Beauty and the Beast

Jenia Tevelev

with Ana-Maria Castravet, Antonio Laface and Luca Ugaglia

UMass Amherst - Universidad Católica de Chile

June 24, 2020

Elliptic curve $y^2 + y = x^3 - x^2 - 24x + 54$

Jenia Tevelev

Beauty and the Beast

ヘロト 人間 とくほとくほとう

э

Moduli space of stable rational curves

•
$$M_{0,n} = \left\{ \begin{smallmatrix} p_1, \dots, p_n \in \mathbb{P}^1 \\ p_i \neq p_j \end{smallmatrix} \right\} / \mathsf{PGL}_2$$

•
$$M_{0,3} = \text{pt} (\text{send } p_1, p_2, p_3 \rightarrow 0, 1, \infty)$$

•
$$M_{0,4} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$$
 via cross-ratio

イロト イポト イモト イモト

$$\blacktriangleright \overline{M}_{0,4} = \mathbb{P}^1$$

• $\overline{M}_{0,n}$ functorial compactification

•
$$\overline{M}_{0,5} = \mathbf{dP}_5$$
 (del Pezzo)

•
$$\overline{M}_{0,6} = \mathsf{Bl}_{10} \, \mathbf{S}_3$$
 (log Fano)

Effective cone of $\overline{M}_{0,n}$

- ► (Kapranov models) $\overline{M}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$
- Every boundary divisor is contracted by a Kapranov map \Rightarrow generates an extremal ray of $\overline{\text{Eff }M}_{0,n}$
- Eff $\overline{M}_{0,5}$ is generated by 10 boundary curves (easy)

Effective cone of $\overline{M}_{0,n}$

- ► (Kapranov models) $\overline{M}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$
- Every boundary divisor is contracted by a Kapranov map \Rightarrow generates an extremal ray of $\overline{\text{Eff }M}_{0,n}$
- Eff $\overline{M}_{0,5}$ is generated by 10 boundary curves (easy)
- ► Eff *M*_{0,6} is generated by boundary and *Keel–Vermeire* divisors (Hassett–Tschinkel)
- ► Eff M_{0,n} has many generators, *hypertree divisors*, contractible by birational contractions (Castravet–T)

・ロト ・ 四ト ・ ヨト ・ ヨト

Effective cone of $\overline{M}_{0,n}$

- ► (Kapranov models) $\overline{M}_{0,n} = \dots \operatorname{Bl}_{\binom{n-1}{3}} \operatorname{Bl}_{\binom{n-1}{2}} \operatorname{Bl}_{n-1} \mathbb{P}^{n-3}$
- Every boundary divisor is contracted by a Kapranov map \Rightarrow generates an extremal ray of $\overline{\text{Eff }M}_{0,n}$
- Eff $\overline{M}_{0,5}$ is generated by 10 boundary curves (easy)
- ► Eff *M*_{0,6} is generated by boundary and *Keel–Vermeire* divisors (Hassett–Tschinkel)
- ► Eff M_{0,n} has many generators, hypertree divisors, contractible by birational contractions (Castravet–T)
- And has more generators (Opie, based on Chen–Coskun)
- And more generators (Doran–Giansiracusa–Jensen), ...

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Beauty and the beast

Theorem

Eff $\overline{M}_{0,n}$ is not polyhedral for $n \ge 13$ under any of the two conditions:

- ▶ (1,5) has infinite order in the group law of the elliptic curve C
- (6, -10), 2(6, -10), 3(6, -10) are not in the subgroup $\langle (1,5) \rangle$

A (B) > A (B) > A

Eff $\overline{M}_{0,n}$ is not polyhedral for $n \ge 13$ in characteristic 0

Proof.

