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In this personal statement, I give a non-technical description of my research.
I only cite my own papers, numbering them as they appear on my CV. This
non-technical description mostly discusses my work in symplectic geometry, but
also some recent work in string topology. In the separate self-contained research
statement, I provide a technical description of the research. In the research
statement I use a comprehensive bibliography, citing my papers along with others.

1. Background

Symplectic geometry is sometimes called symplectic topology, depending on
the point of view. My research supports the “geometry” point of view.

Perhaps the best way to distinguish the topologist from the geometer is to de-
scribe how they would interpret the notion of “equivalence.” Both the topologist
and the geometer study spaces, often called manifolds. The topologist cares only
about large-scale features of the manifold, such as its dimension and possible
holes. The geometer studies more precise features such as distance and curva-
ture. Consider the following 2-dimensional manifolds: the surface of a doughnut,
not including the interior, known as a torus; and the surface of a coffee mug.
The topologist can find a continuous bijective map whose domain is the mug
and range the torus, and thus declares the two spaces equivalent. But any such
map could not preserve the curvature; thus, the geometer would declare the two
spaces different.

To place symplectic geometry in this context, I should first describe its histor-
ical precedent, classical mechanics. Mechanics studies the motion of objects that
obey the basic laws of physics, such as conservation of energy and momentum,
as well as “F = ma.” We live on the 2-dimensional surface of the planet Earth.
But a symplectic geometer would describe this world as a 4-dimensional phase
space: two dimensions for an object’s latitude and longitude, (q1, q2), and two

corresponding dimensions for its momentum (p1, p2). Recall pj = m
dqj
dt

where m
is mass and t is time. To ensure that a moving object conserves its total energy,
which is the sum of its kinetic and potential energies, we need to know both its
changing position and momentum coordinates.

The Heisenberg Uncertainty Principle links momentum and position: measur-
ing a particle’s position affects its momentum, and vice versa. For example,
measuring the latitude, q1, alters p1 in some semi-random way. A rough way to
rephrase the principle is that if you know the object’s q1-coordinate up to an
error of size ∆q1 and, similarly with p1, q2, p2, then your experiment for locating
an object in phase space can never reduce the quantities ∆q1∆p1 and ∆q2∆p2
below a certain threshold.

Like topologists and geometers, symplectic geometers study manifolds, focusing
solely on even-dimensional manifolds which are themselves phase spaces of smaller
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manifolds. To prove that the phase spaces of the torus and the coffee mug surface
are equivalent, the symplectic geometer must construct a continuous bijective
map, known as a symplectic map, from one space to the other which preserves
the quantities ∆q1∆p1 and ∆q2∆p2. This may seem like geometry, where maps
must preserve distances like ∆q1. However, there exists a symplectic map from
any sufficiently small ball in any phase space of a given dimension to any other
small ball in another phase space of the same dimension. This is in sharp contrast
to geometry because one small ball might have flat curvature, like the base of the
mug, while another has round curvature. For this reason, symplectic maps were
first considered more “topological”, recording only large-scale features.

Formally, symplectic geometers study symplectic manifolds which generalize
phase spaces. A symplectic manifold is 2n-dimensional and comes equipped with
a symplectic form which (locally) is written as dq1dp1 + · · ·+dqndpn. Here dqjdpj
is a “differential form” whose input is a pair of tangent vectors and output is a
real number. A symplectic map preserves this symplectic form.

Instead of considering maps from one manifold to another, one can also think of
a continuous map which mixes points around within a single symplectic manifold.
Think of each point in the manifold as the position and momentum coordinates of
a particle. The points are mixed as the particles move about. Some calculus shows
essentially that the map preserves the symplectic form if and only if the particles
obey the laws of classical mechanics. In different forms, this is called Hamiltonian
or Euler-Lagrangian dynamics, or the Least Action Principle. Consider a loop
of particles as it moves about under the Least Action Principle. Thinking of
time as one coordinate and the parameterization of the loop as the second, one
can rewrite the ordinary differential equation behind the Least Action Principle
as a partial differential equation (PDE). This PDE is equivalent to the Cauchy-
Riemann equations from complex analysis, and hence the cylinder traced out by
the moving loop becomes what complex analysts call a “holomorphic” curve. (It
looks like a 2-dimensional surface, but mathematicians like to call it a 1-complex-
dimensional curve.)

