > 0. Also, we know by
Lemma 9.4.3 that the Veronese subalgebra R(lD) = R(D)(l) is generated
by its first graded piece for some l > 0. So klD is a very ample divisor
and R(klD) = R(kl) is generated by its first graded piece. Then we have
ProjR(D) = ProjR(klD) = C. We are not using here that C is a curve, so
if you know your divisors in higher dimension, everything works just as
nicely. �

As a corollary, we have

11.2.2. COROLLARY. LetC be a genus 2 curve. ThenR(K) induces an embedding

C ⊂ P(1, 1, 3)

and the image is defined by an equation

y2 = f6(x1, x2). (11.2.3)

The embedding misses a singularity of P(1, 1, 3) (where x1 = x2 = 0, y = 1).
In the remaining two charts of P(1, 1, 3), the curve is given by equations

y2 = f6(1, x2) and y2 = f6(x1, 1).

The projection onto P1
[x1:x2] is a bicanonical map φ|2K| and roots of f6 are branch

points of this 2 : 1 cover. In particular, f6 has no multiple roots and any equation
of the form (11.2.3) defines a genus 2 curve.

The tricanonical embedding C ⊂ P4 factors through the Veronese embedding

P(1, 1, 3) ↪→ P4, (x1, x2, x3, y) 7→ [x3
1 : x2

1x2 : x1x
2
2 : x3

2 : y],

where the image is a projectivized cone over a rational normal curve.

This sets up a bijection between curves of genus 2 and unordered 6-
tuples of distinct points p1, . . . , p6 ∈ P1 modulo PGL2. We are going to
use this to construct M2. The classical way of thinking about 6 unordered
points in P1 is to identify them with roots of a binary form f6(x1, x2) of
degree 6. Let V6 be a vector space of all such forms and let D ⊂ P(V6)
be the discriminant hypersurface (which parameterizes binary sextics with
multiple roots). Thus we have (set-theoretically):

M2 = (P(V6) \D)/PGL2 .

§11.3. Classical invariant theory of a binary sextic. We have to describe
the algebra R = O(V6)SL2 of SL2-invariant polynomial functions for the
linear action of SL2 on V6. The classical convention for normalizing the
coefficients of a binary form is to divide coefficients by the binomial coeffi-
cients:

f6 = ax6 + 6bx5y + 15cx4y2 + 20dx3y3 + 15ex2y4 + 6fxy5 + gy6.
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Explicit generators for R were written down in the 19-th century by Cleb-
sch, Cayley, and Salmon. We are not going to prove that they indeed gen-
erate the algebra of invariants but let’s discuss them to see how beautiful
the answer is. Let p1, . . . , p6 denote the roots of the dehomogenized form
f6(x, 1) and write (ij) as a shorthand for pi−pj . Then we have the following
generators (draw some graphs):

I2 = a2
∑

fifteen
(12)2(34)2(56)2

I4 = a4
∑
ten

(12)2(23)2(31)2(45)2(56)2(64)2

I6 = a6
∑
sixty

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2

D = I10 = a10
∏
i<j

(ij)2

I15 = a15
∑

fifteen
((14)(36)(52)− (16)(32)(54)).

Here the summations are chosen to make the expressions S6-invariant. In
particular, they can all be expressed as polynomials in C[a, b, c, d, e, f, g], for
example

I2 = −240(ag − 6bf + 15ce− 10d2). (11.3.1)

Here is the main theorem:

11.3.2. THEOREM. The algebra R = O(V6)SL2 is generated by invariants I2, I4,
I6, I10, and I15. The subscript is the degree. Here D = I10 is the discriminant
which vanishes iff the binary form has a multiple root. The unique irreducible
relation among the invariants is

I2
15 = G(I2, I4, I6, I10).

Now we use our strategy to construct M2:
• Compute V6//SL2 = MaxSpecR first. By 19-th century, this is

C[I2, I4, I6, I10, I15]/(I2
15 = G(I2, I4, I6, I10)).

• Now quotient the result by C∗, i.e. compute ProjR. Here we have
a magical simplification: ProjR = ProjR(2) but the latter is gen-
erated by I2, I4, I6, I10, and I2

15. Since I2
15 is a polynomial in other

invariants, in fact we have

ProjR(2) = ProjC[I2, I4, I6, I10] = P(2, 4, 6, 10) = P(1, 2, 3, 5).

