The realization space is [1 1 0 1 0 0 x1*x3 x1*x3 x3 x1*x3 1] [0 1 1 0 0 1 x1*x2 + x1*x3 - x3 x1^2*x2 x1*x2 x1*x2 + x1*x3 - x3 x2] [0 0 0 1 1 -1 x1*x3 -x1^2*x2 + x1^2*x3 + x1*x2 + x1*x3 - x3 x1*x3 x1^2*x3 x3] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal (x1^2*x2^2 + x1^2*x2*x3 - x1^2*x3^2 - 2*x1*x2*x3 - x1*x3^2 + x3^2) avoiding the zero loci of the polynomials RingElem[x1*x2 - x3, x1 - 1, x1^2*x2 - x1^2 - x1*x2 + x3, x1 - x3, x1^2*x2*x3 - 2*x1*x2*x3 + x1*x2 - x1*x3^2 + x1*x3 + x3^2 - x3, x1*x2*x3 - x1*x2 - x1*x3 + x3, x1^2*x3 - x1*x2*x3 + x1*x2 - x1*x3^2 + x1*x3 - x3, x2, x2 + x3, x3, x1^2*x2^2 - x1^2*x2 + x1^2*x3 - x1*x2^2 - x1*x2*x3 + x1*x2 - x1*x3^2 + x1*x3 + x2*x3 - x3, x1^2*x2 - x1^2*x3 - x1*x2 + x1*x3^2 - x1*x3 + x3, x1^2*x2^2*x3 - x1^2*x2^2 - x1^2*x2*x3 + x1^2*x3^2 - x1*x2*x3^2 + 2*x1*x2*x3 - x1*x3^3 + x1*x3^2 - x3^2, x3 - 1, x1*x2 + x1*x3 - x3, x1*x2*x3 - x1*x2 + x1*x3^2 - 2*x1*x3 + x3, x2 + x3 - 1, x2 - 1, x1, x1^2*x3 + x1*x2 + x1*x3 - x3, x1^2*x3 + x1*x2 - x3, x1*x2 - x1*x3 - x3, x1^2*x2 - x1^2*x3 - x1*x2 - x1*x3 + x3, x1*x2 + 2*x1*x3 - x3]