INTRODUCTION TO VARIATIONS OF HODGE STRUCTURES

EDUARDO CATTANI

Here is the plan: let $\mathcal{X} \xrightarrow{f} S$ be a family of smooth projective varieties. Suppose f is submersive, proper, has connected fibers.

Ehressmann: f is C^{∞} -trivial, in particular all fibers are diffeomorphic. We think about this as a variation of fibers $X_s = f^{-1}(s)$.

Griffiths: construct a vector bundle over S, namely $R^k f_* \mathbb{C}$. The fiber over $s \in S$ is $H^k(X_s, \mathbb{C})$ We can also take integral coefficients and get a local system on S. So this vector bundle has a flat "Gauss–Manin" connection ∇ (can identify cohomology classes). So we can translate cohomology classes in a parallel way. This will give a monodromy action.

We should think about this as a linearization of the problem of classifying complex structures. There are many interesting structures on this vector bundle

Hodge decomposition: z_i – holomorphic coordinates on $X = X_{s_0}$. dz_i , $d\bar{z}_i$ – basis for forms. Then can decompose holomorphic forms: $A^k(X) = \bigoplus A^{p,q}(X)$ (how many dz_i , $\bar{d}z_i$). But $d = \partial + \bar{\partial}$.

One can represent cohomology classes by harmonic forms. If the manifold is Kähler (e.g. smooth projective) then (p,q) components of a harmonic form are also harmonic. This gives $H^k(X, \mathbb{C}) = \oplus H^{p,q}$.

Take a simple case: an elliptic curve. Then $H^1(X, \mathbb{C}) = \mathbb{C}^2 = H^{1,0} \oplus H^{0,1}$. $H^{1,0} \simeq H^0(X, K_X)$ is the space of holomorphic differentials, $H^{0,1} = \overline{H^{1,0}}$. The family is locally trivial. Fix the standard basis in homology $H_1(X, \mathbb{Z})$ and see how cohomology classes vary by integrating them over α, β . These are classical periods. And the family is completely determined by these periods.

Griffiths proposed to study how Hodge decomposition varies as a first step in understanding how the cpx structure varies. In general, there is a (period) map S to some flag variety that encodes how the Hodge decomposition varies.

One can study infinitesimal picture (in the formal neighborhood of a point)

But more interestingly, consider the family over a punctured disk Δ^* and try to see the "asymptotic" at the puncture. This will produce the map $\Gamma : \Delta \to \mathfrak{g}$ to some Lie algebra (logarithmic part of the Gauss–Manin flat connection).