This idea motivated a mathematician, Mikhail Gromov, in 1986 to study holo-
morphic curves in general symplectic manifolds. He proved that they had a cer-
tain property: sets of such curves are compact sets. This result marked the birth
of modern symplectic geometry. Symplectic geometers were able to use many of
the powerful properties of holomorphic curves which had been developed in the
much older field of complex analysis.

One of the first significant applications arose from effective ways to count cer-
tain holomorphic curves. I will loosely call these different counts “Gromov-Witten
theories” due to the popularity in mathematics and physics of the Gromov-Witten
invariants. The counts produce not just numbers, but sometimes groups or al-
gebras – mathematical objects with more information. One particularly useful
count, known as Floer homology, led to discoveries in symplectic dynamics which
showed that symplectic geometry is quite different than topology. As an example,
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consider a closed orbit of a dynamical system, which is a path of a particle which
closes up on itself. In 1998, Floer homology was critical to proving the Arnold
Conjecture, which claims a lower bound on the minimum number of closed or-
bits of any given Hamiltonian dynamical system. This bound is greater than the
bound a topologist could achieve for any given dynamical system. More recently,
even topologists have started to use Floer homology. For example, a topologist
studying a knot (formed by taking a string, tying a knot, and fusing the ends
together) can construct some large-dimensional phase space and compute Floer
homology there to recover information about the knot. Examples of this include
knot Floer homology and knot contact homology.

Contact geometry is the sister field of symplectic geometry. Many if not most
symplectic geometers study both even-dimensional symplectic manifolds and odd-
dimensional contact manifolds. For an example of a contact manifold, suppose

the total energy of a phase space is only kinetic energy, E(q1, q2, p1, p2) =
p21
2m

+
p22
2m

.
Conservation of energy implies that a particle must travel on an energy level set,
such as E−1(17). This level set is a three-dimensional contact manifold. Contact
manifolds have special submanifolds known as Legendrian submanifolds. (Their
symplectic analogue is called a Lagrangian submanifold.) An n-dimensional Leg-
endrian submanifold sits inside a (2n + 1)-dimensional contact manifold. Leg-
endrians, although abstractly defined, appear naturally. Systems which satisfy
the first law of thermodynamics form a 2-dimensional Legendrian surface in the
contact 5-space (energy, temperature, entropy, pressure and volume). Legendri-
ans of arbitrary dimension represent wavefronts in the field of optics. For a more
pictorial example, as a car parallel parks, its front tire traces out the so-called
front projection of a one-dimensional Legendrian curve in contact 3-space.

Each complex dimension can be thought of as two real dimensions; thus, com-
plex analysis applies to even-dimension manifolds. For this reason, despite the
similarities, contact geometry did not develop as quickly as symplectic geometry
after Gromov’s seminal work. Only more recently have Gromov-Witten theories
been developed to study problems in contact geometry. These include contact
homology and its generalization, symplectic field theory. In some papers writ-
ten before I had tenure, Tobias Ekholm, John Etnyre and I develop Legendrian
contact homology (LCH) as a way of counting holomorphic curves to study Leg-
endrian submanifolds.

2. Results as Associate Professor

My more recent work is in contact geometry. I use holomorphic curves to prove
results which further demonstrate that the field is more geometry than topology.