• To get M2, remove a hypersurface D = 0, i.e. take the chart DI10 of
P(1, 2, 3, 5). This finally gives

M2 = A3/µ5,

where µ5 acts with weights 1, 2, 3.
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• One can show that C[A,B,C]µ5 has 8 generators. So as an affine
variety, we have

M2 = (P(V6) \D)/PGL2 ↪→ A8,

{y2 = f(x)} 7→
(
I5

2

I10
,
I3

2I4

I10
,
I2I

2
4

I10
,
I5

4

I2
10

,
I2

2I6

I10
,
I2I

3
6

I2
10

,
I5

6

I3
10

,
I4I6

I10

)
.

This of course leaves more questions then gives answers:
(1) How do we know that points of M2 correspond to isomorphism

classes of genus 2 curves? In other words, why is it true that our
quotient morphism

P(V6) \D → A3/µ5

is surjective and separates PGL2-orbits? It is of course very easy
to give examples of quotients by infinite group actions that do not
separate orbits.

(2) Can one prove the finite generation of the algebra of invariants and
separation of orbits by the quotient morphism without actually com-
puting the algebra of invariants?

(3) IsM2 a coarse moduli space (and what is a family of genus 2 curves)?
(4) Our explicit description of M2 as A3/µ5 shows that it is singular.

Which genus 2 curves contribute to singularities?
(5) Our construction gives not only M2 but also its compactification by

ProjR. Can we describe the boundary ProjR \M2?
(6) Are there other approaches to the construction of M2?

Let’s summarize where we stand. We want to construct M2 as an orbit
space for

SL2 acting on P(V6) \D.
We use our standard approach using invariants. The classical invariant
theory tells us thatO(V6)SL2 is generated by I2, I4, I6, I10 = D, and I15 with
a single quadratic relation I2

15 = g(I2, I4.I6, I10).
So our natural candidate for the quotient is ProjO(V6)SL2 , and the quo-

tient map is

f 7→ [I2(f) : . . . : I15(f)] ∈ P(2, 4, 6, 10, 15).

Here we got lucky: since ProjR = ProjR(2), we can also write the quotient
map as

f 7→ [I2(f) : . . . : I10(f)] ∈ P(2, 4, 6, 10) = P(1, 2, 3, 5).

Since there are no relations between I2, . . . , I10 we actually expect the quo-
tient to be P(1, 2, 3, 5).

If we throw away the vanishing locus of the discriminant, we get the
affine chart

{D 6= 0} ⊂ P(1, 2, 3, 5).

So our hope is that
M2 = A3/µ5,

where µ5 acts with weights 1, 2, 3. We’ve seen that if we want to embed this
cyclic quotient singularity in the affine space, we need at least A8.
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Of course this construction alone does not guarantee that each point of
A3/µ5 corresponds to a genus 2 curve and that different points correspond
to different curves: this is something we are trying to work out in general.

Surjectivity of the quotient map implies

11.3.3. COROLLARY. Any point of A3/µ5 represents a genus 2 curve.

Now we can finally describe M2:

11.3.4. THEOREM. There are natural bijections (described previously) between
(1) isomorphism classes of genus 2 curves;
(2) SL2 orbits in P(V6) \D;
(3) points in A3/µ5 acting with weights 1, 2, 3.

Proof. The only thing left to check is that all SL2 orbits in P(V6) \ D are
closed. But this is easy: for any orbit O and any orbit O′ 6= O in its clo-
sure, dimO′ < dimO. However, all SL2 orbits in P(V6) \ D have the same
dimension 3, because the stabilizer can be identified with a group of projec-
tive transformations of P1 permuting roots of the binary sextic, which is a
finite group if all roots are distinct (or even if there are at least three distinct
roots). �

This gives a pretty decent picture of the quotient P(V6)/ SL2, at least in
the chart D 6= 0, which is the chart we mostly care about. To see what’s
going on in other charts, let’s experiment with generators I2, I4, I6, I10 (de-
fined in §11.3). Simple combinatorics shows that (do it):

• if f ∈ V6 has a root of multiplicity 4 then f is unstable.
• if f ∈ V6 has a root of multiplicity 3 then all basic invariants vanish

except (potentially) I2.
So we should expect the following theorem:

11.3.5. THEOREM. Points of P(V6)/ SL2 = P(1, 2, 3, 5) correspond bijectively to
GL2-orbits of degree 6 polynomials with at most a double root (there can be several
of them) plus an extra point [1 : 0 : 0 : 0], which has the following description.
All polynomials with a triple root (but no fourtuple root) map to this point in the
quotient. The corresponding orbits form a one-parameter family (draw it), with a
closed orbit that corresponds to the polynomial x3y3.

