The realization space is [1 0 1 x2 0 1 0 1 x2 1 x2^2] [0 1 1 x1 + x2 - 1 0 0 1 1 x1 + x2 - 1 x1 x1*x2*x3 + x1*x2 - x1*x3 + x2^2 - x2*x3 - x2 + x3] [0 0 0 0 1 1 -1 x2 x1*x2 - x1 + x2^2 - x2 + 1 x2 x2^2*x3] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal with 1 generator avoiding the zero loci of the polynomials RingElem[x2 - x3, x1 + x2 - 1, x1 - 1, x2 - 1, 2*x1*x2 - x1 + x2^2 - 2*x2 + 1, x1*x2 - x1 + x2^2 - x2 + 1, x3, x1*x2 - x1 + x2^2 - x2*x3 - x2 + 1, x1*x2^2*x3 + x1*x2^2 - 2*x1*x2*x3 - x1*x2 + x1*x3 + x2^3*x3 + x2^3 - 3*x2^2*x3 - x2^2 + 2*x2*x3 + x2 - x3, x1*x2^2*x3 + x1*x2^2 - 2*x1*x2*x3 - x1*x2 + x1*x3 + x2^3 - 2*x2^2*x3 - x2^2 + 2*x2*x3 + x2 - x3, x1*x2*x3 + x1*x2 - x1*x3 + x2^2 - 2*x2*x3 - x2 + x3, x2, x2*x3 + x2 - x3, x1*x2*x3 + x1*x2 - x1*x3 - x2^3 + x2^2*x3 - x2*x3 - x2 + x3, x1*x2*x3 + x1*x2 - x1*x3 + x2^2*x3 + x2^2 - x2*x3 - x2 + x3, x1*x2*x3 + x1*x2 - x1*x3 + x2^2*x3 - x2*x3 - x2 + x3, x1*x2*x3 + x1*x2 - x1*x3 + x2^2 - x2*x3 - x2 + x3, x3 - 1, x1 + x2, x1, x2 + 1, x1 - x2^2 - 1]