Any 1-dimensional knot in a 3-dimensional ambient space can produce a 2-
dimensional Legendrian torus in a 5-dimension contact subspace of the (3(posi-
tion) + 3(momentum) = 6)-dimensional symplectic phase space of the ambient
space. Moreover, two knots considered to be equivalent by topologists produce
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two Legendrian tori that are equivalent to contact geometers; thus, LCH invari-
ants for the tori induce topological invariants for the knots. In this case, the
LCH of the torus is called the knot contact homology of the knot. In [12], Tobias
Ekholm, John Etnyre, Lenny Ng and I prove that this, usually hard-to-compute
LCH invariant, has a combinatorial reformulation. Knot contact homology (with
some extra information) has since been shown to be a complete knot invariant:
two knots are distinct if and only if their knot contact homologies are. There
has also been recent effort by physicists to connect knot contact homology to
string theory. In [13], Ekholm, Etnyre, Ng and I show how if the one-dimensional
knot is in fact transverse (a complimentary property to being Legendrian) when
the ambient 3-space is thought of itself as a contact manifold, the knot contact
homology comes equipped with natural extra structure. Our new transverse knot
invariant is quite powerful as it can distinguish transverse knots that could not
be distinguished by previous such invariants.

As mentioned above, LCH has a nice combinatorial reformulation in the case
when the Legendrian is a 2-dimensional torus arising from a 1-dimensional knot.
In general, however, LCH, like any holomorphic-curve based Gromov-Witten
theory, is a priori quite hard to compute. The difficulty lies in the fact that
holomorphic-curve based invariants are “analytical”: they arise as solutions to
PDE as mentioned in Section 1. In a series of papers, I show how LCH is in fact
combinatorial when the Legendrian is 2-dimensional. (The combinatorial result
for 1-dimensional Legendrian knots was proved by Chekanov in 1997.) In the
first paper [14], which grew out of an REU project with Alicia Harper, we show
that LCH is local: you only have to compute LCH for pieces of the submanifold.
Later, in [17] and [18], Dan Rutherford and I use [14] to enumerate all the holo-
morphic curves, producing a very “natural” reformulation of the theory. There
are many potential applications for this reformulation, including [20], which is
work-in-progress.

In another project which grew out of the knot contact homology of [12], Som-
nath Basu, Jason McGibbon, Dennis Sullivan and I reformulate the knot invari-
ant in terms of string topology [14]. String topology is much easier to define
than holomorphic curves. Essentially, we take strings (arcs) which start and
end on the knot, and perform operations on them, like cutting and gluing, to
form other strings. In the end we produce a theory, which morally at least, is
a (topological) field theory. The string topology we develop in [14] is the first
such which can detect parts of knot theory. D. Sullivan and I further study this
string topology in work-in-progress [22] where we prove that the theory can de-
tect how 3-dimensional spaces are decomposed according to Thurston’s famous
Geometrization Conjecture.

In another direction, Georgios Dimitroglou Rizell and I in [19] prove a Leg-
endrian version of the Arnold conjecture mentioned in Section 1. For this Leg-
endrian version, we bound from below the number of flows of the Reeb vector
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field (a special type of flow studied in contact dynamics) which start on a Leg-
endrian and end on the Legendrian pushed off of itself by a contact Hamiltonian
map. These are the natural maps to consider when you want to preserve all the
information of the contact manifold. Instead of LCH, we use another Floer-type
theory defined by holomorphic curves.

Recall the initial dichomotony mentioned between contact (or symplectic) ge-
ometry and contact topology. If the field were entirely contact topology, then for
two Legendrian submanifolds to be equivalent it would be sufficient if they were
equivalent as just submanifolds. This is clearly not the case, as many people have
shown. Josh Sabloff and I address this dichotomy in a “higher parameter space”
[20]. Consider a Legendrian submanifold and move it about the ambient contact
space until it comes back to itself after a minute. This is a loop of Legendrian
submanifolds. The loop may or may not contract itself into the “constant loop,”
which is simply the Legendrian staying in place the whole minute. We provide
examples of such Legendrian loops (in any dimension) which can contract to
the constant loop when thought of as just submanifolds, but not when thought
of as Legendrian submanifolds. Our proof uses generating families, which is an
alternative, yet conjecturally equivalent, theory to LCH.
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