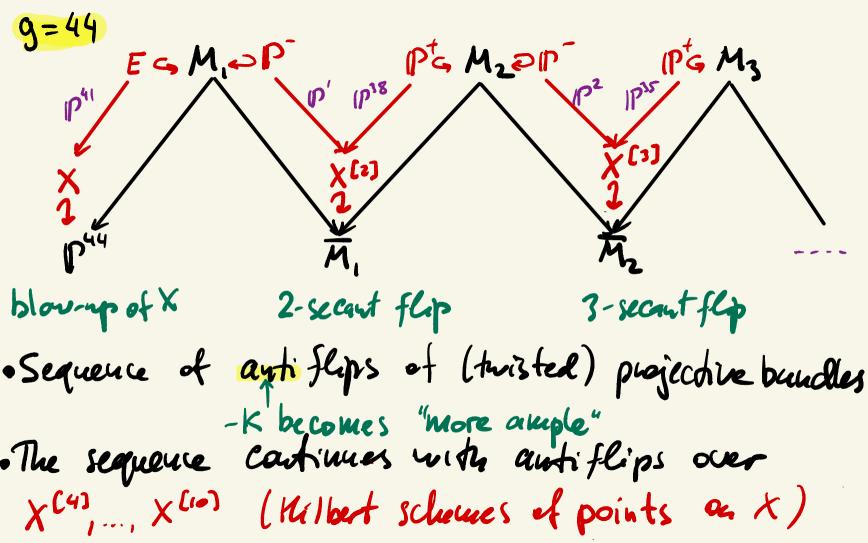
Lecture 2 S.O.D. under Wall-Crossing Naive idea #2 X smooth proj. variety X cm IPN codim X=1 => X is a Fano visitor (Kiem-Kim-Lee-Lee) codim X>1 => f.f. Db(x) <- Db(Blx/pr) (Orla) BlxIP^N is rarely Fano but... Question Can we arrange it to be log Fano? Def Y is called log Fano (or Fano type) variets if there exists a Q-divisor DCY such that (Y, D) has kelt singularities & - (Ky+D) is ample I don't know any connterexamples (yet ...) In fact, there are some interesting examples:

Th (Aravena) let X be a K3 surface with
$$Pi(X=7.\Lambda)$$

Define genus of X by formula $\Lambda^2 = 2g-2$
If $g > 3$ then $X \longrightarrow \mathbb{IP}^3$ and $BI_X \mathbb{IP}^9$ is lay Fano!
However, this is not proved by exhibiting a boundary
divisor Δ . Instead, a much stronger result is proved.
a complete description of the stable base locus decomposition

37	Enter		the	genus	g: 44				
		c	d	mu.	k^+	k^-	k^+-k^-	Mukai vector	Dis
	0	0	-1	23	45	0	45	(1, 0, 1)	6
	1	0	0	21	42	1	41	(1, 0, 0)	2
	2	0	1	19	39	2	37	(1, 0, -1)	24
	3	0	2	17	36	2	33	(1, 0, -2)	6 8
	4	0	3	15	33		29		8
	5	0	. 4		30	5	25		18
	4 5 6	0	5		27	6	21		12
	7	0	6	9	24	6 7	17		14
	8	0	7	7	21	8	13	(1, 0, -7)	16
	9	0	8	5	18	9	9		18
	9 10	0	9	3	15	10	5		28
	11	1	1		24	17	7	(3, -1, 14)	4
	12	0	10	1	12	11	1	(1, 0, -10)	22
	13	1	-4	1	19	16	3	(3, -1, 13)	
	14		7	1/3	14	15	-1		
	15	2	2	1/5	18	21	-3		6

Any genus: https://colab.research.google.com/drive/1qUTYWFOgKur9JMJtqGkl0wypG15gLbUP?usp=sharing



· followed by an autifly over M(3) - rank of shewes (HK moduli space of sheaves an KI surface x), • two simultaneous disjonat autiflips lover X (") and M (3) The result is a small modification Blx (P44 ----> M12, M12 is Fano! => Blx1044 is log Fano (Bourophism m) Codimension () $\frac{\tau}{P \times P^{\dagger}} = \frac{\tau}{P} + \frac{\tau}{P$ Class of log Fano varieties is closed under SQM and contractions (Prokhorov-Shoknrov) **b** · Semi-orthogonal decompositions under (twisted) standard autiflips rk 10 - < rk 10+