By https://www.lmfdb.org/EllipticCurve/Q/997/a/1, the Mordell–Weil group $C(\mathbb{Q}) = \mathbb{Z} \oplus \mathbb{Z}$ and is generated by (6, -10) and (1, 5). Therefore, (1, 5) is not torsion

(4 個) トイヨト イヨト

Characteristic p

```
Corollary
Eff M_{0,n} is not polyhedral for n > 13 in characteristic
          p = 7, 11, 41, 67, 173, 307, 317, 347, 467, 503, 523,
          571, 593, 631, 677, 733, 809, 811, 827, 907, 937, ...
Proof.
               C := EllipticCurve([0. -1. 1. -24. 54]):
                PolyP:=[]; p:=2;
               while p lt 1000 do
                  if not IsDivisibleBy(Conductor(C), p) then
                  Check:=true;
                  Cp:=ChangeRing(C, GF(p));
                  P:=Cp![6,-10,1]; Q:=Cp![1,5,1];
                   for i:=0 to Order(Q)-1 do for j:=1 to 3 do
                     if j*P eq i*Q then Check:=false; end if;
                  end for: end for:
                   if Check then PolvP:=Append(PolvP. p): end
                if:
                  end if:
                  p:=NextPrime(p):
                end while:
                PolvPrimes:
                                                    イロト イポト イヨト イヨト
```

"Euclid's Theorem"

Corollary

There exist infinitely many primes p such that $\overline{\text{Eff}} \overline{M}_{0,n}$ is not polyhedral for $n \ge 13$ in characteristic p

There exist infinitely many primes p *such that* $\overline{\text{Eff}} \overline{M}_{0,n}$ *is not polyhedral for* $n \ge 13$ *in characteristic* p

Proof.

We would like to apply a theorem of Tom Weston:

Let A be an abelian variety over a number field F such that $\operatorname{End}_F A$ is commutative. Take an element $x \in A(F)$ and a subgroup $\Sigma \subset A(F)$. If $\operatorname{red}_v x \in \operatorname{red}_v \Sigma$ for almost all places v of F then $x \in \Sigma + A(F)_{tors}$.

"End_{*F*} *A* is commutative" is automatic for elliptic curves $/\mathbb{Q}$. In fact, in our case *C* does not have CM \Leftrightarrow End_{\mathbb{Q}} *C* = \mathbb{Z} . By Weston's theorem, since 6(6, -10) $\notin \langle (1,5) \rangle$ over \mathbb{Q} , the same is true for their reduction mod *p* for infinitely many *p*.

There exist a positive density of primes p such that $\overline{\text{Eff }M}_{0,n}$ is not polyhedral for $n \ge 13$ in characteristic p

▶ We want to prove positive density of primes such that (6, -10), 2(6, -10), 3(6, -10) are not in $\langle (1, 5) \rangle \subset C(\mathbb{F}_p)$

There exist a positive density of primes p such that $\overline{\text{Eff }} \overline{M}_{0,n}$ is not polyhedral for $n \ge 13$ in characteristic p

- ▶ We want to prove positive density of primes such that (6, -10), 2(6, -10), 3(6, -10) are not in $\langle (1, 5) \rangle \subset C(\mathbb{F}_p)$
- Instead, we will fix *another* prime *q* ≠ 2, 3 and prove positive density of primes such that *q* divides the index of ((1,5)) ⊂ C(𝔽_p) but not the index of ((6,−10)) ⊂ C(𝒴_p)

"Dirichlet's theorem"

Background on Galois representations.

• Let $C[q] \subset C(\overline{\mathbb{Q}})$ be the *q*-torsion, $C[q] \simeq (\mathbb{Z}/q\mathbb{Z})^2$

- Let $K = \mathbb{Q}(C[q])$. Then $Gal(K/\mathbb{Q}) \subseteq GL_2(\mathbb{Z}/q\mathbb{Z})$
- Equality for almost all *q* iff *C* has no CM (Deuring, Serre)
- $\blacktriangleright \ x \in C(\mathbb{Q}), \, K_x = K(\frac{x}{q}), \, \mathsf{Gal}(K_x/\mathbb{Q}) \subseteq \mathsf{GL}_2(\mathbb{Z}/q\mathbb{Z}) \ltimes (\mathbb{Z}/q\mathbb{Z})^2$
- ► For almost all primes *p*, we have a Frobenius element $\sigma_p \in Gal(K_x/\mathbb{Q})$ (well-defined up to conjugacy)
- We can view σ_p as a pair $(\gamma_p, \tau_p) \in \mathsf{GL}_2(\mathbb{Z}/q\mathbb{Z}) \ltimes (\mathbb{Z}/q\mathbb{Z})^2$

"Dirichlet's theorem"

Corollary

There exist a positive density of primes p such that $\overline{\text{Eff }} \overline{M}_{0,n}$ is not polyhedral for $n \ge 13$ in characteristic p.

