The realization space is
  [1   1   0   0   1   1                                            0                        x1*x2                                         x1*x2 - x2             x1    1]
  [1   0   1   0   1   0                              x1^2*x2 - x1*x2   2*x1^2*x2 - x1^2 - x1*x2^2   2*x1^2*x2 - x1^2 - x1*x2^2 - 2*x1*x2 + x1 + x2^2   x1*x2 - x2^2   x1]
  [0   0   0   1   1   1   -x1^2*x2 + x1^2 + 2*x1*x2^2 - x1*x2 - x2^3     2*x1*x2^2 - x1*x2 - x2^3                    2*x1*x2^2 - 2*x1*x2 + x1 - x2^3          x1*x2   x2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal (2*x1^3*x2^2 - 3*x1^3*x2 + x1^3 - 3*x1^2*x2^3 + 3*x1^2*x2^2 + 3*x1*x2^4 - 2*x1*x2^3 - x2^5)
avoiding the zero loci of the polynomials
RingElem[x1^2 - x1*x2 + x2^2, x2, x2 - 1, x1*x2 - x1 - x2^2, x1 - x2, x1^2*x2 - x1^2 - x1*x2^2 + x2^3, x1^2*x2 - x1^2 - x1*x2^2 + x1*x2 + x2^3, x1^2*x2 - x1^2 - x1*x2^2 + x2^3 - x2^2 + x2, x1 + x2 - 1, x1, x1 - 1, 2*x1^3*x2^2 - x1^3*x2 - 3*x1^2*x2^3 + x1^2*x2^2 - 2*x1^2*x2 + x1^2 + 3*x1*x2^4 - 2*x1*x2^3 + 2*x1*x2^2 - x2^5, 2*x1^3*x2 - x1^3 - 3*x1^2*x2^2 + 3*x1*x2^3 - x1*x2^2 + x1*x2 - x2^4, 2*x1^2*x2 - x1^2 - 2*x1*x2^2 + x2^3, 2*x1*x2 - x1 - x2^2 - x2, 2*x1^3*x2 - x1^3 - 3*x1^2*x2^2 - x1^2*x2 + x1^2 + 3*x1*x2^3 + x1*x2^2 - x2^4 - x2^3, 2*x1^3*x2 - x1^3 - 3*x1^2*x2^2 + 3*x1*x2^3 - x2^4, 2*x1^3*x2 - x1^3 - 3*x1^2*x2^2 + 2*x1^2*x2 - x1^2 + 3*x1*x2^3 - 2*x1*x2^2 - x2^4, 2*x1*x2 - x1 - x2^2, 2*x1^3*x2^2 - 3*x1^3*x2 + x1^3 - 3*x1^2*x2^3 + 4*x1^2*x2^2 - x1^2*x2 + 3*x1*x2^4 - 3*x1*x2^3 - x2^5, 2*x1^3*x2^2 - 2*x1^3*x2 + x1^3 - 3*x1^2*x2^3 + 3*x1^2*x2^2 - x1^2*x2 + 3*x1*x2^4 - 2*x1*x2^3 - x2^5, 2*x1^3*x2 - 2*x1^3 - 3*x1^2*x2^2 + x1^2*x2 + x1^2 + 3*x1*x2^3 - x1*x2^2 - x2^4, 2*x1^3*x2^2 - 3*x1^3*x2 + x1^3 - 3*x1^2*x2^3 + 2*x1^2*x2^2 + x1^2*x2 + 3*x1*x2^4 - x1*x2^2 - x2^5 - x2^4, 2*x1^3*x2^2 - 3*x1^3*x2 + x1^3 - 3*x1^2*x2^3 + 2*x1^2*x2^2 + 3*x1*x2^4 - 2*x1*x2^3 + x1*x2^2 - x2^5, 2*x1^2*x2 - x1^2 + x1*x2^2 - 5*x1*x2 + 2*x1 - x2^3 + x2^2 + x2, 2*x1*x2^2 - 2*x1*x2 + x1 - x2^3, 2*x1^3*x2^2 - 3*x1^3*x2 + x1^3 - 3*x1^2*x2^3 + 3*x1^2*x2^2 - x1^2*x2 + 3*x1*x2^4 - 4*x1*x2^3 + 2*x1*x2^2 - x2^5 + x2^4, 2*x1^2*x2 - x1^2 + x1*x2^2 - 2*x1*x2 - x2^3, 2*x1*x2 - 2*x1 - x2^2, x1^2 + 2*x1*x2^2 - 2*x1*x2 - x2^3]