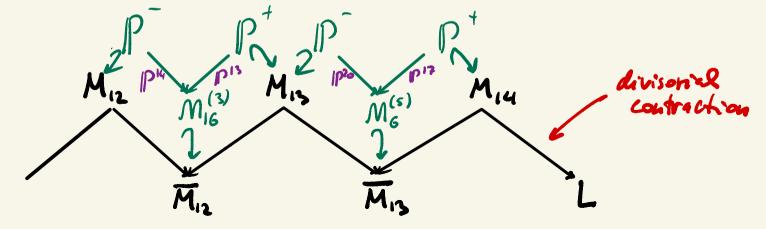
•
$$D^{b}(M^{+}) = \langle D^{b}(M^{-}), D^{b}(B), D^{b}(B, p), \dots, D$$

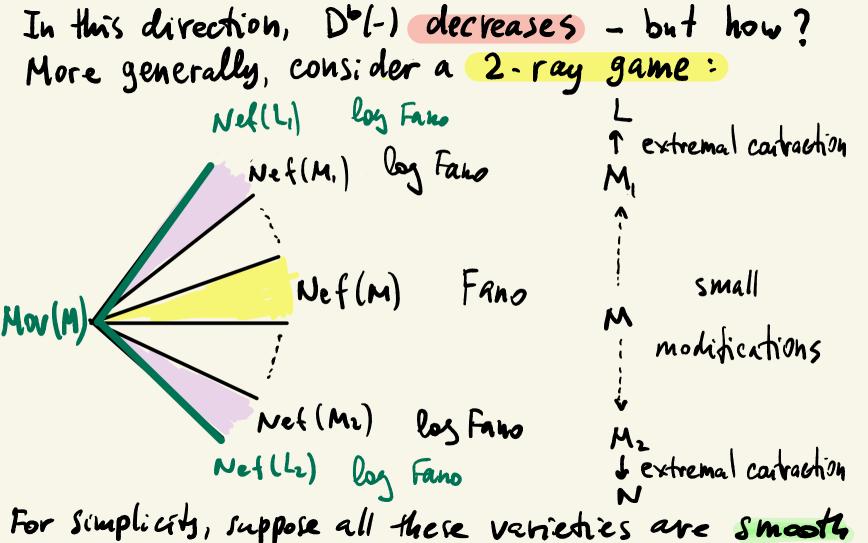
.

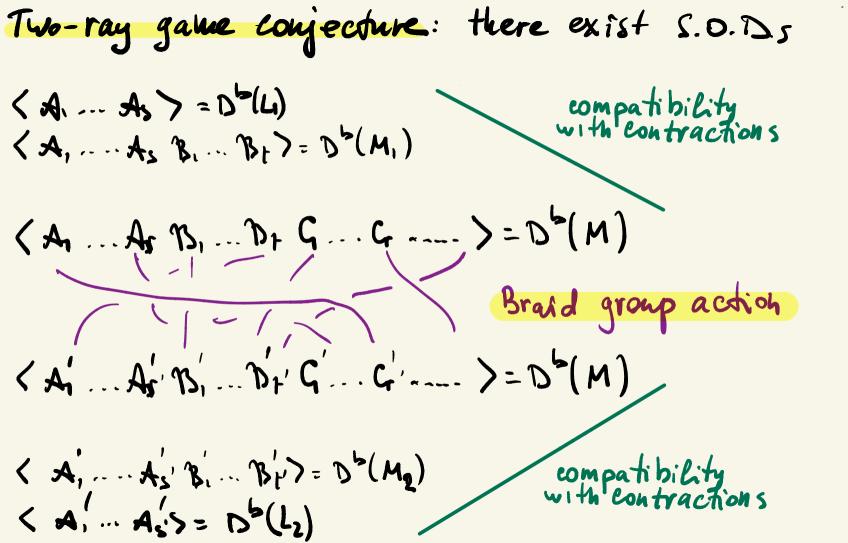
Remarks, • Each Mils & Lagrangian submanifold in the HK moduli space of Bridgeland stuble objects on X • If gis even (and possibly if g is odd), there exists a Poincase family & on X×M; and FM Pa: 0'(x)-10(H;) is also f.f. • De is a very different functor than the "torsion" functor defined by iterating standard antiflips but the proof "mutates" one into another · I will explain the technology but for a different moduli space : of vector bundles on curves

