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Elliptic curve y 2 + y = x3 − x2 − 24x + 54

In[1]:= f[x_] := -y + x^3 - x^2 - 24 x + 54;

ContourPlot [y^2 == f[x], {x, -5.5, 6.5 }, {y, -10.5 , 10},

ContourStyle → Black , Axes → {False , False }, Ticks → False ,

Frame → False , Epilog → {Green , PointSize [0.03 ] , Point [{{1, 5}, {6, -10}}],

Text [Style ["(1,5)", Large , Bold , Black ], {2.3, 5}],

Text [Style ["(6,-10)", Large , Bold , Black ], {4, -10}]}]

Out[2]= 

(1,5)

(6,-10)
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Moduli space of stable rational curves
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I M0,n =
{

p1,...,pn∈P1

pi 6=pj

}
/PGL2

I M0,3 = pt (send p1, p2, p3 → 0, 1,∞)
I M0,4 = P1 \ {0, 1,∞} via cross-ratio
I M0,4 = P1

I M0,n functorial compactification
I M0,5 = dP5 (del Pezzo)
I M0,6 = Bl10 S3 (log Fano)
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Effective cone of M0,n

I (Kapranov models) M0,n = . . .Bl(n−1
3 ) Bl(n−1

2 ) Bln−1 Pn−3

I Every boundary divisor is contracted by a Kapranov map
⇒ generates an extremal ray of EffM0,n

I Eff M0,5 is generated by 10 boundary curves (easy)

I Eff M0,6 is generated by boundary and Keel–Vermeire
divisors (Hassett–Tschinkel)

I Eff M0,n has many generators, hypertree divisors,
contractible by birational contractions (Castravet–T)

I And has more generators (Opie, based on Chen–Coskun)
I And more generators (Doran–Giansiracusa–Jensen), . . .
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Beauty and the beast

Theorem
Eff M0,n is not polyhedral for n ≥ 13 under any of the two conditions:

I (1, 5) has infinite order in the group law of the elliptic curve C
I (6,−10), 2(6,−10), 3(6,−10) are not in the subgroup 〈(1, 5)〉

In[1]:= f[x_] := -y + x^3 - x^2 - 24 x + 54;

ContourPlot [y^2 == f[x], {x, -5.5, 6.5 }, {y, -10.5 , 10},

ContourStyle → Black , Axes → {False , False }, Ticks → False ,

Frame → False , Epilog → {Green , PointSize [0.03 ] , Point [{{1, 5}, {6, -10}}],

Text [Style ["(1,5)", Large , Bold , Black ], {2.3, 5}],

Text [Style ["(6,-10)", Large , Bold , Black ], {4, -10}]}]

Out[2]= 

(1,5)

(6,-10)

M0,n
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Characteristic 0

Corollary
Eff M0,n is not polyhedral for n ≥ 13 in characteristic 0

Proof.
By https://www.lmfdb.org/EllipticCurve/Q/997/a/1,
the Mordell–Weil group C (Q) = Z⊕ Z and is generated by
(6,−10) and (1, 5). Therefore, (1, 5) is not torsion

Jenia Tevelev Beauty and the Beast
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Characteristic p

Corollary
Eff M0,n is not polyhedral for n ≥ 13 in characteristic

p = 7, 11, 41, 67, 173, 307, 317, 347, 467, 503, 523,
571, 593, 631, 677, 733, 809, 811, 827, 907, 937, . . .

Proof. C := EllipticCurve([0, -1, 1, -24, 54]);
PolyP:=[]; p:=2;
while p lt 1000 do 
  if not IsDivisibleBy(Conductor(C), p) then
   Check:=true;
   Cp:=ChangeRing(C, GF(p));
   P:=Cp![6,-10,1]; Q:=Cp![1,5,1];
   for i:=0 to Order(Q)-1 do for j:=1 to 3 do
     if j*P eq i*Q then Check:=false; end if;
   end for; end for; 
   if Check then PolyP:=Append(PolyP, p); end 
if;
  end if;
  p:=NextPrime(p);
end while;
PolyPrimes;
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“Euclid’s Theorem”

Corollary
There exist infinitely many primes p such that Eff M0,n is not
polyhedral for n ≥ 13 in characteristic p

Proof.
We would like to apply a theorem of Tom Weston:

Let A be an abelian variety over a number field F such that EndF A is
commutative. Take an element x ∈ A(F ) and a subgroup Σ ⊂ A(F ).
If redvx ∈ redvΣ for almost all places v of F then x ∈ Σ + A(F )tors.

