The realization space is
  [1   x1 - x2   1   0              x2        x1 - x2   1   0    0   x1^2 - x1*x2 + x2    1]
  [1       -x2   0   1   -x1^2 + x1*x2   x1^2 - x1*x2   1   0   x1                   0   x1]
  [1       -x2   0   0              x2            -x2   0   1   x2                  x2   x2]
in the multivariate polynomial ring in 2 variables over ZZ
avoiding the zero loci of the polynomials
RingElem[x1^3 - 2*x1^2*x2 + x1*x2^2 - x2^2 + x2, x1 - x2 + 1, x2, x1, x1 - 1, x1^2 - x1*x2 + x1 + x2 - 1, x1 - x2, x1^2 - x1*x2 + x2, x2 - 1, x1^3 - 2*x1^2*x2 + 2*x1^2 + x1*x2^2 - x1*x2 - x2^2 + x2, x1^3 - 2*x1^2*x2 + x1*x2^2 - x2^2, x1^2 - x1*x2 + x1 + x2, x1^3 - 2*x1^2*x2 + x1^2 + x1*x2^2 + x1 - x2^2, x1^3 - 2*x1^2*x2 + x1*x2^2 + x1*x2 - x2^2 + x2, x1^2*x2 + x1^2 - x1*x2^2 - x1*x2 + x2^2]