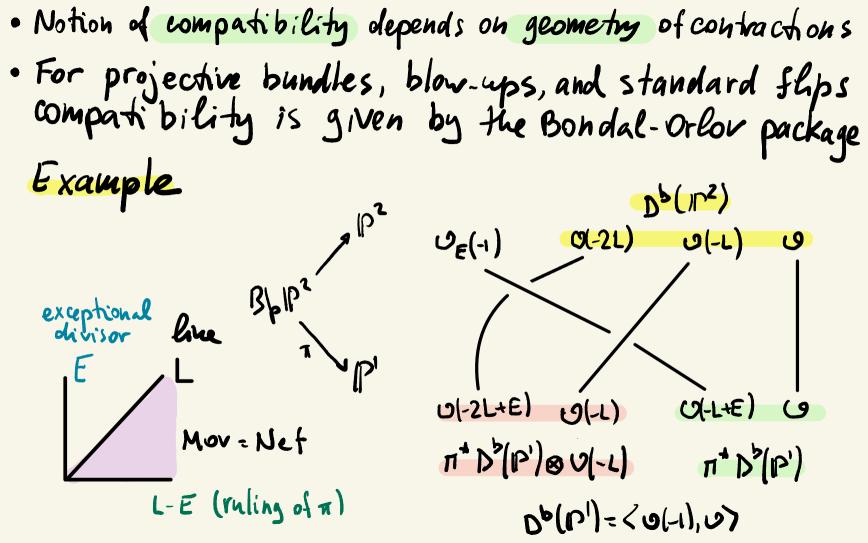
what happens to the S.O.D.'s beyond the Fano Model?

In our example of a g=44 k3 surface, we can continue beyond BIXIP⁴⁴..., M12:









• If this doesn't sound too unrealistic, here are even more outlandish coujectures about D^b(Fano): · Kontsevich Conjecture D'(n) has a "canonical sod" (unique up to materia) rudexed by eigenvalues in the quantum spectrum of M. · Braiding Conjecture Mutation 14 two-ray games is induced by the monodrowy of the quantum spectrum To state this conjecture rigorously, I need 6 introduce some notation (standard for the Imperial College)

Full exposition in these notes, but only highlights in the lecture: $B = \text{Spec } k [\overline{NE}(M) \cap H_2(M, \mathbb{Z})]$ NE(M) Moni cone dENE(M) OH2(M,Z) ~~> QdEU(B) (affine toric variety) OEB "large complex structure limit" H2(M,IR) Small quantum consulogy: QH(M) is a sheaf of finite-dimensional algebras on B lassociative, commutative,...) $QH(M)|_{O\in B} \cong H^{+}(M,C)$

Def Quantum spectrum
$$QS(M) \subset B \times C$$
 is the
spectrum of the linear operator $-K_M \cap QH(M)$
Example: $QS(M)_{O \in B} = \{O_3^{\circ}\} fat point$
because $(-K_M) \cup \cdot$ is nilpotent
Example: $M = \mathbb{P}^2$
 $K = 3L \cap \begin{bmatrix} 0 & 0 & 30^{1} \\ 1 & 1 \\ 0 & 3 & 0 \end{bmatrix}$
Characteristic polynomial $T^3 - 27Q^{1}$
Homogeneity: $Wt(T) = 1$, $Wt(Q^{1}) = -K \cdot L = 3$

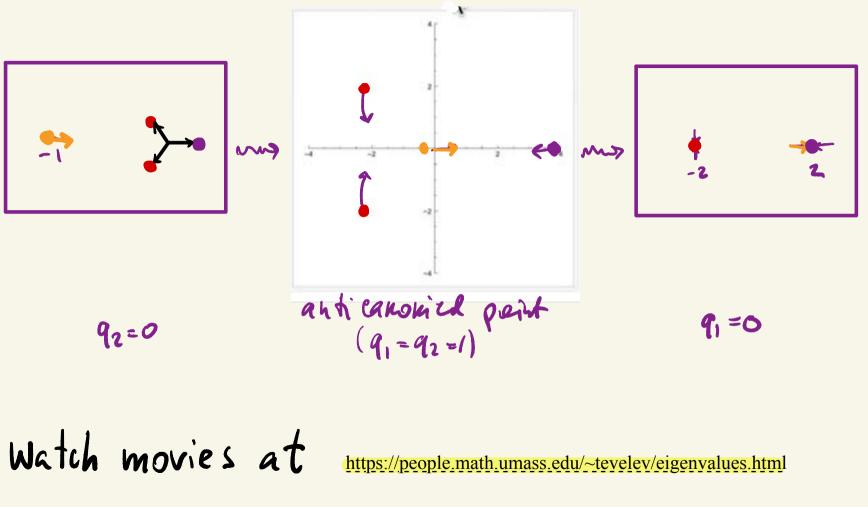
Dehomogenize:
$$Q^{L}=1$$

 $QS(P^{2})=$
 $3\sqrt{3}w^{2}$
In general, $QS(M) \subset B \times C$ is preserved by the
 C^{*} -action with weights $wt(Q^{a}) = -K \cdot d > 0$
 $wt(T) = 1$
 \Rightarrow we can view $QS(M)$ as a subset in the
 $total space of the line bundle (Q(1)) on$
 $B(10^{3}/C^{*} = P' if b_{2}(M) = 2 : will assume.$
for simplicity