To prove this theorem, it is enough to check the following facts:
(1) Any unstable form f has a fourtuple root (or worse). In other words,

semistable forms are the forms that have at most triple roots.
(2) A semistable form f ∈ P(V6) has a finite stabilizer unless f = x3y3

(this is clear: this is the only semistable form with two roots).
(3) Any semistable form f without triple roots has a closed orbit in

the semistable locus in P(V6), and hence in any principal open subset
D+(I) it belongs to, where I is one of the basic invariants. Notice
that we do not expect f to have a closed orbit in the whole P(V6), in
fact one can show that there is only one closed orbit there, namely
the orbit of x6.

(4) If f has a triple root then it has the orbit of x3y3 in its closure. In-
deed, suppose f = x3g, where g = y3 + ay2x+ byx2 + cx3 is a cubic
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form (it has to start with y3, otherwise f has a fourtuple root). Let’s

act on f by a matrix
[
t 0
0 t−1

]
. We get x3y3 +at2y2x+ bt4yx5 + ct6x6.

So as t→ 0, we get x3y3 in the limit.

§11.4. Homework 6.

Problem 1. Show that I2 (see (11.3.1)) is indeed an SL2-invariant polyno-
mial. (2 points)

Problem 2. Using the fact that M2 = A3/µ5, where µ5 acts with weights
1, 2, 3, construct M2 as an affine subvariety of A8 (1 point).

Problem 3. Show that any genus 2 curve C can be obtained as follows.
Start with a line l ⊂ P3. Then one can find a quadric surface Q and a cubic
surface S containing l such that Q ∩ S = l ∪ C (2 points).

Problem 4. Assuming that M2 = A3/µ5 set-theoretically, define families
of curves of genus 2 (analogously to families of elliptic curves), and show
that M2 is a coarse moduli space (2 points).

Problem 5. Assuming the previous problem, show that M2 is not a fine
moduli space (2 points).

Problem 6. Find a genus 2 curve C such that AutC contains Z5 and
confirm (or disprove) my suspicion that this curve gives a unique singu-
lar point of M2 (2 points).

Problem 7. An algebraic curve is called bielliptic if it admits a 2 : 1 mor-
phism C → E onto an elliptic curve; the covering transformation is called a
bielliptic involution. LetC be a genus 2 curve. (a) Show that ifC is bielliptic
then its bielliptic involution commutes with its hyperelliptic involution. (b)
Show that C is bielliptic if and only if the branch locus p1, . . . , p6 ∈ P1 of its
bi-canonical map has the following property: there exists a 2 : 1 morphism
f : P1 → P1 such that f(p1) = f(p2), f(p3) = f(p4), and f(p5) = f(p6). (c)
Show that (b) is equivalent to the following: if we realize P1 as a conic in P1

then lines p1p2, p3p4, and p5p6 all pass through a point (3 points).

§12. Jacobians and periods

So far we have focussed on constructing moduli spaces using GIT, but
there exists a different approach using variations of Hodge structures. I
will try to explain the most classical aspect of this theory, namely the map

Mg → Ag, C 7→ JacC.

Injectivity of this map is the classical Torelli theorem.

§12.1. Albanese torus. Let X be a smooth projective variety. We are go-
ing to integrate in this section, so we will mostly think of X as a complex
manifold. Recall that we have the first homology group

H1(X,Z).

We think about it in the most naive way, as a group generated by smooth
oriented loops γ : S1 ↪→ X modulo relations γ1 + . . . + γr = 0 if loops



118 JENIA TEVELEV

γ1, . . . , γr bound a smooth oriented surface in X (with an induced orienta-
tion on loops). We then have a first cohomology group

H1(X,C) = Hom(H1(X,Z),C).

This group can also be computed using de Rham cohomology

H1
dR(X,C) =

{complex-valued 1-forms ω =
∑
fi dxi such that dω = 0}

{exact forms ω = df}
.

Pairing between loops and 1-forms is given by integration∫
γ
ω,

which is well-defined by Green’s theorem. The fact that X is a smooth pro-
jective variety has important consequences for the structure of cohomology,
most notably one has Hodge decomposition, which in degree one reads

H1
dR(X,C) = H1,0 ⊕H0,1,

where H1,0 = H0(X,Ω1) is the (finite-dimensional!) vector space of holo-
morphic 1-forms, andH0,1 = H1,0 is the space of anti-holomorphic 1 forms.
Integration gives pairing betweenH1(X,Z) (modulo torsion) andH0(X,Ω1),
and we claim that this pairing is non-degenerate. Indeed, if this is not the
case then