“EndF A is commutative” is automatic for elliptic curves /Q.
In fact, in our case C does not have CM⇔ EndQ̄ C = Z.
By Weston’s theorem, since 6(6,−10) 6∈ 〈(1, 5)〉 over Q, the
same is true for their reduction mod p for infinitely many p.
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“Dirichlet’s theorem”

Corollary
There exist a positive density of primes p such that Eff M0,n is not
polyhedral for n ≥ 13 in characteristic p

I We want to prove positive density of primes such that
(6,−10), 2(6,−10), 3(6,−10) are not in 〈(1, 5)〉 ⊂ C (Fp)

I Instead, we will fix another prime q 6= 2, 3 and prove
positive density of primes such that q divides the index
of 〈(1, 5)〉 ⊂ C (Fp) but not the index of 〈(6,−10)〉 ⊂ C (Fp)

Jenia Tevelev Beauty and the Beast



“Dirichlet’s theorem”

Corollary
There exist a positive density of primes p such that Eff M0,n is not
polyhedral for n ≥ 13 in characteristic p

I We want to prove positive density of primes such that
(6,−10), 2(6,−10), 3(6,−10) are not in 〈(1, 5)〉 ⊂ C (Fp)

I Instead, we will fix another prime q 6= 2, 3 and prove
positive density of primes such that q divides the index
of 〈(1, 5)〉 ⊂ C (Fp) but not the index of 〈(6,−10)〉 ⊂ C (Fp)

Jenia Tevelev Beauty and the Beast



“Dirichlet’s theorem”

Background on Galois representations.

I Let C [q] ⊂ C (Q̄) be the q-torsion, C [q] ' (Z/qZ)2

In[235]:= A = 2.443 ;

 B = 1.075 ;

 P = Table [{A * i / 5, B * j / 5}, {i, 0, 4}, {j, 0, 4}];

 R = Parallelogram [{0, 0}, {{A, 0}, {0, B}}];

 Graphics [{EdgeForm [Dashed ], LightBlue , R, Black ,

PointSize [0.03 ], Point [P[[1]]], Point [P[[2]]], Point [P[[3]]], Point [P[[4]]],

Point [P[[5]]], Arrow [{{0, 0}, {A, 0}}], Arrow [{{0, 0}, {0, B}}]}]

Out[239]= 

2.44344885

1.07481933i

I Let K = Q(C [q]). Then Gal(K/Q) ⊆ GL2(Z/qZ)

I Equality for almost all q iff C has no CM (Deuring, Serre)
I x ∈ C (Q), Kx = K ( xq ), Gal(Kx/Q) ⊆ GL2(Z/qZ) n (Z/qZ)2

I For almost all primes p, we have a Frobenius element
σp ∈ Gal(Kx/Q) (well-defined up to conjugacy)

I We can view σp as a pair (γp, τp) ∈ GL2(Z/qZ) n (Z/qZ)2
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“Dirichlet’s theorem”

Corollary
There exist a positive density of primes p such that Eff M0,n is not
polyhedral for n ≥ 13 in characteristic p.

Proof.
I (Lang–Trotter) q divides the index of 〈redp(x)〉 ⊂ C (Fp)

iff the Frobenius element σp = (γp, τp) is as follows
I γp = Id or
I γp 6= Id, γp has eigenvalue 1, and τp ∈ Im(γp − Id).

I Let x = (1, 5), y = (6,−10)

I Gal(K ( xq ,
y
q )/Q) = GL2(Z/qZ) n ((Z/qZ)2 ⊕ (Z/qZ)2)

I By Chebotarev density theorem, for a set of primes p of
positive density, q divides the index of 〈redp x〉 ⊂ C (Fp)
but not the index of 〈redp y〉
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Elliptic pairs

Definition
A rational elliptic pair C ⊂ X

I a projective rational log terminal surface X

I a smooth genus 1 curve C such that C 2 = 0

I C is disjoint from singularities of X

C

-1 -4

C

CC  mCo

1

4

 (1,1)

C

C

A7

A7
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Order of an elliptic pair

I Restriction map res : C⊥ → Pic0(C ), L 7→ L|C
I C is contained in C⊥ ⊂ Cl(X )

I e(C ,X ) is the order of res(C ) in Pic0(C ).

