The realization space is [1 1 0 x3 - 1 0 1 1 0 x2*x3 - x2 1 1] [1 0 1 -x1*x2 + x2*x3 - x2 0 1 0 x2 -x1*x2^2 + x2^2*x3 - x2^2 x2 x2] [0 0 0 0 1 1 1 x3 - 1 -x1*x2*x3 + x1*x2 + x2*x3^2 - x2*x3 - x3^2 + 2*x3 - 1 x1 x3] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal (x1^2*x2 - 2*x1*x2*x3 + 2*x1*x2 + x2*x3^2 - x2*x3 - x3^2 + 2*x3 - 1) avoiding the zero loci of the polynomials RingElem[x2 - 1, x1 - x3, x2, x1, x1*x2^2 + x1*x2*x3 - x1*x2 - x2*x3^2 + 2*x2*x3 - x2 + x3^2 - 2*x3 + 1, x1*x2 - x3^2 + 2*x3 - 1, x1*x2 + x3 - 1, x1*x2 - x2*x3 + x3 - 1, x1*x2 - x2*x3 + x2 + x3 - 1, x3 - 1, x2 + x3 - 1, x2 - x3, x1*x2 - x2*x3 + x3, x3, x1 - x3 + 1, x1^2*x2^2 - 2*x1*x2^2*x3 + 2*x1*x2^2 + 2*x1*x2*x3 - 2*x1*x2 + x2^2*x3^2 - x2^2*x3 - 2*x2*x3^2 + 3*x2*x3 - x2 + x3^2 - 2*x3 + 1, 2*x1*x2 - x2*x3 + x3 - 1, x1^2*x2 - 2*x1*x2*x3 + x1*x2 + x2*x3^2 - x2*x3 - x3^2 + 2*x3 - 1, x1 + x2 - 1, x1 - 1, x1 - x2, x2 - x3 + 1, x1*x2^2 + x1*x2*x3 - x1*x2 - x2^2*x3 + x2^2 - x2*x3^2 + 2*x2*x3 - x2 + x3^2 - 2*x3 + 1]