Proof.

- (Lang–Trotter) *q* divides the index of $\langle \operatorname{red}_p(x) \rangle \subset C(\mathbb{F}_p)$ iff the Frobenius element $\sigma_p = (\gamma_p, \tau_p)$ is as follows
 - $\gamma_p = \mathsf{Id} \mathsf{ or}$
 - $\gamma_p \neq \mathsf{Id}, \gamma_p$ has eigenvalue 1, and $\tau_p \in \mathsf{Im}(\gamma_p \mathsf{Id})$.
- Let x = (1, 5), y = (6, -10)
- $\operatorname{Gal}(K(\frac{x}{q},\frac{y}{q})/\mathbb{Q}) = \operatorname{GL}_2(\mathbb{Z}/q\mathbb{Z}) \ltimes ((\mathbb{Z}/q\mathbb{Z})^2 \oplus (\mathbb{Z}/q\mathbb{Z})^2)$
- By Chebotarev density theorem, for a set of primes *p* of positive density, *q* divides the index of ⟨red_p x⟩ ⊂ C(𝔽_p) but not the index of ⟨red_p y⟩

Elliptic pairs

Definition

A rational elliptic pair $C \subset X$

- a projective rational log terminal surface X
- a smooth genus 1 curve *C* such that $C^2 = 0$
- *C* is disjoint from singularities of *X*

Jenia Tevelev

Beauty and the Beast

Order of an elliptic pair

- Restriction map res : $C^{\perp} \rightarrow \text{Pic}^{0}(C), \quad L \mapsto L|_{C}$
- *C* is contained in $C^{\perp} \subset Cl(X)$
- e(C, X) is the order of res(C) in $Pic^{0}(C)$.

Lemma

• $e(C, X) < \infty \Leftrightarrow C$ is a (multiple) fiber of an elliptic fibration

•
$$e(C, X) = \infty$$
, $\rho(X) \ge 3 \Rightarrow \overline{Eff}X$ is not polyhedral

Proof.

Observation (Nikulin): $\overline{\text{Eff}}X$ is polyhedral, $\rho(X) \ge 3 \Rightarrow$

- Eff *X* is generated by negative curves
- every irreducible curve with C² = 0 is contained in the interior of a facet, in particular its multiple moves

Minimal elliptic pairs

Definition

An elliptic pair (C, X) is called *minimal* if there are no smooth rational curves $E \subset X$ such that $K \cdot E < 0$ and $C \cdot E = 0$

Theorem

For an elliptic pair (C, X), there exists a minimal elliptic pair (C, Y)and a morphism $\pi : X \to Y$, an isomorphism in a neighborhood of C

Theorem

(C, Y) is minimal, $e(C, Y) = \infty \Rightarrow Y$ has Du Val singularities

Proof.

- (C, Y) is minimal $\Leftrightarrow K + C \sim rC, r \in \mathbb{Q}$.
- $\mathcal{O}(K + C)|_C \simeq \mathcal{O}_C$ but $\mathcal{O}(C)|C$ has infinite order
- $r = 0 \Rightarrow K = -C$ is Cartier $\Rightarrow Y$ is Du Val

Minimal elliptic pairs with du Val singularities

Definition

Since $K \cdot C = 0$, we can define $Cl_0(X) = C^{\perp}/\langle K \rangle$, reduced restriction map $\overline{res} : Cl_0(X) \to Pic^0(C)/\langle res(K) \rangle$

Theorem

Let (C, Y) be an elliptic pair such that Y has Du Val singularities. Let Z be the minimal resolution of Y.