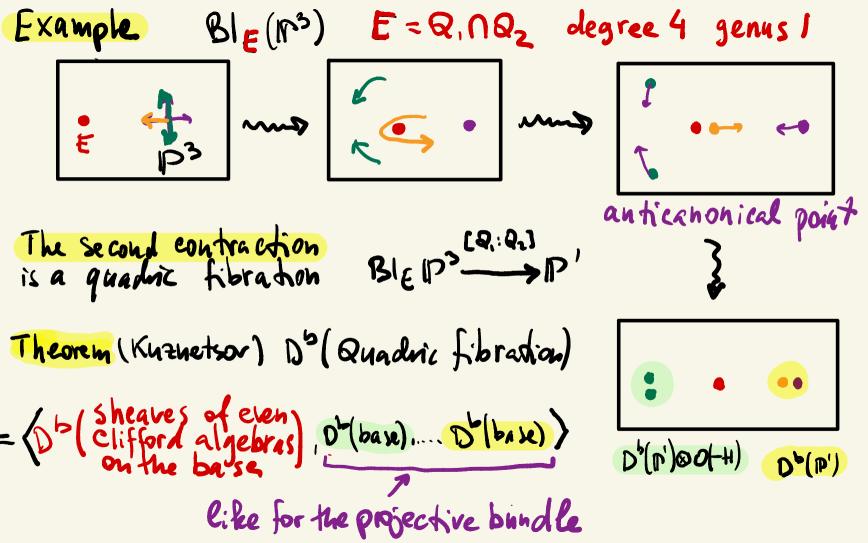
Example:
$$M = Bl_{p}lp^{2}$$

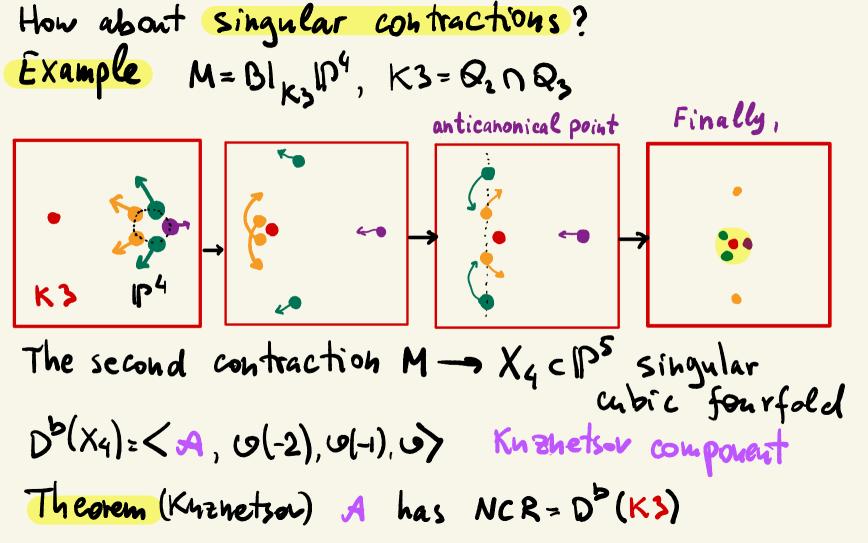
 E_{L-E}
 $(-E_{L-E})$
 $(-E$

Monodromy of eigenvalues $T^{4} - 8t^{2} + 16 = (T-2)^{2} (T+2)^{2}$ $q_1 = 0 \quad q_2 = 1$ Pairel Contour: mono drom y of eigenvalues Contour avoids points where CharPoly has multiple roots $T^{4} + T^{3} = (T+1)T^{3}$ 9,=1 92=0