∫
γ ω = 0 for some fixed non-trivial cohomology class γ ∈ H1

(modulo torsion) and for any holomorphic 1-form ω. But then of course
we also have

∫
γ ω̄ = 0, which contradicts the fact that pairing between

H1(X,Z) (modulo torsion) and H1(X,C) is non-degenerate.
It follows that we have a complex torus

Alb(X) =
H0(X,Ω1)∗

H1(X,Z)/Torsion
= V/Λ = Cq/Z2q

called the Albanese torus of X . Λ is called the period lattice and

q = dimH0(X,Ω1)

is called the irregularity of X . If we fix a point p0 ∈ X , then we have a
holomorphic Abel–Jacobi map

µ : X → Alb(X), p 7→
∫ p

p0

•

The dependence on the path of integration is killed by taking the quo-
tient by periods. Moreover, for any 0-cycle

∑
aipi (a formal combination

of points with integer multiplicities) such that
∑
ai = 0, we can define

µ(
∑
aipi) by breaking

∑
aipi =

∑
(qi − ri) and defining

µ(
∑

aipi) =
∑∫ qi

ri

•.

Again, any ambiguity in paths of integration and breaking the sum into
differences disappears after we take the quotient by periods.

When dimX > 1, we often have q = 0 (for example if π1(X) = 0 or at
least H1(X,C) = 0), but for curves q = g, the genus, and some of the most
beautiful geometry of algebraic curves is revealed by the Abel–Jacobi map.
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§12.2. Jacobian. LetC be a compact Riemann surface (= an algebraic curve).
The Albanese torus in this case is known as the Jacobian

Jac(C) =
H0(C,K)∗

H1(C,Z)
= V/Λ = Cg/Z2g

The first homology latticeH1(C,Z) has a non-degenerate skew-symmetric
intersection pairing γ · γ′, which can be computed by first deforming loops
γ and γ′ a little bit to make all intersections transversal and then comput-
ing the number of intersection points, where each point comes with + or −
depending on orientation of γ and γ′ at this point. In the standard basis of
α and β cycles (draw), the intersection pairing has a matrix[

0 −I
I 0

]
.

H1
dR(C,C) also has a non-degenerate skew-symmetric pairing given by∫

C
ω ∧ ω′.

We can transfer this pairing to the dual vector space H1(C,C) and then
restrict toH1(C,Z). It should come at no surprise that this restriction agrees
with the intersection pairing defined above. To see this concretely, let’s
work in the standard basis

δ1, . . . , δ2g = α1, . . . , αg, β1, . . . , βg

of α and β cycles. We work in the model where the Riemann surface is
obtained by gluing the 4g gon ∆ with sides given by

α1, β1, α
−1
1 , β−1

1 , α2, . . .

Fix a point p0 in the interior of ∆ and define a function π(p) =
∫ p
p0
ω

(integral along the straight segment). Since ω is closed, the Green’s formula
shows that for any point p ∈ αi, and the corresponding point q ∈ α−1

i , we
have

π(q)− π(p) =

∫
βi

ω.

For any point p ∈ βi and the corresponding point q ∈ β−1
i , we have

π(q)− π(p) =

∫
α−1
i

ω = −
∫
αi

ω.

Then we have∫
C
ω ∧ ω′ =

∫
∆
dπ ∧ ω′ =

∫
∆
d(πω′) (because ω′ is closed)

=

∫
∂∆

πω′ (by Green’s formula)

=
∑∫

αi∪α−1
i

πω′ +
∑∫

βi∪β−1
i

πω′ =

= −
∑∫

βi

ω

∫
αi

ω′ +
∑∫

αi

ω

∫
βi

ω′,
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which is exactly the pairing dual to the intersection pairing26.
Specializing to holomorphic 1-forms gives Riemann bilinear relations

12.2.1. PROPOSITION. Let ω and ω′ be holomorphic 1-forms. Then∑(∫
αi

ω

∫
βi

ω′ −
∫
βi

ω

∫
αi

ω′
)

=

∫
C
ω ∧ ω′ = 0,

and ∑(∫
αi

ω

∫
βi

ω̄′ −
∫
βi

ω

∫
αi

ω̄′
)

=

∫
C
ω ∧ ω̄′.