Lemma
I e(C ,X ) <∞⇔ C is a (multiple) fiber of an elliptic fibration
I e(C ,X ) =∞, ρ(X ) ≥ 3⇒ EffX is not polyhedral

Proof.
Observation (Nikulin): EffX is polyhedral, ρ(X ) ≥ 3⇒

I EffX is generated by negative curves
I every irreducible curve with C 2 = 0 is contained in the

interior of a facet, in particular its multiple moves
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Minimal elliptic pairs

Definition
An elliptic pair (C ,X ) is called minimal if there are no smooth
rational curves E ⊂ X such that K · E < 0 and C · E = 0

Theorem
For an elliptic pair (C ,X ), there exists a minimal elliptic pair (C ,Y )
and a morphism π : X → Y , an isomorphism in a neighborhood of C

Theorem
(C ,Y ) is minimal, e(C ,Y ) =∞⇒ Y has Du Val singularities

Proof.
I (C ,Y ) is minimal⇔ K + C ∼ rC , r ∈ Q.
I O(K + C )|C ' OC but O(C )|C has infinite order
I r = 0⇒ K = −C is Cartier⇒ Y is Du Val
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Minimal elliptic pairs with du Val singularities

Definition
Since K · C = 0, we can define Cl0(X ) = C⊥/〈K 〉,
reduced restriction map res : Cl0(X )→ Pic0(C )/〈res(K )〉

Theorem
Let (C ,Y ) be an elliptic pair such that Y has Du Val singularities.
Let Z be the minimal resolution of Y .

I (C ,Y ) is minimal⇔ (C ,Z ) is minimal⇔ ρ(Z ) = 10

In this case Cl0(Z ) ' E8. Suppose e(C ,X ) <∞
I Eff(Y ) is polyhedral⇔ Eff(Z ) is polyhedral⇔

Ker(res) contains 8 linearly independent roots of E8.
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Synthesis

Let (C ,Y ) be the minimal model of (C ,X ). Then

I e(C ,X ) =∞⇒ Y is Du Val, not polyhedral (if ρ ≥ 3)
I e(C ,X ) <∞ and Y is Du Val⇒ polyhedrality criterion

Problem
I Suppose C ,X ,Cl(X ) are defined over Q, e(C ,X ) =∞
I X → Y extends to the morphism of integral models X → Y over

SpecZ (outside of finitely many primes of bad reduction)
I Y is Du Val⇒ Yp is Du Val
I e(Cp,Xp) <∞. Study distribution of “polyhedral” primes
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Blown-up toric surface X

), {i, 1, NN + 1}];

Print ["Subspace in this Toric Cl"]

MatrixForm [VV]

Print ["Self -intersection of this subspace "]

WW = Dot [VV, A, Transpose [VV]];

MatrixForm [WW]

MatrixRank [WW]

Print ["!!!"]

Dot [A, 8 * VV[[5]] - Com [[1]] - 14 * DivC ]

Dot [A, -3 * DivC1 - 3 * DivC2 - 7 * VV[[5]]]

 

Out[1054]= 

Vertices of the Newton polygon in the circular order

Out[1058]//MatrixForm= 

4 3 1 0 6 5

6 5 2 0 1 4

    5

Definition
I Fix a lattice polygon ∆ ⊂ Z2

I S is a projective toric surface with an ample divisor D
I X = Ble S with exceptional divisor E
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Elliptic pair (C ,X )

One can find C ∈ |D − 6E | such that (C ,X ) is an elliptic pair:

x4y6 + 6x5y4 − 2x4y5 − 14x5y3 − 17x4y4 − 4x3y5 + x6y + 11x5y2

+38x4y3 + 26x3y4 − 9x5y − 27x4y2 − 34x3y3 + 22x4y + 16x3y2

−10x2y3 − 24x3y + 10x2y2 + 15x2y + 5xy2 − 11xy + 1 = 0

), {i, 1, NN + 1}];

Print ["Subspace in this Toric Cl"]

MatrixForm [VV]

Print ["Self -intersection of this subspace "]

WW = Dot [VV, A, Transpose [VV]];

MatrixForm [WW]

MatrixRank [WW]

Print ["!!!"]

Dot [A, 8 * VV[[5]] - Com [[1]] - 14 * DivC ]

Dot [A, -3 * DivC1 - 3 * DivC2 - 7 * VV[[5]]]

 

Out[1054]= 

Vertices of the Newton polygon in the circular order

Out[1058]//MatrixForm= 

4 3 1 0 6 5
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Minimal model (C ,Y )

-2 -2 C2

-1

C1

-6

-2
-1

-4-2-2-2-2-2

Y has an A7 singularity and Picard number ρ = 3
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Beautiful curve

I C is isomorphic to y2 + y = x3 − x2 − 24x + 54

I res(C ) = −(1, 5)

I No elliptic fibration, no polyhedrality in characteristic 0

I Let Z be the minimal resolution of Y
I E8 ' Cl0(Z )

