The realization space is [1 x3 x2 - x3 1 0 x2 - x3 0 x2 x2*x3 0 1] [1 -x1*x2 - x2 + 3*x3 0 0 1 -x1*x2 - x2 + 2*x3 0 x2 -x1*x2^2 - x2^2 + 3*x2*x3 1 x2] [0 x3 -x1*x2 + x3 0 0 -x1*x2 + x3 1 x3 x3^2 x1 x3] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal (x1^2*x2^2 + x1*x2^2 - 3*x1*x2*x3 + x3^2) avoiding the zero loci of the polynomials RingElem[x1*x2 - x1 - x3, x1^2*x2 + x1*x2*x3 + x1*x2 - 3*x1*x3 - x3^2 + x3, x2 - x3 - 1, x1*x2 - x3, x1, x1^2*x2 + x1*x2^2 - x1*x2*x3 - 2*x1*x3 - x2*x3 + x3^2 + x3, x2 - 1, x1^2*x2^2 + x1*x2^2*x3 + x1*x2^2 - 3*x1*x2*x3 - x2*x3^2 + x3^2, x1*x2^2 + x2^2 - x2*x3 - x3, x2 - x3, x1*x2 + x2*x3 + x2 - 3*x3, x1^2*x2^2 + 2*x1*x2^2*x3 + x1*x2^2 - x1*x2*x3^2 - 4*x1*x2*x3 + x2^2*x3 - 4*x2*x3^2 - x2*x3 + 2*x3^3 + 3*x3^2, x1*x2 + x2 - 2*x3, x3, x1^2*x2^3 + 2*x1*x2^3*x3 + x1*x2^3 - 2*x1*x2^2*x3^2 - 4*x1*x2^2*x3 + x1*x2*x3^2 + x2^3*x3 - 5*x2^2*x3^2 - x2^2*x3 + 4*x2*x3^3 + 4*x2*x3^2 - 2*x3^3, x1*x2 + 2*x2 - 3*x3, x1*x2 - 2*x3, x2, x1*x2 + x2^2 - x2*x3 + x2 - 2*x3, x1*x2^2 - x1*x2*x3 - x1*x2 - 3*x2*x3 + 3*x3^2 + x3, x1^2*x2^2 + 2*x1*x2^2*x3 + x1*x2^2 - 2*x1*x2*x3^2 - 3*x1*x2*x3 + 2*x2^2*x3 - 7*x2*x3^2 + 5*x3^3 + x3^2, x1*x2 + x2*x3 - x3^2 - x3, x3 - 1, x1*x2^2 - x1*x2 - 2*x2*x3 + x3^2 + x3, x1^2*x2^2 + 2*x1*x2^2*x3 + x1*x2^2 - x1*x2*x3^2 - 4*x1*x2*x3 + 2*x2^2*x3 - 6*x2*x3^2 - x2*x3 + 3*x3^3 + 3*x3^2, x1*x2 + 2*x2 - 2*x3 - 1, x1^2*x2^2 + x1*x2^2 - 2*x1*x2*x3 + x3^2, x1^2*x2^3 - x1^2*x2^2*x3 + x1*x2^3 - 3*x1*x2^2*x3 + 3*x1*x2*x3^2 - x3^3, x1^2*x2^3 - 2*x1^2*x2^2*x3 + x1*x2^3 - 4*x1*x2^2*x3 + 5*x1*x2*x3^2 - x3^3, x1^2*x2^2 + x1*x2^2 - 2*x1*x2*x3 + x2*x3 - x3^2, x1^2*x2 + x1*x2 - 3*x1*x3 + x3, x1^2*x2^2 - 2*x1^2*x2*x3 + x1*x2^2 - 4*x1*x2*x3 + 5*x1*x3^2 + x2*x3 - 2*x3^2, x1^2*x2 - 2*x1*x3 + x3, x1 - 1, x1^2*x2^2 - x1^2*x2*x3 + x1*x2^2 - 3*x1*x2*x3 + 3*x1*x3^2 + x2*x3 - 2*x3^2, x1^2*x2 + x1*x2 - 2*x1*x3 + x3, x1*x2^2 - x3^2, x1*x2 + x2 - 3*x3, x1*x2^2 - 2*x1*x2*x3 + x2^2 - 5*x2*x3 + 5*x3^2, x1^2*x2^3 + x1*x2^3 - 3*x1*x2^2*x3 + x1*x2*x3^2 - x2^2*x3 + 4*x2*x3^2 - 3*x3^3, x1^2*x2^3 + x1*x2^3 - 4*x1*x2^2*x3 + x1*x2*x3^2 - x2^2*x3 + 4*x2*x3^2 - 2*x3^3, x1^2*x2^3 + x1*x2^3 - 3*x1*x2^2*x3 - x2^2*x3 + 3*x2*x3^2 - x3^3, x1^2*x2^3 + x1*x2^3 - x1*x2^2*x3 - 2*x1*x2*x3^2 + 2*x2^2*x3 - 6*x2*x3^2 + 5*x3^3, x1^2*x2^3 + x1*x2^3 - 2*x1*x2^2*x3 - x1*x2*x3^2 + x2^2*x3 - 3*x2*x3^2 + 3*x3^3]