We define a Hermitian form H on H0(C,K) by formula

i

∫
C
ω ∧ ω̄′

(notice an annoying i in front) and we transfer it to the Hermitian form
on V := H0(C,K)∗, which we will also denote by H . The imaginary part
ImH is then a real-valued skew-symmetric form on H0(C,K) (and on V ).
We can view V and H0(C,K) as dual real vector spaces using the pairing
Re v(ω). Simple manipulations of Riemann bilinear relations give∑(

Re

∫
αi

ω

)(
Re

∫
βi

ω̄′
)
−
(

Re

∫
βi

ω

)(
Re

∫
αi

ω̄′
)

= Im i

∫
C
ω ∧ ω̄′,

i.e. we have

12.2.2. COROLLARY. The restriction of ImH on Λ := H1(C,Z) is the standard
intersection pairing.

The classical way to encode Riemann’s bilinear identities is to choose a
basis ω1, . . . , ωg of H0(C,K) and consider the period matrix

Ω =


∫
α1
ω1 . . .

∫
αg
ω1

∫
β1
ω1 . . .

∫
βg
ω1

...
. . .

...
...

. . .
...∫

α1
ωg . . .

∫
αg
ωg

∫
β1
ωg . . .

∫
βg
ωg


Since H is positive-definite, the first minor g × g of this matrix is non-
degenerate, and so in fact there exists a unique basis {wi} such that

Ω = [Id |Z] ,

where Z is a g × g matrix. Riemann’s bilinear identities then imply that

Z = Zt and ImZ is positive-definite.

12.2.3. DEFINITION. The Siegel upper-half space Sg is the space of symmet-
ric g × g complex matrices Z such that ImZ is positive-definite.

To summarize our discussion above, we have the following

26Note that a general rule for computing dual pairing in coordinates is the following:
if B is a non-degenerate bilinear form on V , choose bases {ei} and {ẽi} of V such that
B(ei, ẽj) = δij . Then the dual pairing on V ∗ is given by B∗(f, f ′) =

∑
f(ei)f

′(ẽi). It does
not depend on the choice of bases. In our example, the first basis ofH1(C,Z) is given by cy-
cles α1, . . . , αg, β1, . . . , βg , and the second basis is then given by β1, . . . , βg,−α1, . . . ,−αg .
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12.2.4. COROLLARY. Let C be a genus g Riemann surface. Let Jac(C) = V/Λ be
its Jacobian. Then V = H0(C,K)∗ carries a Hermitian form H = i

∫
C ω ∧ ω̄

′,
and ImH restricts to the intersection pairing on Λ = H1(C,Z). Any choice of
symplectic basis {δi} = {αi} ∪ {βi} in Λ determines a unique matrix in Sg.

Different choices of a symplectic basis are related by the action of the
symplectic group Sp(2g, Z). So we have a map

Mg → Ag := Sg/Sp(2g,Z).

It turns out that Ag is itself a moduli space.

§12.3. Abelian varieties.

12.3.1. DEFINITION. A complex torus V/Λ is called an Abelian variety if car-
ries a structure of a projective algebraic variety, i.e. there exists a holomor-
phic embedding V/Λ ↪→ PN .

One has the following theorem of Lefschetz:

12.3.2. THEOREM. A complex torus is projective if and only if there exists a Her-
mitian form H on V (called polarization) such that ImH restricts to an integral
skew-symmetric form on Λ.

It is easy to classify integral skew-symmetric forms Q on Z2g:

12.3.3. LEMMA. There exist uniquely defined positive integers δ1|δ2| . . . |δg such
that the matrix of Q in some Z-basis is

−δ1

−δ2

. . .
−δg

δ1

δ2

. . .
δg


.

Proof. For each λ ∈ Λ = Z2g, let dλ be the positive generator of the prin-
cipal ideal {Q(λ, •)} ⊂ Z. Let δ1 = min(dλ), take λ1, λg+1 ∈ Λ such that
Q(λ, λg+1) = δ1. Those are the first two vectors in the basis. For any λ ∈ Λ,
we know that δ1 divides Q(λ, λ1) and Q(λ, λg+1), and therefore

λ+
Q(λ, λ1)

δ1
λg+1 +

Q(λ, λg+1)

δ1
λ1 ∈ 〈λ1, λg+1〉⊥Z .

Now we proceed by induction by constructing a basis in 〈λ1, λg+1〉⊥Z . �

12.3.4. DEFINITION. A polarization H is called principal if we have

δ1 = . . . = δg = 1

in the canonical form above. An Abelian variety V/Λ endowed with a prin-
cipal polarization is called a principally polarized Abelian variety.

So we have

12.3.5. COROLLARY. Ag parametrizes principally polarized Abelian varieties.
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In fact Ag has a natural structure of an algebraic variety. One can define
families of Abelian varieties in such a way thatAg is a coarse moduli space.