• (*C*, *Y*) is minimal \Leftrightarrow (*C*, *Z*) is minimal $\Leftrightarrow \rho(Z) = 10$

In this case $Cl_0(Z) \simeq \mathbb{E}_8$. Suppose $e(C, X) < \infty$

Eff(Y) is polyhedral ⇔ Eff(Z) is polyhedral ⇔
 Ker(res) contains 8 linearly independent roots of E₈.

イロト 不得 トイヨト イヨト

Synthesis

Let (C, Y) be the minimal model of (C, X). Then

- $e(C, X) = \infty \Rightarrow Y$ is Du Val, not polyhedral (if $\rho \ge 3$)
- $e(C, X) < \infty$ and Y is Du Val \Rightarrow polyhedrality criterion

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Synthesis

Let (C, Y) be the minimal model of (C, X). Then

- $e(C, X) = \infty \Rightarrow Y$ is Du Val, not polyhedral (if $\rho \ge 3$)
- $e(C, X) < \infty$ and Y is Du Val \Rightarrow polyhedrality criterion

Problem

- Suppose C, X, Cl(X) are defined over \mathbb{Q} , $e(C, X) = \infty$
- X → Y extends to the morphism of integral models X → Y over Spec Z (outside of finitely many primes of bad reduction)
- Y is Du Val \Rightarrow Y_p is Du Val
- $e(C_p, X_p) < \infty$. Study distribution of "polyhedral" primes

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Blown-up toric surface X

Definition

- Fix a lattice polygon $\Delta \subset \mathbb{Z}^2$
- ► *S* is a projective toric surface with an ample divisor *D*
- $X = Bl_e S$ with exceptional divisor E

イロト イポト イモト イモト

Elliptic pair (C, X)

One can find $C \in |D - 6E|$ such that (C, X) is an elliptic pair: $x^4y^6 + 6x^5y^4 - 2x^4y^5 - 14x^5y^3 - 17x^4y^4 - 4x^3y^5 + x^6y + 11x^5y^2$ $+38x^4y^3 + 26x^3y^4 - 9x^5y - 27x^4y^2 - 34x^3y^3 + 22x^4y + 16x^3y^2$ $-10x^2y^3 - 24x^3y + 10x^2y^2 + 15x^2y + 5xy^2 - 11xy + 1 = 0$

Minimal model (C, Y)

Y has an A_7 singularity and Picard number $\rho = 3$

Beautiful curve

- *C* is isomorphic to $y^2 + y = x^3 x^2 24x + 54$
- res(C) = -(1,5)
- No elliptic fibration, no polyhedrality in characteristic 0

Beautiful curve

- *C* is isomorphic to $y^2 + y = x^3 x^2 24x + 54$
- res(C) = -(1,5)
- No elliptic fibration, no polyhedrality in characteristic 0
- ► Let *Z* be the minimal resolution of *Y*
- $\blacktriangleright \mathbb{E}_8 \simeq \operatorname{Cl}_0(Z) \xrightarrow{\pi} \operatorname{Cl}_0(Y) \simeq \mathbb{Z} \xrightarrow{\overline{\operatorname{res}}} \operatorname{Pic}^0(C) / \langle (1,5) \rangle$
- Polyhedrality in characteristic *p* ⇔ there exists a root β ∈ E₈ such that π(β) ≠ 0 and res(β) = 0

イロト 不得 トイヨト イヨト

Beautiful curve

- *C* is isomorphic to $y^2 + y = x^3 x^2 24x + 54$
- res(C) = -(1,5)
- No elliptic fibration, no polyhedrality in characteristic 0
- Let *Z* be the minimal resolution of *Y*
- $\blacktriangleright \mathbb{E}_8 \simeq \mathsf{Cl}_0(Z) \xrightarrow{\pi} \mathsf{Cl}_0(Y) \simeq \mathbb{Z} \xrightarrow{\overline{\mathsf{res}}} \mathsf{Pic}^0(C) / \langle (1,5) \rangle$
- Polyhedrality in characteristic *p* ⇔ there exists a root β ∈ E₈ such that π(β) ≠ 0 and res(β) = 0

$$\blacktriangleright \operatorname{Cl}_{0}(Y) = \mathbb{E}_{8}/\mathbb{A}_{7}, \quad \mathfrak{e}_{8} = \bigoplus_{\bar{\beta} \in \operatorname{Cl}_{0}(Y)} (\mathfrak{e}_{8})_{\bar{\beta}}$$