π−→Cl0(Y ) ' Z res−→Pic0(C )/〈(1, 5)〉
I Polyhedrality in characteristic p⇔

there exists a root β ∈ E8 such that π(β) 6= 0 and res(β) = 0

I Cl0(Y ) = E8/A7, e8 =
⊕

β̄∈Cl0(Y )

(e8)β̄

I
C8 Λ2C8 Λ3C8 gl8 Λ3C8 Λ2C8 C8

8 28 56 64 56 28 8

I Polyhedrality⇔ (6,−10), 2(6,−10), 3(6,−10) 6∈ 〈(1, 5)〉

Jenia Tevelev Beauty and the Beast



Beautiful curve

I C is isomorphic to y2 + y = x3 − x2 − 24x + 54

I res(C ) = −(1, 5)

I No elliptic fibration, no polyhedrality in characteristic 0

I Let Z be the minimal resolution of Y
I E8 ' Cl0(Z )

π−→Cl0(Y ) ' Z res−→Pic0(C )/〈(1, 5)〉
I Polyhedrality in characteristic p⇔

there exists a root β ∈ E8 such that π(β) 6= 0 and res(β) = 0

I Cl0(Y ) = E8/A7, e8 =
⊕

β̄∈Cl0(Y )

(e8)β̄

I
C8 Λ2C8 Λ3C8 gl8 Λ3C8 Λ2C8 C8

8 28 56 64 56 28 8

I Polyhedrality⇔ (6,−10), 2(6,−10), 3(6,−10) 6∈ 〈(1, 5)〉

Jenia Tevelev Beauty and the Beast



Beautiful curve

I C is isomorphic to y2 + y = x3 − x2 − 24x + 54

I res(C ) = −(1, 5)

I No elliptic fibration, no polyhedrality in characteristic 0

I Let Z be the minimal resolution of Y
I E8 ' Cl0(Z )

π−→Cl0(Y ) ' Z res−→Pic0(C )/〈(1, 5)〉
I Polyhedrality in characteristic p⇔

there exists a root β ∈ E8 such that π(β) 6= 0 and res(β) = 0

I Cl0(Y ) = E8/A7, e8 =
⊕

β̄∈Cl0(Y )

(e8)β̄

I
C8 Λ2C8 Λ3C8 gl8 Λ3C8 Λ2C8 C8

8 28 56 64 56 28 8

I Polyhedrality⇔ (6,−10), 2(6,−10), 3(6,−10) 6∈ 〈(1, 5)〉

Jenia Tevelev Beauty and the Beast



Distribution of primesIn[1183]:= PieChart3D [{61, 15, 7, 18}, ChartLabels →

{"E8 (61%)", "D8 (15%)", "A8 (7%)", "not polyhedral (18%)"}, ChartStyle → 8]

Out[1183]= 

Remark (Lang–Trotter conjecture)
The point (1, 5) generates C (Fp) for 44% of primes
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Rational contractions

Definition
A rational contraction X 99K Y of projective Q-factorial varieties
is a rational map that can be decomposed into a sequence of

I surjective morphisms of Q-factorial varieties
I small Q-factorial modifications

Theorem
If X has any of these properties then Y does as well:

I Mori Dream Space
I polyhedral effective cone
I effective cone with rational slopes
I every nef divisor on every rational contraction is semi-ample
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Birational geometry of M0,n

Philosophy (Fulton)
M0,n is like a toric variety

Not true but can be salvaged in two different ways
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Birational geometry of the Losev–Manin space LM0,n

Definition
LM0,n is the Hassett moduli space of stable rational curves with
n marked points with weights 1, ε, . . . , ε, 1.
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LM0.5

trees of P1’s chains of P1’s
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Universal toric variety

Theorem
For any projective toric variety S , there exists
a toric rational contraction LM0,n 99K S for n� 0.
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Universal blown-up toric variety

Theorem
For any projective toric variety S , there exists
a rational contraction Ble LM0,n 99K Ble S for n� 0.

Theorem (Castravet–T, 2015)
There are rational contractions Ble LM0,n+1 99K M0,n → Ble LM0,n

Corollary (Castravet–T, 2015)
In characteristic 0, M0,n is not a MDS for n� 0, in fact it has a
rational contraction Ble P(a, b, c) for some a, b, c , which has
a nef but not semi-ample divisor (Goto–Nishida–Watanabe).

Remark
This argument can’t work in characteristic p, where, by Artin’s
contractibility criterion, a nef divisor on Ble P(a, b, c) is semi-ample.
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Beauty and the beast

Corollary
M0,n is not a MDS for n� 13 in characteristic p for a positive
density of primes p. It admits a rational contraction to an elliptic pair
(X ,C ) with a non-polyhedral effective cone, where X = Ble S
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