§12.4. Abel’s Theorem. Returning to the Abel–Jacobi map, we have the
following fundamental

12.4.1. THEOREM (Abel’s theorem). The Abel–Jacobi map AJ : Div0(C) →
Jac(C) induces a bijection

µ : Pic0(C) ' Jac(C).

The proof consists of three steps:
(1) AJ(f) = 0 for any rational function f ∈ k(C), hence AJ induces µ.
(2) µ is injective.
(3) µ is surjective.

For the first step, we consider a holomorphic map P1
[λ:µ] given by

[λ, µ] 7→ AJ(λf + µ).

It suffices to show that this map is constant. We claim that any holomorphic
map r : P1 → V/Λ is constant. It suffices to show that dr = 0 at any
point. But the cotangent space to V/Λ at any point is generated by global
holomorphic forms dz1, . . . , dzg (where z1, . . . , zg are coordinates in V . A
pull-back of any of them to P1 is a global 1-form on P1, but KP1 = −2[∞],
hence the only global holomorphic form is zero. Thus dr∗(dzi) = 0 for
any i, i.e. dr = 0.

§12.5. Differentials of the third kind. To show injectivity of µ, we have to
check that if D =

∑
aipi ∈ Div0 and µ(D) = 0 then D = (f). If f exists

then

ν =
1

2πi
d log(f) =

1

2πi

df

f

has only simple poles, these poles are at pi’s and Respi ν = ai (why?) . More-
over, since branches of log differ by integer multiples of 2πi, any period∫

γ
ν ∈ Z

for any closed loop γ. And it is easy to see that if ν with these properties
exists then we can define

f(p) = exp(2πi

∫ p

p0

ν).

This will be a single-valued meromorphic (hence rational) function with
(f) = D. So let’s construct ν. Holomorphic 1-forms on C with simple
poles are classically known as differentials of the third kind. They belong to
the linear system H0(C,K + p1 + . . . + pr). Notice that we have an exact
sequence

0→ H0(C,K)→ H0(C,K + p1 + . . .+ pr)
ψ−→Cr,

where ψ is given by taking residues. by Riemann–Roch, dimensions of the
linear systems are g and g+ r− 1. By a theorem on the sum of residues, the
image of ψ lands in the hyperplane

∑
ai = 0. It follows that ψ is surjective
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onto this hyperplane, i.e. we can find a differential η of the third kind with
any prescribed residues (as long as they add up to zero). The game now is
to make periods of η integral by adding to η a holomorphic form (which of
course would not change the residues). Since the first g × g minor of the
period matrix is non-degenerate, we can arrange that A-periods of η are
equal to 0.

Now, for any holomorphic 1-form ω, arguing as in the proof of Prop. 12.2.1,
we have the following identity:∑(∫

αi

ω

∫
βi

η −
∫
βi

ω

∫
αi

η

)
=

r∑
i=1

aiπ(pi) =
r∑
i=1

ai

∫ pi

p0

ω.

Indeed, we can remove small disks around each pi to make η holomorphic
in their complement, and then compute

∫
ω ∧ η by Green’s theorem as in

Prop. 12.2.1. This gives∑∫
αi

ω

∫
βi

η =
r∑
i=1

ai

∫ pi

p0

ω.

Since µ(D) = 0, we can write the RHS as
∫
γ ω, where γ =

∑
miδi is an

integral linear combination of periods. Applying this to the normalized
basis of holomorphic 1-forms gives∫

βi

η =

∫
γ
ωi

Now let

η′ = η −
g∑

k=1

mg+kωk.

Then we have ∫
αi

η′ = −mg+i

and ∫
βi

η′ =

∫
γ
ωi −

∑
mg+k

∫
βi

ωk =

∑
mk

∫
αi

ωi +
∑

mg+k

∫
βk

ωi −
∑

mg+k

∫
βk

ωk = mi

§12.6. Summation maps. To show surjectivity, we are going to look at the
summation maps

Cd → Picd → Jac(C), (p1, . . . , pd) 7→ µ(p1 + . . .+ pd − dp0),

where p0 ∈ C is a fixed point. It is more natural to define

SymdC = Cd/Sd,

and think about summation maps as maps

φd : SymdC → JacC.
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It is not hard to endow SymdC with a structure of a complex manifold
in such a way that φd is a holomorphic map27. We endow SymdC with a
quotient topology for the map π : Cd → SymdC, and then define com-
plex charts as follows: at a point (p1, . . . , pd), choose disjoint holomor-
phic neighborhoods Ui’s of pi’s (if pi = pj then choose the same neigh-
borhood Ui = Uj). Let zi’s be local coordinates. Then local coordinates on
π(U1× . . .×Ud) can be computed a follows: for each group of equal points
pi, i ∈ I , use elementary symmetric functions in zi. i ∈ I instead of zi’s
themselves.

