The realization space is [1 x1 - x2 1 0 x2 - 1 x1 - x2 x2 - 1 1 1 0 0] [1 -x1*x2 + x1 0 1 -x1 + x2 x1^2 - x1*x2 -x1 + x2 x1 0 0 1] [1 -x1*x2 + x1 0 0 x2 - 1 -x1*x2 + x1 0 x2 x2 1 x3] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal (-2*x1^2*x2 + x1^2 + x1*x2^3 + x1*x2^2 - x2^3) avoiding the zero loci of the polynomials RingElem[x2 + x3 - 1, x1*x2*x3 - 2*x1*x2 - x1*x3 + x1 + x2^2, x2, x3, x1*x3 - x2^2 - x2*x3 + 2*x2 - 1, x1^2*x3 - x1*x2*x3 + 2*x1*x2 - x1 - x2^2, x1*x3 - x2^2 - x2*x3 + x2, x1, x1*x3 - x2 - x3 + 1, x1^2*x3 - 2*x1*x2 - x1*x3 + x1 + x2^2, x1*x3 - x2, x1*x2*x3 - x2^2 - x2*x3 + 2*x2 - 1, 2*x1*x2 - x1 - x2^2, x1^2*x3 - x1*x2^2*x3 + x1*x2^2 - 2*x1*x2 - x1*x3 + x1 + x2^2*x3, x1 - x2, x1^2*x2*x3 - x1*x2^2*x3 + x1*x2^2 - x1*x2*x3 - 2*x1*x2 + x1 + x2^2*x3, x1*x3 - x2*x3 + x2, x1 - 1, x1*x3 - x2*x3 + x2 - 1, x1*x3 - x2^2*x3 + x2^2 - x2, x3 - 1, x2 - 1, x1 - x2^2, x1*x2^2 + x1*x2 - x1 - x2^2, x1*x2 - x1 - x2^2, 2*x1*x2 - x1 - x2^3, x1*x2^2 + x1*x2 - x1 - x2^3]