The realization space is
  [1   1   0        2*x1^2 - x1   0   1   1               0        2*x1^2 - x1    1              x1]
  [1   0   1   -x1^2 + 3*x1 - 2   0   1   0     2*x1^2 - x1   -x1^2 + 3*x1 - 2   x1   x1^2 - x1 + 1]
  [0   0   0                  0   1   1   1   x1^2 - x1 + 1     -x1^2 + x1 - 1   x1            x1^2]
in the multivariate polynomial ring in 1 variable over ZZ
within the vanishing set of the ideal
Ideal (x1^3 + x1^2 - 2*x1 + 1)
avoiding the zero loci of the polynomials
RingElem[x1, x1 - 1, x1^3 + 2*x1^2 - x1 + 1, x1^3 + 2*x1^2 - 3*x1 + 2, x1^3 + x1^2 - 2*x1 + 2, x1^3 - 2*x1 + 2, x1^2 - x1 + 1, x1 + 1, 2*x1^3 + 2*x1^2 - 3*x1 + 3, 2*x1^3 + x1^2 - 4*x1 + 3, x1^8 - 6*x1^6 + 3*x1^5 + 5*x1^4 - 10*x1^3 + 7*x1^2 - 3*x1 + 1, x1^6 - x1^5 - 2*x1^4 + 8*x1^3 - 8*x1^2 + 4*x1 - 1, x1^6 - x1^4 + 5*x1^3 - 6*x1^2 + 3*x1 - 1, x1^4 + x1^3 - x1^2 + x1 - 1, x1^4 - x1^3 - 2*x1^2 + 2*x1 - 1, x1^5 + x1^4 + 3*x1^2 - 2*x1 + 1, 2*x1^2 - 2*x1 + 1, x1^2 + 2*x1 - 2, 2*x1^3 + 2*x1^2 - 5*x1 + 4, x1^8 - 8*x1^6 + 4*x1^5 + 13*x1^4 - 24*x1^3 + 18*x1^2 - 8*x1 + 2, x1^8 - 6*x1^6 + 3*x1^5 + 9*x1^4 - 18*x1^3 + 16*x1^2 - 8*x1 + 2, 2*x1 - 1, x1^5 - 2*x1^3 + 6*x1^2 - 6*x1 + 2, x1^8 + 2*x1^7 - 9*x1^6 + 23*x1^4 - 34*x1^3 + 23*x1^2 - 9*x1 + 2, x1^8 + 2*x1^7 - 7*x1^6 + x1^5 + 16*x1^4 - 27*x1^3 + 19*x1^2 - 8*x1 + 2, x1^8 + 2*x1^7 - 9*x1^6 + 19*x1^4 - 30*x1^3 + 22*x1^2 - 9*x1 + 2, x1^6 + 3*x1^5 - 5*x1^4 - 7*x1^3 + 10*x1^2 - 6*x1 + 2, x1 - 2, x1^4 + x1^3 - 5*x1^2 + 3*x1 - 1, x1^8 + 2*x1^7 - 5*x1^6 + 8*x1^4 - 17*x1^3 + 16*x1^2 - 8*x1 + 2, x1^8 + 2*x1^7 - 7*x1^6 - x1^5 + 15*x1^4 - 24*x1^3 + 20*x1^2 - 9*x1 + 2]