- ▶ Polyhedrality \Leftrightarrow (6, -10), 2(6, -10), 3(6, -10) \notin \langle (1, 5) \rangle

Distribution of primes

イロト イロト イヨト イヨト

э

Distribution of primes

Remark (Lang–Trotter conjecture) The point (1,5) generates $C(\mathbb{F}_p)$ for 44% of primes

イロト イポト イモト イモト

Rational contractions

Definition

A *rational contraction* $X \dashrightarrow Y$ of projective \mathbb{Q} -factorial varieties is a rational map that can be decomposed into a sequence of

- surjective morphisms of Q-factorial varieties
- small Q-factorial modifications

Theorem

If X has any of these properties then Y does as well:

- ► Mori Dream Space
- polyhedral effective cone
- effective cone with rational slopes
- every nef divisor on every rational contraction is semi-ample

Philosophy (Fulton) $\overline{M}_{0,n}$ is like a toric variety

Not true but can be salvaged in two different ways

Birational geometry of the Losev–Manin space $LM_{0,n}$

Definition

 $LM_{0,n}$ is the Hassett moduli space of stable rational curves with n marked points with weights $1, \varepsilon, \ldots, \varepsilon, 1$.

Theorem For any projective toric variety *S*, there exists a toric rational contraction $LM_{0,n} \rightarrow S$ for $n \gg 0$.

イロト イポト イモト イモト

Universal blown-up toric variety

Theorem

For any projective toric variety *S*, there exists a rational contraction $Bl_e LM_{0,n} \rightarrow Bl_e S$ for $n \gg 0$.

Universal blown-up toric variety

Theorem

For any projective toric variety *S*, there exists a rational contraction $Bl_e LM_{0,n} \rightarrow Bl_e S$ for $n \gg 0$.

Theorem (Castravet–T, 2015)

There are rational contractions $\mathsf{Bl}_e LM_{0,n+1} \dashrightarrow \overline{M}_{0,n} \to \mathsf{Bl}_e LM_{0,n}$

Corollary (Castravet–T, 2015)

In characteristic 0, $\overline{M}_{0,n}$ is not a MDS for $n \gg 0$, in fact it has a rational contraction $Bl_e \mathbb{P}(a, b, c)$ for some a, b, c, which has a nef but not semi-ample divisor (Goto–Nishida–Watanabe).

Universal blown-up toric variety

Theorem

For any projective toric variety *S*, there exists a rational contraction $Bl_e LM_{0,n} \rightarrow Bl_e S$ for $n \gg 0$.

Theorem (Castravet-T, 2015)

There are rational contractions $\mathsf{Bl}_e LM_{0,n+1} \dashrightarrow \overline{M}_{0,n} \to \mathsf{Bl}_e LM_{0,n}$

Corollary (Castravet–T, 2015)

In characteristic 0, $\overline{M}_{0,n}$ is not a MDS for $n \gg 0$, in fact it has a rational contraction $Bl_e \mathbb{P}(a, b, c)$ for some a, b, c, which has a nef but not semi-ample divisor (Goto–Nishida–Watanabe).

Remark

This argument can't work in characteristic p, where, by Artin's contractibility criterion, a nef divisor on $Bl_e \mathbb{P}(a, b, c)$ is semi-ample.

Beauty and the beast

Corollary

 $\overline{M}_{0,n}$ is not a MDS for $n \gg 13$ in characteristic p for a positive density of primes p. It admits a rational contraction to an elliptic pair (X, C) with a non-polyhedral effective cone, where $X = Bl_e S$