The main point is absolutely obvious

12.6.1. LEMMA. For D ∈ Picd, µ−1(D) = |D|. Fibers of µ are projective spaces.

To show that µ is surjective it suffices to show that φd is surjective. Since
this is a proper map of complex manifolds of the same dimension, it suffices
to check that a general fiber is a point. In view of the previous Lemma this
boils down to showing that if (p1, . . . , pg) ∈ Symg is sufficiently general
then H0(C, p1 + . . .+ pg) = 1. For inductive purposes, lets show that

12.6.2. LEMMA. For any k ≤ g, and sufficiently general points p1, . . . , pk ∈ C,
we have H0(C, p1 + . . .+ pk) = 1.

Proof. By Riemann-Roch, we can show instead that

H0(C,K − p1 − . . .− pk) = g − k
for k ≤ g and for a sufficiently general choice of points. Choose an effective
canonical divisor K and choose points pi away from it. Then we have an
exact sequence

0→ L(K − p1 − . . .− pk)→ L(K − p1 − . . .− pk−1)→ C,
where the last map is the evaluation map at the point pk. It follows that
either |K − p1 − . . . − pk| = |K − p1 − . . . − pk−1| or dimensions of these
two projective spaces differ by 1, the latter happens if one of the functions
in L(K − p1 − . . . − pk−1) does not vanish at pk. So just choose pk to be a
point where one of these functions does not vanish. �

12.6.3. COROLLARY. We can identify Pic0 and Jac by means of µ.

§12.7. Theta-divisor.

12.7.1. COROLLARY. The image of φd−1 i a hypersurface Θ in JacC.

12.7.2. DEFINITION. Θ is called the theta-divisor.

12.7.3. EXAMPLE. If g = 1, not much is going on: C = JacC. If g = 2, we
have φ1 : C ↪→ JacC: the curve itself is a theta-divisor! The map φ2 is a
bit more interesting: if h0(C, p+ q) > 1 then p+ q ∈ |K| by Riemann–Roch.
In other words, p and q are permuted by the hyperelliptic involution and
these pairs (p, q) are parametrized by P1 as fibers of the 2 : 1 map φ|K| :

C → P1. So φ2 is an isomorphism outside of K ∈ Pic2, but φ−1
2 (K) ' P1.

Since both Sym2C and JacC are smooth surfaces, this implies that φ2 is a
blow-up of the point.

27It is also not hard to show that Symd C is a projective algebraic variety. Since JacC is
projective by Lefschetz theorem, it follows (by GAGA) that φd is actually a regular map.



MODULI SPACES AND INVARIANT THEORY 125

12.7.4. EXAMPLE. In genus 3, something even more interesting happens.
Notice that φ2 fails to be an isomorphism only ifC carries a pencil of degree
2, i.e. ifC is hyperelliptic. In this case φ2 again contracts a curveE ' P1, but
this time it is not a blow-up of a smooth point. To see this, I am going to use
adjunction formula. Let Ẽ ⊂ C × C be the preimage. Then Ẽ parametrizes
points (p, q) in the hyperelliptic involution, i.e. Ẽ ' C but not a diagonally
embedded one. We can write a holomorphic 2-form on C × C as a wedge
product pr∗1(ω) ∧ pr∗2(ω), where ω is a holomorphic 1-form on C. Since
degKC = 2, the canonical divisor K on C × C can be chosen as a union of
4 vertical and 4 horizontal rulings. This K · Ẽ = 8, but

(K + Ẽ) · Ẽ = 2g(Ẽ)− 2 = 4

by adjunction, which implies that Ẽ ·Ẽ = −4. Under the 2 : 1 map C×C →
Sym2C, Ẽ 2 : 1 covers our E ' P1. So E2 = −2. This implies that the
image of φ2 has a simple quadratic singularity at φ2(E). So the Abel-Jacobi
map will distinguish between hyperelliptic and non-hyperelliptic genus 3
curves by appearance of a singular point in the theta-divisor.

§12.8. Homework 7.

Problem 1. Generalizing the action of SL(2,Z) on the upper-half plane,
give formulas for the action of Sp(2g,Z) on Sg (1 point).

Problem 2. In the proof of Lemma 12.3.3, show that indeed we have

δ1|δ2| . . . |δg
(1 point).

