The realization space is
  [1   1   0   0   1   1            0           x1*x2 - x1 - x2 + 1      x1*x2^2 - x1*x2 - x2^2 + x2                                x1 - 1    1]
  [1   0   1   0   1   0   x1*x2 - x2           -x1 + x2^3 - x2 + 1        -x1*x2 + x2^4 - x2^2 + x2               x1*x2^2 - x2^3 + x2 - 1   x1]
  [0   0   0   1   1   1   -x1 + x2^2   x1*x2^2 - x1*x2 - x2^2 + x2   x1*x2^3 - x1*x2^2 - x1*x2 + x1   -x1*x2^2 + x1*x2 + x1 + x2^3 - 2*x2   x2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal (x1^2*x2^2 - x1^2*x2 - x1^2 + 2*x1*x2 - x2^4 + x2^2 - x2)
avoiding the zero loci of the polynomials
RingElem[x1^3*x2^2 - x1^3*x2 - x1^3 - x1^2*x2^2 + 3*x1^2*x2 + x1^2 - x1*x2^4 + x1*x2^3 + x1*x2^2 - 4*x1*x2 + x2, x1^2*x2^2 - x1^2*x2 - x1^2 - x1*x2^3 + 3*x1*x2 - x2, x2 + 1, x2 - 1, x1, x1 - x2, x1^3*x2^2 - x1^3*x2 - x1^3 - 2*x1^2*x2^2 + 3*x1^2*x2 + 2*x1^2 - x1*x2^4 + 2*x1*x2^3 + x1*x2^2 - 5*x1*x2 + x2, x1^2*x2^2 - x1^2*x2 - x1^2 - x1*x2^2 + 2*x1*x2 + x1 - x2^4 + x2^3 + x2^2 - 2*x2, x1^3*x2^3 - 2*x1^3*x2^2 - x1^3*x2 + x1^3 + 3*x1^2*x2^2 - x1*x2^5 + x1*x2^4 + x1*x2^3 - 4*x1*x2^2 + x2^2, x1 - x2^2, x1 + x2 - 1, x1^2 - x1*x2 - x2^2 + x2, x2, x1 + x2, x1 - 1, x1^4*x2^4 - 2*x1^4*x2^3 - x1^4*x2^2 + 2*x1^4*x2 + x1^4 - x1^3*x2^4 + 5*x1^3*x2^3 - 2*x1^3*x2^2 - 5*x1^3*x2 - x1^3 - x1^2*x2^6 + 2*x1^2*x2^5 + x1^2*x2^4 - 7*x1^2*x2^3 + 5*x1^2*x2^2 + 5*x1^2*x2 - x1*x2^5 + 2*x1*x2^4 + 2*x1*x2^3 - 4*x1*x2^2 - x1*x2 - x2^4 + x2^2, x1^3*x2^4 - 2*x1^3*x2^3 - x1^3*x2^2 + 2*x1^3*x2 + x1^3 + 3*x1^2*x2^3 - 2*x1^2*x2^2 - 4*x1^2*x2 - x1^2 - x1*x2^6 + x1*x2^5 + x1*x2^4 - 2*x1*x2^3 + 3*x1*x2^2 + 3*x1*x2 - x2^3 - x2^2, x1 - x2 - 1, x1*x2^2 - x1*x2 - x1 + x2, x1*x2^2 - x1*x2 - x1 - x2^3 + x2^2 + 2*x2 - 1, x1^3*x2^2 - x1^3*x2 - x1^3 - 2*x1^2*x2^2 + 3*x1^2*x2 + x1^2 - x1*x2^4 + 2*x1*x2^3 + 2*x1*x2^2 - 4*x1*x2 - x2^3 + x2, x1^3*x2^3 - 3*x1^3*x2^2 + x1^3*x2 + 2*x1^3 + 3*x1^2*x2^2 - 4*x1^2*x2 - x1^2 - x1*x2^5 + 2*x1*x2^4 - 4*x1*x2^2 + 3*x1*x2 + x1 + x2^3 - x2, x1^4*x2^4 - 2*x1^4*x2^3 - x1^4*x2^2 + 2*x1^4*x2 + x1^4 - x1^3*x2^4 + 6*x1^3*x2^3 - 4*x1^3*x2^2 - 5*x1^3*x2 - x1^2*x2^6 + x1^2*x2^5 + 2*x1^2*x2^4 - 6*x1^2*x2^3 + 7*x1^2*x2^2 + 2*x1^2*x2 + x1*x2^6 - 2*x1*x2^5 - x1*x2^4 + 5*x1*x2^3 - 5*x1*x2^2 - x2^3 + x2^2, x1^3*x2^4 - 2*x1^3*x2^3 - x1^3*x2^2 + 2*x1^3*x2 + x1^3 + 4*x1^2*x2^3 - 4*x1^2*x2^2 - 4*x1^2*x2 - x1*x2^6 + 2*x1*x2^4 - x1*x2^3 + 4*x1*x2^2 + x1*x2 + x2^6 - x2^5 - 2*x2^4 + x2^3 - x2^2, x1^4*x2^4 - 2*x1^4*x2^3 - x1^4*x2^2 + 2*x1^4*x2 + x1^4 - 2*x1^3*x2^4 + 7*x1^3*x2^3 - 3*x1^3*x2^2 - 5*x1^3*x2 - x1^2*x2^6 + 2*x1^2*x2^5 + 2*x1^2*x2^4 - 9*x1^2*x2^3 + 7*x1^2*x2^2 + 2*x1^2*x2 + x1*x2^6 - 3*x1*x2^5 + 7*x1*x2^3 - 6*x1*x2^2 - x2^3 + x2^2, x1^3*x2^3 - 3*x1^3*x2^2 + x1^3*x2 + 2*x1^3 + 3*x1^2*x2^2 - 5*x1^2*x2 - x1*x2^5 + 2*x1*x2^4 + x1*x2^3 - 5*x1*x2^2 + 4*x1*x2 + x2^2 - x2, x1^3*x2^3 - 2*x1^3*x2^2 + x1^3 + 3*x1^2*x2^2 - 2*x1^2*x2 - x1*x2^5 + x1*x2^4 + x1*x2^3 - 4*x1*x2^2 + x1*x2 + x2^2, x1^3*x2^3 - 2*x1^3*x2^2 + x1^3 + 3*x1^2*x2^2 - x1^2*x2 - x1*x2^5 + x1*x2^4 - 4*x1*x2^2 + x2^3 + x2^2, x1^3*x2^3 - 2*x1^3*x2^2 + x1^3 + 2*x1^2*x2^2 - x1^2*x2 - x1*x2^5 + x1*x2^4 - 2*x1*x2^2 + x2^3, x1*x2^2 - x1*x2 - x1 - x2^3 + 2*x2, 2*x1^2*x2^2 - 2*x1^2*x2 - 2*x1^2 - 2*x1*x2^3 + x1*x2^2 + 5*x1*x2 - x2^2 - x2, x1^2*x2^2 - x1^2*x2 - x1^2 - x1*x2^3 + x1*x2^2 + 3*x1*x2 - x2^2 - x2, x1^2*x2^2 - x1^2*x2 - x1^2 - x1*x2^2 + 2*x1*x2 + x2^2 - x2, x1^3*x2^2 - x1^3*x2 - x1^3 - x1^2*x2^2 + 3*x1^2*x2 - x1*x2^3 + 2*x1*x2^2 - 2*x1*x2 - x2^4 + x2^3, x1^3*x2^2 - x1^3*x2 - x1^3 - x1^2*x2^3 + 3*x1^2*x2 + x1*x2^3 - 2*x1*x2 - x2^4 + x2^2, x1^3*x2^2 - x1^3*x2 - x1^3 + x1^2*x2^2 + x1^2*x2 - 2*x1*x2^4 + x1*x2^3 + x2^4 - x2^3, x1^3*x2^2 - x1^3*x2 - x1^3 - x1^2*x2^3 + 2*x1^2*x2^2 + x1^2*x2 - 2*x1*x2^4 + 3*x1*x2^3 - 2*x1*x2^2 + x2^4 - 2*x2^3 + x2^2, x1^2*x2^2 - x1^2*x2 - x1^2 + x1*x2^3 - 2*x1*x2^2 + 2*x1*x2 - x2^3 + 2*x2^2 - x2, x1^2*x2^2 - x1^2*x2 - x1^2 - x1*x2^3 + x1*x2^2 + x1*x2 + x2^3 - x2^2]