The realization space is [1 1 0 0 1 1 0 x2 x1*x2^2*x3^2 - x1*x2^2 - x1*x2*x3^2 + x1*x2*x3 - x2^3*x3 + x2^3 1 x2^2*x3 - x2*x3] [1 0 1 0 1 0 x1*x2*x3 + x1*x2 - x1*x3 - x2^2 x1*x3 x1^2*x3^4 - x1^2*x3^3 + 2*x1*x2^2*x3^3 - x1*x2^2*x3 - x1*x2^2 - x1*x2*x3^4 - x1*x2*x3^3 + x1*x2*x3^2 + x1*x2*x3 - x2^3*x3^2 + x2^3 x1 x1*x2*x3^2 - x1*x2 - x1*x3^2 + x1*x3 - x2^2*x3 + x2^2] [0 0 0 1 1 1 x1*x2 - x1*x3 + x2^2*x3 - x2^2 x2*x3 x1*x2^2*x3^3 - x1*x2^2 - x1*x2*x3^3 + x1*x2*x3 - x2^3*x3 + x2^3 x2 x2^2*x3^2 - x2*x3^2] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal (x1^2*x2*x3 - x1^2*x3^2 - 2*x1*x2^2*x3 - x1*x2^2 + x1*x2*x3^2 + x1*x2*x3 + x2^3) avoiding the zero loci of the polynomials RingElem[x1*x2 - x1*x3 + 2*x2^2*x3 - x2^2 - x2*x3^2 - x2*x3 + x3^2, x1*x2 - x1*x3 + x2^2*x3 - x2^2, x2 - x3, x1*x2^2*x3 - x1*x2*x3^2 - x1*x2*x3 + x1*x2 + x1*x3^2 - x1*x3 + x2^2*x3 - x2^2, x1*x2*x3 - x1*x2 - x1*x3^2 + x1*x3 - 2*x2^2*x3 + x2^2 + x2*x3^2, x3 - 1, x1*x2 - x1*x3 - x2^2, x1^2*x2^3*x3 - 2*x1^2*x2^2*x3^2 - x1^2*x2^2*x3 + x1^2*x2^2 + x1^2*x2*x3^3 + 2*x1^2*x2*x3^2 - 2*x1^2*x2*x3 - x1^2*x3^3 + x1^2*x3^2 - 2*x1*x2^4*x3 + 3*x1*x2^3*x3^2 + 4*x1*x2^3*x3 - 2*x1*x2^3 - x1*x2^2*x3^3 - 5*x1*x2^2*x3^2 + 2*x1*x2^2*x3 + x1*x2*x3^3 + x2^5*x3 - 3*x2^4*x3 + x2^4 + x2^3*x3^2, x1*x2*x3 + x1*x2 - x1*x3 - x2^2, x1*x2*x3 + x1*x2 - x1*x3 + x2^2*x3 - x2^2 - x2*x3, x1 - x2, x3, x1^2*x2^2*x3^2 - x1^2*x2^2 - x1^2*x2*x3^3 - x1^2*x2*x3^2 + 2*x1^2*x2*x3 + x1^2*x3^3 - x1^2*x3^2 - 2*x1*x2^3*x3^2 - 3*x1*x2^3*x3 + 2*x1*x2^3 + x1*x2^2*x3^3 + 5*x1*x2^2*x3^2 - x1*x2^2*x3 - x1*x2*x3^3 - x1*x2*x3^2 - x2^4*x3^2 + 3*x2^4*x3 - x2^4 - x2^3*x3, x1^2*x2^2*x3^2 - x1^2*x2^2 - x1^2*x2*x3^3 - x1^2*x2*x3^2 + 2*x1^2*x2*x3 + x1^2*x3^3 - x1^2*x3^2 - x1*x2^3*x3^2 - 2*x1*x2^3*x3 + 2*x1*x2^3 + x1*x2^2*x3^3 + 3*x1*x2^2*x3^2 - 2*x1*x2^2*x3 - x1*x2*x3^3 - x2^4*x3^2 + 2*x2^4*x3 - x2^4, x1*x2*x3^2 - x1*x2 - x1*x3^2 + x1*x3 - 2*x2^2*x3 + x2^2 + x2*x3, x1*x2*x3^2 - x1*x2 - x1*x3^2 + x1*x3 - x2^2*x3^2 - x2^2*x3 + x2^2 + x2*x3^2, x1^2*x2 - x1^2*x3 + 2*x1*x2^2*x3 - x1*x2*x3^2 - 2*x1*x2*x3 - x1*x2 + x1*x3^2 + x1*x3 - x2^3 + x2^2, x1, x1*x2*x3 + x1*x2 - x1*x3^2 - x1*x3 - x2^2, x1^2*x2^2 - 2*x1^2*x2*x3 + x1^2*x3^2 - 2*x1*x2^3 + 3*x1*x2^2*x3 + x1*x2^2 - x1*x2*x3^2 - x1*x2*x3 + x2^4 - x2^3, x1^2*x2 - x1^2*x3 - 2*x1*x2^2 + x1*x2*x3 - x1*x2 + x1*x3 + x2^3 - x2^2*x3 + x2^2, x1^2*x2 - x1^2*x3 - 2*x1*x2^2 + 2*x1*x2*x3 + x1*x2 - x1*x3 + x2^3 - x2^2, x1 + x2 - 1, x2 - 1, x1 - 1, x2, x1*x3 - x2, x1^2*x2*x3 - x1^2*x3^2 - 2*x1*x2^2*x3 - 2*x1*x2^2 + x1*x2*x3^2 + 2*x1*x2*x3 - x2^3*x3 + 2*x2^3, x1^2*x2*x3 - x1^2*x3^2 - x1*x2^2*x3 - x1*x2^2 + x1*x2*x3^2 + x1*x2*x3 - x2^3*x3 + x2^3, x1^2*x2*x3^2 + x1^2*x2*x3 - x1^2*x3^2 - x1*x2^2*x3^2 - 2*x1*x2^2*x3 - x1*x2^2 + x1*x2*x3^2 + x1*x2*x3 + x2^3, x1*x2*x3^2 + x1*x2*x3 + x1*x2 - x1*x3^2 - x1*x3 - x2^2, x1^2*x2*x3 - x1^2*x3^2 - x1*x2^2*x3 + x1*x2^2 + x1*x2*x3^2 - x1*x2*x3 + x2^3*x3 - x2^3, x1*x3 + x2*x3 - x2, x1*x2*x3 + 2*x1*x2 - 2*x1*x3 + x2^2*x3 - 2*x2^2]