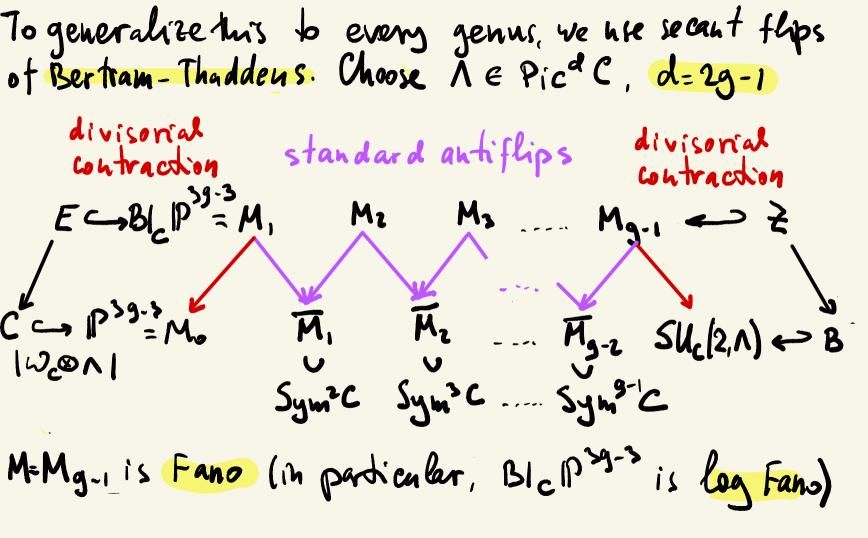


. To compute the mutation, choose "grading" by connecting eigenvalues to a reference point · The grading determines the order of the SOD • This shows how "compatibility" with projective bundles look like. How about more complicated contractions?

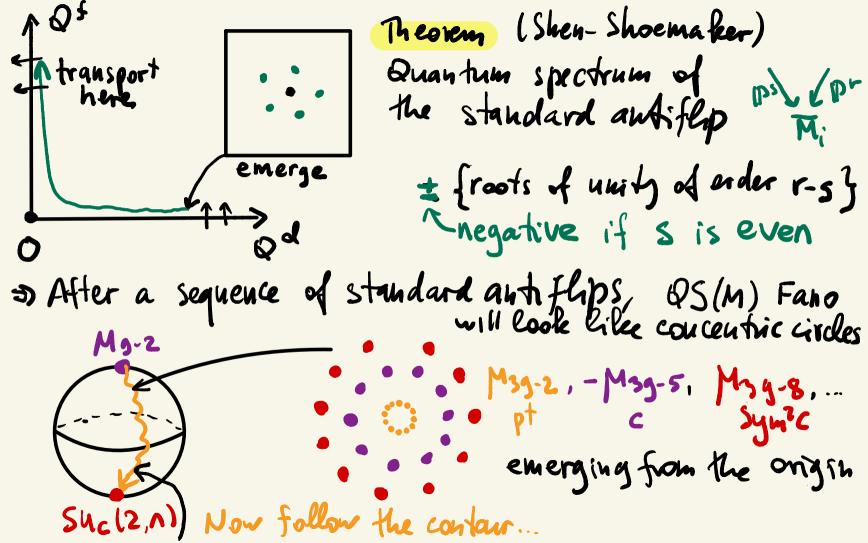




Example
$$M = B|_{C}|_{D^{3}}$$
 1st contraction
 $MM 2 \cdot ig$ 211
 $D^{*}(c)$ $B|_{p} : \partial_{1} \cap \partial_{2}$ 2d contraction $Q_{1} \cap \partial_{2} \leftarrow p^{*}$
 $f^{*}(c)$ $B|_{p} : \partial_{1} \cap \partial_{2}$ 2d contraction $Q_{1} \cap \partial_{2} \leftarrow p^{*}$
 $f^{*}(c)$ $Q_{1} \cap \partial_{2} \leftarrow Q_{1} \cap \partial_{2} \leftarrow p^{*}$
 $f^{*}(c)$ $f^{*}(c)$ $D^{*}(c)$ $D^{*}(c)$



Curve d was an tiflipped (or extracted) before base B of QH(Mi) C*-trajectories log Fano Mi bd (-K).d>0 NE(M:) Conjecture: QH converges in some neighborhood of OEB => converges near the walls (-K). f<0 using C*-trajectones. => Emerged quantum spectrum is transported along trajectories Curve f needs to be antiflipped



Close to the south pole, we should see the supering								
Should see the emerging								
pt sym ² c Sym ² c Sym ² c Sym ² c pt quantum spectrum of SUC (2, 1),								
pt sym ² c Sym ² c pt quantum spectrum of SU _c (2,1), sym ² c Sym ² c pt quantum spectrum of SU _c (2,1), sym ² c which was computed by delBaño								
So, eventually, this quantum magic will prove								
hegem (I lorres)								
D ^b (Su _c (2, n)) has SOD with blocks D ^b (Sym ^k C) 2 blocks for k <g-1, 1="" block="" for="" k="g-1</td"></g-1,>								
zblocks for k <g-1, 1="" block="" for="" k="g-1</td"></g-1,>								
Remark This includes Narasimhan's theorem, mentioned earlier, that Pe: Db(c) - Db(Suc(2,1)) is fully faithful								
The technology is not there yet, so I will prove SOD								
differently, by "guessing" and analyzing the mutation.								