The realization space is
  [1   1   0                         x1*x2 - x1 - x2^2 + x2   0   1   1        0                         x1*x2 - x1 - x2^2 + x2       x1 - x2    1]
  [0   1   1   -x1^2 - x1*x2^2 + 2*x1*x2 + x1 + x2^2 - 2*x2   0   0   1   x1 - 1   -x1^2 - x1*x2^2 + 2*x1*x2 + x1 + x2^2 - 2*x2   -x1*x2 + x1   x1]
  [0   0   0                                              0   1   1   1   x2 - 1                            -x2^3 + 2*x2^2 - x2    -x2^2 + x2   x2]
in the multivariate polynomial ring in 2 variables over ZZ
avoiding the zero loci of the polynomials
RingElem[x2, x1 - 1, x1 + x2^2 - 2*x2, x1, x1 - x2, x1 + x2 - 2, x1^2 + x1*x2 - 3*x1 - x2^2 + x2 + 1, x2 - 1, x1^2*x2 - x1*x2 - x1 - x2^2 + 2*x2, x1*x2 + x1 - 2*x2, x1 + x2 - 1, x1*x2^2 - x1*x2 - x1 - x2^2 + 2*x2, x1^2 + x1*x2^2 - x1*x2 - 2*x1 - 2*x2^2 + 3*x2, x1^3 + x1^2*x2^2 - 2*x1^2*x2 - 2*x1^2 + x1*x2^4 - 2*x1*x2^3 - 2*x1*x2^2 + 6*x1*x2 - 2*x2^4 + 6*x2^3 - 5*x2^2, x1^3 + x1^2*x2^2 - 2*x1^2*x2 - 2*x1^2 + x1*x2^4 - 3*x1*x2^3 + 5*x1*x2 - x2^4 + 4*x2^3 - 4*x2^2, x1 + x2^2 - x2 - 1]