Problem 3. Show that Symd P1 = Pd (1 point).
Problem 4. Let C be an algebraic curve. Define SymdC as an algebraic

variety (1 point).
Problem 5. Show that if φ1(C) ⊂ JacC is symmetric (i.e. φ1(C) = −φ1(C))

then C is hyperelliptic. Is the converse true? (1 point).
Problem 6. Show that either the canonical map φ|K| is an embedding or

C is hyperelliptic. (1 point).
Problem 7. Let C be a non-hyperellptic curve. C is called trigonal if it

admits a 3 : 1 map C → P1. (a) Show that C is trigonal if and only if
its canonical embedding φ|K| has a trisecant, i.e. a line intersecting it in (at
least) three points. (b) Show that if C is trigonal then its canonical embed-
ding is not cut out by quadrics28. (2 points).

Problem 8. Show that the secant lines of a rational normal curve in Pn
are are parametrized by the surface in the Grassmannian G(2, n + 1) and
that this surface is isomorphic to P2 (2 points).

Problem 9. Consider two conics C1, C2 ⊂ P2 which intersect at 4 distinct
points. Let E ⊂ C1 × C2 be a curve that parametrizes pairs (x, y) such that
the line Lxy connecting x and y is tangent to C2 at y. (a) Show that E is an
elliptic curve. (b) Consider the map t : E → E defined as follows: send
(x, y) to (x′, y′), where x′ is the second point of intersection of Lxy with C1

28This is practically if and only if statement by Petri’s theorem.



126 JENIA TEVELEV

and Lx′y′ is the second tangent line to C2 through x′. Show that t is a trans-
lation map (with respect to the group law on the elliptic curve). (c) Show
that if there exists a 7-gon inscribed in C1 and circumscribed around C2

then there exist infinitely many such 7-gons, more precisely there is one
through each point of C1 (3 points).

Problem 10. Let C be a hyperelliptic curve and let R = {p0, . . . , p2g+1}
be the branch points of the 2 : 1 map C → P1. We choose p0 as the base
point for summation maps φd : Symd → Jac. For any subset S ⊂ R, let
α(S) = φ|S|(S). (a) Show that αS ∈ Jac[2] (the 2-torsion part). (b) Show
that αS = αSc . (c) Show that α gives a bijection between subsets of Bg of
even cardinality defined upto S ↔ Sc and points of Jac[2] (3 points).

Problem 11. A divisor D on C is called a theta-characteristic if 2D ∼
K. A theta-characteristic is called vanishing if h0(D) is even and positive.
Show that a curve of genus 2 has no vanishing theta characteristics but a
curve of genus 3 has a vanishing theta characteristic if and only if it is a
hyperelliptic curve (1 point).

Problem 12. Show that a nonsingular plane curve of degree 5 does not
have a vanishing theta characteristic (3 points).

Problem 13. Let E = {y2 = 4x3 − g2x − g3 be an elliptic curve with real
coefficients g2, g3. Compute periods to show that E ' C/Λ, where either
Λ = Z + τiZ or Λ = Z + τ(1 + i)Z (with real τ ) depending on the number
of real roots of the equation 4x3 − g2x− g3 = 0 (3 points).

Problem 14. Consider a (non-compact!) curve C = P1 \ {p1, . . . , pr}.
Since P1 has no holomorphic 1-forms, lets consider instead differentials of
the third kind and define

V := H0(P1,K + p1 + . . .+ pr)
∗.

Show that Λ := H1(C,Z) = Zr−1, define periods, integration pairing, and
the “Jacobian” V/Λ. Show that V/Λ ' (C∗)r−1 and thatC embeds in V/Λ '
(C∗)r−1 by the Abel-Jacobi map (2 points).

Problem 15. Let C be an algebraic curve with a fixed point p0 and con-
sider the Abel–Jacobi map φ = φ1 : C → Jac. For any point p ∈ C, we have
a subspace dφ(TpC) ⊂ Tφ(p) Jac. By applying a translation by φ(p), we can
identify Tφ(p) Jac with T0 Jac ' Cg. Combining these maps together gives
a map C → Pg−1, p 7→ dφ(TpC). Show that this map is nothing but the
canonical map φ|K| (2 points).

Problem 16. Let F , G be homogeneous polynomials in C[x, y, z]. Sup-
pose that curves F = 0 andG = 0 intersect transversally at the set of points
Γ. (a) Show that associated primes of (F,G) are the homogeneous ideals
I(pi) of points pi ∈ Γ. (b) Show that every primary ideal of (F,G) is radical
by computing its localizations at pi’s (c) Conclude that I(Γ) = (F,G), i.e.
any homogeneous polynomial that vanishes at Γ is a linear combination
AF +BG (2 points).


